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Symmetry protected topological(SPT) phase

Intrinsic topological phases (long-range-entanglement)

Two basic classes of topological phases:

l Adiabatical paths with no symmetry, e.g. fractional quantum hall 
effect(FQHE), gapped quantum spin liquid.

l Adiabatical paths with symmetry, e.g., topological insulator in 2D 
and 3D, topological superconductor in 3D

Symmetry protected topological (SPT) phases

SPT phases The trivial disorder phase

symmetry breaking Hamiltonians

(PRB 80 (15), 155131 Z C Gu, X G Wen (2009))

Gapped quantum phases without symmetry breaking and long range 
correlation, but can not be adiabatically connected to a trivial disorder 
phase without phase transition.

gauging



Why do we need a classification? 

How to understand different quantum phases in many body 
quantum systems in a systematical way?

Periodic table in chemistry:

The answer will lead to a second quantum revolution!



SPT phases in interacting systems
Spin one Haldane chain realizes 1D topological order  

The key observation: edge states form projective representation of the 
symmetry group! (Xie Chen, Z C Gu, X G Wen, PRB 83, 035107 (2011)) 

CSNiCl3(U~B~0)
Uc~1(B=0)

Haldane phase requires symmetry!

---- Advanced information of 2016 Nobel Prize

(Ian Affleck etal., (1988)) 



An example of Ising SPT phase in 2D
How many different paramagnetic phases? 
(M. Levin and Z.-C. Gu, Phys. Rev. B 86, 115109 (2012))

Two! 

Domain deformation rule But why not?



Topologically consistent condition for fixed 
point wavefunction



Bulk response and the nature of 
gapless edge
Assume that Ising spins carry Z2 gauge charge and can 
couple to background Z2 gauge field
Z2 gauge flux carries semion statistics!

Non-trivial statistics of flux leads to degenerate edge states!

Contradiction
There is No 1D representation!



SPT phases as equivalence class of 
symmetric local unitary transformation  
u Two states describe the same topological phase iff they are connected by 

finite depth local unitary(LU) transformation(acting on support space).

u Ui is l-local and fermion parity 
even(for fermion systems)

SPT state as short-range entangled state:

SPT phases are classified by equivalence class of symmetric LU 
transformation with one dimensional support space! 



A general fixed point wavefunction for 
2D SPT state   
Fix point wavefunction on arbitrary triangulation

Two types of fundamental symmetric LU transformation which generates all 
the renormalization(retriangulation) moves for fixed point wavefunction   

is a symmetric U(1) phase factor 



Coherent condition and equivalent class
As a fixed point 
wavefucntion, 
different symmetric 
LU transformation 
must five rise to the 
same amplitude  

Local basis change leads to equivalent solutions 

Cocycle equation! 

Coboundary 
equation! 



l To compute the classification of space group SPT phases, we can just 
regard the space group as an internal symmetry, as long as mirror reflection 
symmetry is mapped into time reversal symmetry. (Ryan Thorngren and Dominic V. 
Else, PRX 8, 011040 (2018))

SPT phases with space group symmetry
Crystalline equivalence principle

l All space group SPT phases can be constructed via the block state 
decoration scheme and realized as topological crystal! (Hao Song, Sheng-Jie 
Huang, Liang Fu, and Michael Hermele, Phys. Rev. X 7, 011020 (2017), Zhida Song, Chen 
Fang, Yang Qi, Nature Communications 11, 4197 (2020))

l For example, SPT phases protected by time reversal symmetry and mirror 
reflection symmetry have the same classification. 

For SPT protected by mirror reflection symmetry in 1D, one can just 
decorate a Z2 charge on reflection point! The two different Z2 
eigenvalues gives rise to the correct classification!



l 1D fermionic systems can be mapped to bosonic systems with an 
additional unbroken fermion parity symmetry.  (Xie Chen, Z C Gu, X G Wen, PRB 
84, 235128 (2011)) 

l The braiding/three loop braiding statistics of the gauge flux/flux line is a 
good way to understand the 2D/3D classification. (Z.-C. Gu, M. Levin, PRB 89, 
201113(R) (2014) M. Cheng, Z. Bi, Y. Z. You, Z. C. Gu, PRB 97, 205109, (2018), C Wang, CH 
Lin, ZC Gu, PRB 95, 195147(2017), J. R. Zhou, Q. R. Wang, C. Wang, Z. C. Gu, Nature 
communications 12, 1, (2021))

l Decoration of Kitaev’s Majorana chains on intersection lines of symmetry 
domains and decoration of complex fermion on intersection points of 
symmetry domain walls lead to a general group super-cohomolgy 
theory(equivalent to Atiyah–Hirzebruch spectral sequence) for fermionic 
SPT phases!  (Z.-C. Gu, X.-G. Wen, Phys. Rev. B 90, 115141 (2014), Q. R. Wang, ZC Gu, 
PRX, 8, 011055 (2018), Q. R. Wang, Z. C. Gu, PRX,10, 031055 (2020))

Classifying SPT phases for interacting 
fermion systems protected by internal 
symmetry 



A revisit of Kitaev’s Majorana chain
• From complex fermion to Majorana fermion:

• Hamiltonian and ground state:

(
�2j�1 = cj + c†j
�2j =

1
i (cj � c†j)

�j = �†
j , {�i, �j} = 2�ij

H = �
X

j

(c†jcj+1 + h.c.)�
X

j

(cjcj+1 + h.c.)

= i
X

j

�2j�2j+1

13

Majorana edge states: Two-fold degenerate ground states with 
different fermion parity

Pf = 1� 2c̃†c̃ = �i�1�2N = ±1c̃ = �1 + i�2N



fermion parity and Kasteleyn 
orientation
Kasteleyn orientation:

•For a graph with edge orientation, the number of clockwise-oriented 
edges at every face boundary is odd

•Two Majorana dimer states have the same fermion parity, if and only if 
the transition graph is Kasteleyn oriented

14



Excitations
• Hamiltonian:

• Ground state:

• Excited states: create a Majorana fermion at any site k from the
ground state

• ’s are not linearly independent:

• Majorana fermion hopping has phase factor

• and have different fermion parity

|ki = �k|GSi

H =
X

j

i�2j�2j+1

(i�2j�2j+1)|ki =
(
|ki, k = 2j, 2j + 1

�|ki, k 6= 2j, 2j + 1

i�2j�2j+1|GSi = �|GSi

�2j+1|GSi = i�2j |GSi

|ki

±i

|GSi �k|GSi
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Fixed point wavefunction of 2D SPT states 
with total (global) symmetry Gf=Gb×Z2

f

l Fixed-point state is a superposition of those basis states on all 
possible triangulations.

l Hilbert space on a branched triangulation of 2D orientable manifold

l The complex fermion aij on each edge will be 
splitted into a pair of Majorana fermions determined 
by discrete spin structure(Kasteleyn orientation). 

l The complex fermion cijk is will be decorated 
on the intersection point of Gb symmetry 
domain walls. A Majorana chain formed by aij
will be decorated on Gb symmetry domain wall. 



2D Discrete spin structure and 
Kasteleyn orientation
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Regular pair:

A convention on the 
resolved dual graph:

Lattice realization of spin structure:



A simple example: 
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Reverse the error when crossing a singular line:

A gauge choice:



Wavefunction renormalization with fermionic 
symmetric local unitary transformation

l Equivalent class of fermionic symmetric local unitary transformation with 
support dimension one will give rise to a definition and classification of 
SPT phases in interacting fermion systems.

l In-equivalent decoration patterns of complex fermion on the intersection 
points of Gb symmetry domain is classified by                        ; 
l In-equivalent decoration patterns of Majorana chain on the Gb symmetry 
domain is classified by



Fixed point conditions and obstruction  

Obstruction free subgroup:

Classification of 2D SPT phases with symmetry Gf=Gb×Z2
f for 

interacting fermions:
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Generic symmetry Gf for fermion systems 
• A generic Gf is defined by the short exact sequence:

• It is called central extension and specified by a Z2 coefficient cocycle:

• For a given group element in the total group Gf:

• The associativity of group multiplication holds naturally due to the fact
that:



Classification of general FSPT phases in 2D  

Q. R. Wang, Z. C. Gu, PRX,10, 031055 (2020)



Classification of space group SPT phases 
for 2D interacting fermion systems
Fermionic crystalline equivalence principle
l A mirror reflection symmetry action should still be mapped onto a time 
reversal symmetry action. In addition, spinless(spin-1/2) fermion systems 
should be mapped onto spin-1/2(spinless) fermion system.
Bosonic Crystalline SPT phases

Spin-1/2
(Y Ouyang, QR Wang, ZC Gu, Y Qi,  arXiv:2005.06572 (2020))

Spinless



Real space construction for space group 
FSPT phases in 2D

l Cell decomposition

Three major steps:

l 1D and 0D Block-state decoration(with or without symmetries): 
Possible obstructions for block-states; all obstruction-free block-states 
form a group {OFBS}

l Bubble equivalence: Some block-states might be equivalent via bubble 
equivalences; all trivial block-states form a group {TBS}

Topological distinct phases can be labeled by different group elements of 
the quotient group G= {OFBS}/{TBS}



p4m space group with spinless fermion
l Space group is composed by point group and translational symmetry.

l For wallpaper group p4m, the corresponding point group is D4. Cell 
decomposition of p4m leads to an assembly of following lower dimensional 
blocks with corresponding on-site symmetries:

2D blocks: no on-site symmetry;

1D blocks: Z2 on-site symmetry;

0D blocks 1 and 3: D4 on-site symmetry; 2: D2 on-site symmetry.



Block state decoration

.

l Similar as the D4 point group case, Majorana 
chain decoration is not allowed. Only possible 
for 1D FSPT state decoration with a total 
symmetry Z2×Z2

f.(double Majorana chain)

l Similar as the D4/D2 point group case, 0D 
block-states decoration is classified by:

There are three independent 0D blocks, each can be labelled as fermion 
parity and two mirror eigenvalues 

There are two independent 1D blocks 
comparable with 1D FSPT decoration 

Final classification of obstruction free block states:



Bubble equivalence 

.

1D bubble construction can be realized 
as creating a pair of complex fermion on 
all 1D blocks.: 

2D bubble construction can be realized as creating a Majorana chain on 
the boundaries of all 2D blocks. 



Classification results

.

l In general, the stacking of 1D block state might lead to a nontrivial 
0D block state, which implies nontrivial group structure.

l 1D bubble constructions can be characterized by three integers(mod 2), 
describing the changing of two mirror eigenvalues for each 0D block

l 2D bubble constructions will trivialize one of the 1D FSPT decoration 



Classification of TSC in 2D spin-1/2/spinless 
fermion systems 

l Fermionic/bosonic root phases are denoted with red/blue color.

(JH Zhang, S Yang, Y Qi, ZC Gu, Phys. Rev. Research 4, 033081 (2022))

l The 1D Majorana chain decoration, 0D complex fermion decoration and 
bosonic SPT phases has a one to one correspondence with internal symmetry.  



Generalize into topological insulators(TI) in 
2D interacting fermion systems 

l No 1D block state decoration: no 1D topological insulator without symmetry 
or with a Z2 onsite symmetry. (JH Zhang, S Yang, Y Qi, ZC Gu, Phys. Rev. 
Research 4, 033081 (2022)

l Fermionic/bosonic root phases are denoted with red/blue color.



Classification of TSC protected by point 
group symmetry in 3D 

For usual fermion systems 
with spin-1/2, all 2D and 1D 
block states decorations are 
all trivial, there would be no 
interesting crystalline TSC.  

Although spinless fermion 
systems are not quite 
natural, SC with co-planar 
magnetic order or applying 
strong magnetic field may 
still possible to realize them 
in experiments. 

(Jian-Hao Zhang, Yang 
Qi, Zheng-Cheng Gu, 
arXiv:2204.13558 (2022))



Classification of TI protected by point group 
symmetry in 3D 



l We classify and construct all fermionic SPT phases and crystalline 
topological superconductors/topological insulators in 2D interacting fermion 
systems.

l All scheme can be generalized into 3D,  for both internal symmetry and 
space group symmetry

l Full classification for all 230 space group.

l Resources for measurement based quantum computation.

l Topological phase transitions for interacting topological superconductors.

l Experimental realization for interacting crystalline topological insulators 
and superconductors.

Summary and future works


