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Abstract

Future quantum networks will enable fascinating applications such as secure communication,

quantum-enhanced distributed sensing, distributed quantum computing, and accurate global time-

keeping. Center to these applications is quantum entanglement distribution, whose effective dis-

tance is limited by photon loss. Quantum repeaters were proposed to extend the effective distance,

but their demonstration has not been reported yet.

In this thesis, we study quantum repeaters with both single-emitter based and ensemble-based

quantum memories. In particular, we study the feasibility of meaningful proof-of-principle demon-

strations of several quantum repeater protocols (with two-links) with photon (single-photon and

photon-pair) sources and atomic-ensemble based quantum memories. We take into account non-

unit memory efficiencies that decay exponentially with time, which is more realistic and accurate

compared to previous treatments. We discuss implementations based on quantum dots, parametric

down-conversion, rare-earth-ion doped crystals, and Rydberg atoms. Our results provide guidance

for the near-term implementation of long-distance quantum repeater demonstrations, suggesting

that such demonstrations are within reach of current technology.
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Chapter 1

Introduction

Quantum mechanics enable information processing using quantum mechanical systems that could

offer advantages over classical counterparts. This type of information processing is called “quan-

tum information processing”. Classical information processing is based on classical bits that can

be either 0 or 1, while quantum information processing is based on quantum bits (qubits) that can

exist in a superposition of both 0 and 1.

Coherence and entanglement are the most striking features of a quantum system. For a single

qubit, the quantum state is characterized by the superposition

α |0〉+β |1〉 ,

where |0〉 and |1〉 are two possible states, and |α|2+|β |2= 1. Taking the example of the famous

Schrödinger’s cat experiment, the cat is in a superposition state where “dead” and “alive” are the

two possible states. Let us assume that the macroscopic superposition is possible here. Once we

open up the box, i.e., perform a measurement, we can find the state of the cat collapse to one of

the possible states, either dead or alive. This is fundamentally different from a classical object.

To illustrate, let us imagine a precise machine that could toss a coin such that the probability of

heads up and tails up are |α|2 and |β |2, respectively. The machine tosses a coin in a closed box

that no one could get any information from it without opening the box. The state of the coin is

either heads up or tails up, but it is not a superposition state because there is no coherence. In the

case of Schrödinger’s cat, α and β are complex amplitudes and thus the state has encoded phase

information. Therefore, to determine the original quantum state, the measurement in the basis of

|0〉 and |1〉 is not enough, although it can give the information about the probabilities, i.e., |α|2 and

|β |2. To know the phase information, one has to measure the state in a different basis. In contrast,

the state for tossing a coin can be deduced by only repeated measurement of the statistics of “0”
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(heads) and “1” (tails).

The entanglement was described as “spooky interaction at a distance” by Albert Einstein, and

it is indeed a mystery. For a pair or group of particles, the quantum state can have an interesting

form, such as

α |00〉+β |11〉 ,

where |00〉 and |11〉 are bipartite quantum states, and |α|, |β |> 0. Say Alice has prepared such a

state and send one of the qubits to Bob. If Alice measures the state of her qubit, she can imme-

diately determine the state of Bob’s qubit. However, there is no information transmitted to Bob,

unless Alice communicated with Bob through a classical communication channel, and thus it does

not violate Einstein’s theory of relativity that states transmission of the information at faster-than-

light speeds is impossible [1].

Quantum computation and quantum communication are two important subfields of quantum

information processing [1]. In 1982, Richard Feynman proposed the idea that a computer made of

quantum systems might simulate quantum systems more efficiently than state-of-the-art classical

computers [2]. Besides, after Shor’s [3] and Grover’s [4] algorithms were discovered, much interest

was attracted by quantum algorithms that could provide spectacular speedup. A recent experiment

has demonstrated a quantum device that can solve a problem faster than classical computers [5].

However, the quantum advantage in solving a meaningful problem has not been reported. On

the other hand, the foundation of quantum communication theory starts with the work of Stephen

Wiesner and Gilles Brassard on quantum conjugate coding [6]. In 1984, Gilles Brassard and

Charles H. Bennett came up with the first practical secure communication protocol: BB84 protocol

[7]. The security of quantum communication is proved in various conditions [8–10]. To implement

quantum communication over a long distance, the ideal information carriers are photons that can

be transmitted via either optical fiber or free space. One impressive demonstration of free-space

quantum key distribution is between the ground station and the low-Earth-orbit satellite with a

distance up to 1200 km [11, 12]. For fiber-based quantum key distribution, the longest distance that
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has been achieved is 421 km [13]. To extend the distance, one has to overcome the loss of photons

that has exponential scaling with distance through the optical fiber. As no-cloning theorem makes

the amplification of the unknown quantum state impossible [14], quantum repeaters are proposed

to extend the secure communication distance [15].

1.1 Quantum repeaters

The basic idea of quantum repeaters is to divide the transmission channel into many segments,

with the length of each segment that is comparable to the channel attenuation length. First, entan-

glement is generated and purified for each segment; the purified entanglement is then extended to

a greater length by connecting two adjacent segments through entanglement swapping. After this

swapping, the overall entanglement is decreased and has to be purified again [15]. The rounds of

entanglement swapping and purification can be continued until nearly perfect entangled states are

created between two distant sites [16]. Therefore, by dividing a sufficient number of segments, a

higher rate compared to direct transmission is possible in the long distance.

1.2 Quantum networks: implementations and challenges

Quantum networks are networks that can distribute quantum states and quantum entanglement

(between any two points on the earth), which promises applications such as secure communication,

quantum-enhanced distributed sensing, and distributed quantum computing [17–19]. Several major

applications have already been demonstrated, including practical quantum key distribution [11, 12,

20, 21], small qubit-number quantum links [22, 23], and etc. These demonstrations mark that we

are now at an exciting moment in time.

Quantum key distribution has been tested and implemented over metropolitan distances [24–

26], and much longer quantum repeater links are investigated by many countries. The current focus

of quantum repeater is mainly aiming for entanglement distribution with more than 500 km, be-

cause direct transmission is a better choice for a shorter distance. For a distance of a few thousand
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kilometers, the use of low-Earth-orbit satellite links may be the optimum solution. Therefore, the

fiber-based quantum repeaters are preferred in the distance range of 500 - 2000 km [18]. However,

no such quantum repeaters have been demonstrated and one should recognize we are still at the

initial stage towards global quantum networks [19]. The main challenge is the imperfect quantum

devices in the near-term. To be specific, they are photon sources, quantum memories, and photon

detectors.

Photon sources. To minimize the photon loss in the optical fiber, the wavelength of the emit-

ted photon should match the telecom wavelength that is around 1550 nm. Besides, an ideal

photon source should also have unity indistinguishability and zero multi-photon(pair) emission

(g(2)(0)). For deterministic photon sources, the “on-demand” photon emission is necessary; for

non-deterministic photon sources such as those based on parametric downconversion (PDC) and

four-wave mixing (FWM), the multi-photon pair emission is unavoidable, and one has to sacrifice

the probability of generating a single pair to decrease g(2)(0). It is important to note that the bound-

ary between deterministic photon source and probabilistic photon source is not clear. An example

of this is seen when a source classified as deterministic has a loss in the extraction of the photon

from the region where it is generated. As that emission (or extraction) loss increases, a theoretically

deterministic source becomes more probabilistic in operation. In recent experiments, near-perfect

performance has been shown in each of these criteria, while no one has demonstrated them all in

a single source. The repeater performance can be improved in a multiplexing scheme that could

require the photon sources emitting multiple photons (or pairs) in time, space, or frequency.

Quantum memories. Quantum memories are necessary components of quantum repeater links

to keep the quantum state before entanglement swapping and extend to a longer distance. A quan-

tum memory should have high efficiency, which means it can store and retrieve a single photon

with very high probability. The memory lifetime is also of great importance. During the entangle-

ment swapping process, the repeater link which establishes the entanglement earlier should wait

for the success of the other link, during which process the memory decays. This will degrade the
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state fidelity in the single emitter based memory, or the memory efficiency in an ensemble-based

memory [27]. An ideal quantum memory should also have high bandwidth and appropriate wave-

length that could match the photon sources. Furthermore, in the multiplexing repeater schemes,

quantum memories should have the capacity to store multiple photons and dimensionality (time,

space, or frequency).

Photon detectors. Photon detectors are used in the Bell-state measurement process, where

a beam-splitter erases the which-path information and the photon detector detects the photon to

create entanglement. An ideal photon detector should satisfy two important criteria: the proba-

bility that a photon incident upon the detector is successfully detected is 100% (unity detection

efficiency) and the rate of detector output pulses in the absence of any incident photons is zero

(zero dark-count rate). The imperfect photon detection will reduce the fidelity of the entangled

state and the success probability of the entanglement generation/swapping process. For quantum

repeater protocols that rely on photon counting measurements, the ability to distinguish the number

of photons in an incident pulse (photon-number resolution) could improve the state fidelity [28].

Besides the imperfect quantum devices, other challenges such as the integration of different

components, making many identical photon sources and quantum memories, frequency conver-

sion (or quantum transduction), and the ability to perform entanglement purification and error-

correction is non-negligible. Although it is hard to predict what exactly the required components

for the first generation of quantum networks will be, it is likely that we will see its birth within the

next few years.

1.3 Our focus in this thesis

In this thesis, we will focus on quantum repeaters in the near-term, and specifically, we analyze

the performance of a two-link quantum repeater with ensemble-based memories. Chapter 2 gives

a general introduction to quantum repeaters, including the basic procedures of using quantum re-

peaters, criteria of a quantum repeater, and the difference between single-emitter based quantum
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repeaters and ensemble-based quantum repeaters. Chapters 3 and 4 then review quantum repeater

protocols with single emitter and ensemble-based memories, respectively, where the performance

of the protocols is analyzed in detail (without considering the memory decay). In Chapter 5, we

take memory decay into consideration and give an estimation of performance for a two-link quan-

tum repeater with ensemble-based quantum memories. This work has been published in Physical

Review A [29].
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Chapter 2

Quantum repeaters

2.1 Basics of quantum repeaters

The key idea of quantum repeaters is that a distance L can be divided into multiple segments where

entanglement can be generated and stored independently in these segments and then extended via

entanglement swapping. Many quantum repeater protocols have been proposed and being realized

in a toy model (with only one link) [30]. In this section, we give a brief introduction to a general

quantum repeater.

2.1.1 An elementary link

An elementary link is the basic unit of a quantum repeater, where each elementary link contains

two remote nodes with one in each end. Each node contains at least one or two quantum memo-

ries that store and retrieve the quantum information. Besides quantum memories, photon sources

may be necessary to create the initial memory excitation, especially for ensemble-based quantum

memories. In the middle of the two nodes is a Bell-state measurement platform that is essential in

the entanglement generation step.

2.1.2 Entanglement generation

In the entanglement generation process, two remote memories in an elementary node are entangled.

This is usually done by first creating memory-photon entanglement, and then the photons are

sent to a central beam-splitter. After the beam-splitter erases the which-path information, the two

memories are entangled in the corresponding encoding space.

As the photon loss and detection error are inevitable, the entanglement generation process

is probabilistic. As a result, the entanglement generation attempt that does not give the desired
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detector click will be aborted and the whole process should start over again.

2.1.3 Entanglement swapping

Once the entanglement is generated in all the elementary links, the entanglement should be swapped

between the neighboring links. To do so, a two-qubit gate should be applied to the two memories

followed by corresponding measurements. Depending on the different entanglement swapping

schemes, the process can be deterministic or probabilistic. For probabilistic entanglement swap-

ping, an undesired measurement result will destroy the whole state associated with the two memo-

ries, and thus the process should start over from the entanglement generation process. A nested re-

peater structure may require multiple rounds of entanglement swapping process. After each round,

the entanglement is distributed over a double distance. For probabilistic entanglement swapping,

the success probability will limit the repeater rates since each failed attempt will make everything

start over again. On the other hand, if the entanglement swapping process is deterministic, the

start-over is not necessary and thus the repeater rate can be significantly higher.

2.1.4 Entanglement purification

The original quantum repeater proposed by Briegel, Dür, Cirac and Zoller (BDCZ scheme) also

contains entanglement purification steps that mitigate the effect of decoherence [15]. The im-

plementation of entanglement purification requires extra links in each nesting level, leading to a

higher fidelity but lower rates. Due to the imperfect quantum devices’ performance in the near-

term, the impact on rates to increase the fidelity a fair amount is forbidding, and thus entanglement

purification is not within consideration in this thesis.

2.2 Performance criteria

Repeater rates and fidelity of the final entangled state are the two most critical figure of merit.

Direct transmission is limited to a distance of several hundred kilometers, so for the repeater rates,
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the ultimate goal is to beat the direct transmission and make quantum key distribution and other

applications possible for longer distances. The repeater rates are limited by the various imper-

fections of the quantum devices including detector efficiency, efficiency and lifetime of quantum

memories, and efficiency of photon sources.

On the other hand, the imperfect entanglement swapping operation, memory decay/decoherence,

non-perfect photon sources, and dark counts may degrade the fidelity. Entanglement purification is

essential to distill highly entangled states from less entangled ones, while it requires at least 50%

original fidelity [31]. However, in the near-term quantum network implementations, the fidelity is

required to be higher than 90% to minimize the use of quantum purification.

2.3 Single-emitter based quantum repeaters

Single-emitter based quantum repeaters use single-emitter systems as quantum memories. These

quantum emitters have properties resembling those of atoms and ions and can realize spin-photon

interference in a scalable and compact manner [32]. These quantum emitters are usually these

embedded in material platforms that enable the stable spin and optical properties such as silicon

(various radiation damage centers) and carbon (SiV centers, NV centers), as well as rare-earth-

ion-doped crystals, trapped ions and atoms, and semiconductor quantum dots. Solid-state single-

emitter is also attractive for the accessibility of nuclear spins, making it possible that the quantum

states can be stored both in electronic spins and nuclear spins. Due to the high fidelity quantum

gate between electronic spins and nuclear spins, the quantum repeaters schemes have more flexible

entanglement swapping schemes.

It is important to note that single-emitter based quantum memories are subject to the dephasing

process that comes from the interaction of the spin qubit with a nuclear spin bath [33] or lattice

phonons [34]. In the context of quantum repeaters, such spin decoherence will decrease the fidelity

of the final entangled state. Thus, in a realistic quantum repeater, quantum error-correction [35] or

entanglement purification [31] are necessary for long-distance entanglement distribution.
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2.4 Ensemble based quantum repeaters

Quantum repeaters with ensemble-based memories are of particular interest in quantum repeater

applications since the first realistic implementation proposal by Duan, Lukin, Cirac, and Zoller

(DLCZ scheme) [36]. Quantum states are stored as collective excitation, i.e., states that are a

coherent superposition of all possible atoms’ excited state. Such a collective excitation state is

of great interest for practical applications since the state can be efficiently readout by converting

them into single photons that propagate in a well-defined direction [36]. Ensemble-based quantum

memories are also subject to decoherence, in contrast to the scenario of single-emitter quantum

memories, which results in a reduction of efficiency rather than fidelity [27].

Some ensemble-based quantum memories such as rare-earth-ion doped crystals are also at-

tractive for broad inhomogeneous linewidths. This enables multiple-photon and multiple-mode

storage capacity using schemes such as atomic frequency comb (AFC), which will greatly enhance

the repeater rates [37].
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Chapter 3

Single-emitter based quantum repeater protocols

3.1 Entanglement generation protocols

There have been many entanglement generation schemes for single-emitter based quantum re-

peaters [38–47]. In this section, we only focus on a three level system that has an excited state |e〉

and two ground states |↑〉 and |↓〉, where transition |↓〉 to |e〉 is forbidden.

3.1.1 Single-photon detection protocol

One simple method of generating entanglement between two remote emitters begins with each

emitter in state

sin(φ) |↑〉+ cos(φ) |↓〉 , (3.1)

where sin(φ)� 1 to reduce the two-photon emission event. The π pulse that excites state |↑〉 to

|e〉 is applied to both emitters, with resultant state of the two system

(sin(φ) |e〉+ cos(φ) |↓〉)⊗ (sin(φ) |e〉+ cos(φ) |↓〉). (3.2)

After sufficient time to eliminate all the excitation, the state is now

sin2(φ) |↑↑〉 |11〉+ sin(φ)cos(φ)(|↑↓〉 |10〉+ |↓↑〉 |01〉)+ cos2(φ) |↓↓〉 |00〉 , (3.3)

with photon mode |1〉 and |0〉. The photon emitted is sent to a central beam-splitter that erases the

which-path information, after which the photon is measured by a detector. With a single detector

click, the state becomes

sin(φ)√
1+ cos2(φ)

|↑↑〉+ cos(φ)√
1+ cos2(φ)

(|↑↓〉± |↓↑〉), (3.4)
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with probability sin2(φ)(1+ cos2(φ)), where the ± sign is determined by which detector clicked.

The “unwanted state” |↑↑〉 is created because we assume the detector cannot resolve photon num-

ber. The fidelity is thus 2cos2(φ)/(1+ cos2(φ)).

System limitation. To include realistic imperfections, here we use conditional evolution

method, where the time dynamics of the entanglement generation process by unraveling a Marko-

vian master equation into a set of propagation superoperators conditioned on the cumulative detec-

tor photocount [28]. Considering optical decay rate γ , optical dephasing rate γ?, and spin dephas-

ing rate γs, photon detection efficiency η , and the duration of the detection window td , the density

matrix in the limit γtd � 1 is

ρ = p↑↑ |↑↑〉〈↑↑|+
1
2

p0(|↑↓〉〈↑↓|+ |↓↑〉〈↓↑|)+ pc(|↑↓〉〈↓↑|+ |↓↑〉〈↑↓|) (3.5)

where p↑↑ = [η sin4(φ)(γ(2−η)+(4−3η)(γ?+ γs))]/2(γ +2(γ?+ γs)), p0 = η sin2(2φ)/4 is

the success probability, and pc = γη sin2(2φ)e−2tdγs/8(2γ?+ γ−2γs). The total success probabil-

ity is thus

p = 2(p↑↑+ p0) =
η sin4(φ)(γ(2−η)+(4−3η)(γ?+ γs))

γ +2(γ?+ γs)
+

η sin2(2φ)

2
, (3.6)

where the prefactor “2” represents two possible detector click, and the fidelity is

F =
1
2
+

pc

2(p↑↑+ p0)

=
1
2
(1+

γη sin2(2φ)e−2tdγs

8(2γ?+ γ−2γs)

4(γ +2(γ?+ γs))csc2(φ)

η (γ(η cos(2φ)−η +4)+(γ?+ γs)(3η cos(2φ)−3η +8))
).

(3.7)

In the limit φ → 0, the fidelity has an upper bound

Fφ→0 =
1
2
(1+

γ

(
e−2tdγs− e−td(2γ?+γ)

)
(2γ?+ γ−2γs)(1− e−tdγ)

). (3.8)

Thus, the fidelity decays exponentially with spin dephasing rate and is limited by the indistin-

guishability γ/(γ +2γ?).
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3.1.2 Two-photon detection protocol

Another protocol proposed by Barrett and Kok (B-K scheme) [41] uses two-photon detection. The

scheme starts with both emitters in state

1√
2
(|↑〉+ |↓〉). (3.9)

Then π pulses are applied to both emitter to excite state |↑〉 to state |e〉, and the resultant state is

1
2
(|e〉+ |↓〉)⊗ (|e〉+ |↓〉). (3.10)

After sufficient time to eliminate all the excitation, the state is now

1
2
(|↑↑〉 |11〉+ |↑↓〉 |10〉+ |↓↑〉 |01〉+ |↓↓〉 |00〉), (3.11)

where |0〉 and |1〉 are photon modes. The photon is sent to a central beam-splitter, with a successful

click, the state becomes

β (η) |↑↑〉+α(η)(|↑↓〉± |↓↑〉), (3.12)

where α and β depend on the photon loss η . Here |↑↑〉 remains because the single-photon Bell-

state measurement cannot distinguish it and |↑↓〉 ± |↓↑〉. To eliminate the first term, a second

detection is needed. A π pulse is applied between |↑〉 |↓〉, followed by another π pulse that excite

state |↑〉 to |e〉. The state is now

β (η) |↓↓〉+α(η)(|↓ e〉± |e ↓〉). (3.13)

The first term has no contribution to the second detection, and with a successful click it will be

eliminated, resulting in the state
1√
2
(|↓↑〉± |↑↓〉), (3.14)

where the ± depends on the detectors that click in the two rounds. The success probability is 1/2

(as it only postselects the state |↓↑〉 and |↑↓〉 in Eq. 3.11) without photon loss, and the fidelity is 1.

System limitation. Under realistic imperfections, the final density matrix in the limit γtd � 1

is

ρ =
1
2

p0(|↑↓〉〈↑↓|+ |↓↑〉〈↓↑|)+ pc(|↑↓〉〈↓↑|+ |↓↑〉〈↑↓|), (3.15)
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where p0 = η2/16, and pc = γ2η2e−4tdγs/4(2γ +2(γ?−2γs))
2. There are totally four possible

desired click events, so the success probability is 4p0 = η2/4, and the fidelity is

F =
1
2
+

pc

2p0
=

1
2
(1+

γ2e−4tdγs

(γ +2γ?−2γs)2 ). (3.16)

Thus, similar to the result in the single-detection scheme, the indistinguishability limits the maxi-

mum of the fidelity, and the spin dephasing cause a time-dependent infidelity.

3.2 Entanglement connection schemes

In this section, we will discuss two scenarios and the corresponding entanglement connection

scheme. Here the entanglement connection contains two aspects: entanglement swapping process

and how the entanglement distance is extended in a scalable way. Still, we assume the quantum

emitters are three-level systems as described in the previous section.

3.2.1 Nested scheme

In the scenario that the deterministic gate between the two memories in a repeater node is not

possible and the nuclear spins are not accessible, the two-qubit gate can be mediated by photon,

i.e., Bell-state measurement of the emitted photons, and the process can be scaled up via a nested

scheme.

Entanglement swapping. Let us first label the four quantum emitters in the two links as 1,

2, 3, and 4, and the entanglement connection process starts with entangled state 1√
2
(|↑↓〉+ |↓↑〉)

between emitter 1 and 2 as well as 3 and 4. The goal of entanglement connection is to entangle

emitter 1 and 4, which requires performing measurements on the qubit state of 2 and 3.

Let us write down the joint state of four emitters

1
2
(|↑↓↑↓〉+ |↓↑↑↓〉+ |↑↓↓↑〉+ |↓↑↓↑〉). (3.17)

We first apply the Barrett-Kok scheme on emitter 2 and 3, and this will eliminate the states |↓↑↑↓〉
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and |↑↓↓↑〉 and result in state
1√
2
(|↑↓↑↓〉+ |↓↑↓↑〉). (3.18)

Then a Hadamard gate is applied to both emitter 2 and 3, with resultant state

1√
2
(|↑ −+ ↓〉+ |↓+− ↑〉), (3.19)

where |+〉= (|↑〉+ |↓〉)/
√

2 and |−〉= (|↑〉− |↓〉)/
√

2. We can rewrite the state as

1
2

[
(|↑2↑3〉− |↓2↓3〉)

(
|↑1↓4〉+ |↓1↑4〉√

2

)
+(|↑2↓3〉− |↓2↑3〉)

(
|↑1↓4〉− |↓1↑4〉√

2

)]
. (3.20)

By measuring the spin state in emitter 2 and 3 the entanglement is successfully swapped. The

resultant entangled state between emitter 1 and 4 can be determined by the measurement results:

(|↑1↓4〉+ |↓1↑4〉)/
√

2 for |↑2↑3〉 or |↓2↓3〉; (|↑1↓4〉− |↓1↑4〉)/
√

2 for |↑2↓3〉 or |↓2↑3〉.

Scalability. As the entanglement swapping process (basically Barrett-Kok scheme) is prob-

abilistic, adopting a nested repeater structure would be the most efficient. The nested repeater

scheme is shown in Fig. 3.1. In step (a), the entanglement is generated in each elementary link.

Then, the entanglement swapping is processed at each nesting level. It is important to note that an

unsuccessful entanglement swapping will destroy the state in the corresponding sublink, and the

sublink should start over from step (a).

Repeater rates. Let us consider the scenario of a total distance L and 2n repeater links where

the nesting level is n. Starting from the elementary link, we consider an entanglement generation

probability of p0 and the case that entanglement is generated until the ith attempt, the probability

density function (PDF) for i is thus

P(i) = p0(1− p0)
i−1. (3.21)

The expectation value of i is 1/p0, and therefore the average time for a successful entanglement

generation is T0〈i〉= T0/p0, where T0 is the classical communication time.

Now let us consider the repeater with two links (n = 1), where the entanglement is generated

independently with probability p0 for each link. The entanglement swapping can be performed
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Figure 3.1: Schematic overview of the entanglement connection scheme with nested structure.
Here is one example when nesting level is 2. Step (a) shows entanglement generation process in
each elementary link. Step (b) and (c) shows entanglement swapping in the corresponding nesting
level.

only after the entanglement is established in both links. We define variables i1 and i2 as the number

of attempts to establish the two links, respectively, and thus the joint PDF for these two variables

is Pj(i1, i2) = p2
0(1− p0)

i1+i2−2. We further define variable imax = max{i1, i2}, whose PDF is

P(imax) = P(i1 = imax, i2 < imax)+P(i1 < imax, i2 = imax)+P(i1 = imax, i2 = imax). (3.22)

The expectation value of imax is calculated as 3/(2p0). Taking the swapping probability ps into ac-

count, the average time to distribute the entanglement across two links is T0〈imax〉/ps = 3T0/(2p0 ps).

For higher nesting level, we can give a general formula for total entanglement distribution time

Ttot = T0
f1 f2 · · · fn

p0(ps)n , (3.23)

where the factor f0 to fn that satisfy 1 < fi < 2 are taken into account since for every kth level

swapping attempt one has to establish two neighboring links at level k− 1. This takes longer

than establish a single such link by a factor fi. We have calculated f1 = 3/2, while no analytic

expression for the rest factors is known so far [16]. It is suggested that fi = 3/2 is a good estimation

for all i [48]. Thus, we can rewrite the result in Eq. 3.23 as

Ttot =

(
3
2

)n T0

p0(ps)n . (3.24)
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3.2.2 Non-nested scheme

In this section, we consider a single emitter with both electron spins and nuclear spins, a structure

that is commonly seen in semiconductor quantum dots [49], defects in diamonds [50], and rare-

earth-ions [44]. The deterministic two-qubit gate can be implemented between electron spin and

nuclear spin via hyperfine interaction [51]. The nuclear spin has a long memory lifetime, but it

can be accessed only through the interaction with the electron spin. Thus, in practice, the electron

spins serve as communication qubits that create remote entanglement while nuclear spin store the

entanglement.

In the case that the entanglement swapping process is probabilistic, a nested repeater scheme

seems to be the optimal structure because the failure of the process will destroy the whole entangled

state of the corresponding repeater chains. However, for the single emitter with both electron spin

and nuclear spin, the electron spins are not storing the entanglement but mediate the entanglement

generation, and thus the operation between remote electron spins will not disturb the entangled

state in the nuclear spins. This means in the entanglement swapping process, it can be repeated

many times until success while not affecting the entangled state, and thus a nested repeater structure

is no longer necessary.

Entanglement swapping. Same as the previous section, we label the emitters and the process

starts with the entangled state of electron spins between 1 and 2 as well as 3 and 4. The entan-

glement is then mapped to the corresponding nuclear spins by the operations illustrated in Fig.

3.2. The electron spins are initially entangled, and the corresponding nuclear spins are in state

(|⇑〉+ |⇓〉)/
√

2. A CeNOTn gate, i.e., controlled-not gate with nuclear spin control electron spin,

is applied to both emitters, followed by the measurement of the electron spin. Conditioned on the

measurement, a Pauli X is applied to the second nuclear spin, and the entangled state is now stored

in the nuclear spins.

After mapping the entanglement, the nuclear spin state is now

1
2
(|⇑1⇓2〉+ |⇓1⇑2〉)⊗ (|⇑3⇓4〉+ |⇓3⇑4〉), (3.25)
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e1 •
e2 •

n1 |⇑〉 H •

n2 |⇑〉 H • Xe1⊕e2

Figure 3.2: Quantum circuit illustration of the entanglement mapping process. The electron spin
and nuclear spin are denoted as “e” and “n”, respectively, with corresponding subscript that indi-
cates the location. The electron spins initially stores the entangled state while the nuclear spins are
prepared in state (|⇑〉+ |⇓〉)/

√
2. The conditional gate Xe1⊕e2 is applied when e1⊕e2 = 1, i.e., the

measurement results of electron spin 1 and 2 different.

and the electron spins are free. To swap the entanglement, one need to first entangle electron spin

2 and 3 using Barrett-Kok scheme. The remaining operation is illustrated by a quantum circuit,

shown in Fig. 3.3. To begin with, one need to perform CeNOTn in emitter 2 and 3. Then, the

electron spins are measured in the Z basis, depending on which X gates may be applied to nuclear

spin 3 and 4. Finally, nuclear spin 2 and 3 are measured in X basis, and the measurement result

controls a Z gate on nuclear spin 4. One can check that the spin state after the operation is an

entangled state of nuclear spin 1 and 4.

e2 •
e3 •
n1
n2 • H •
n3 •

Xe1⊕e2
H •

n4 Zn2⊕n3

Figure 3.3: Quantum circuit representation of the entanglement swapping. The nuclear spins are
first in state of Eq. 3.25, and the electron spins 2 and 3 are in entangled state (|↑2↓3〉+ |↓2↑3〉)/

√
2.

The dashed box represent the measurement of nuclear spin state, which can be done with the help
of the electron spins.

As the direct readout of the nuclear spin is very challenging, one has to measure the nuclear

spin mediated by the corresponding electron spins. The quantum circuit illustration is shown in

Fig. 3.4.

Scalability The process can scale up without a nested structure. As we discussed in the pre-
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e2 |↑〉 •

e3 |↑〉 •
n1
n2 H •
n3 H •
n4 Ze2⊕e3

Figure 3.4: Quantum circuit illustration of readout with electron spins as ancillary qubits. This is
equivalent to the circuit in the dashed box in FIG.3.3. Here the electron spins are initially in spin
up, while the four nuclear spins are in GHZ-like state 1√

2
(|⇑1⇓2⇑3⇓4〉+ |⇓1⇑2⇓3⇑4〉). The Z gate

on nuclear spin 4 are conditioned on the measurement result of electron spin 1 and 2. The result
state of nuclear spin 1 and 4 is 1√

2
(|⇑1⇓4〉+ |⇓1⇑4〉).

vious section, the entanglement swapping has two stages: first, generate entanglement between

electron spins in non-adjacent links, and map it to the corresponding nuclear spins; then generate

entanglement between electron spins in the rest links and use it to assist the entanglement swap-

ping process. This implies one can generate entanglement in the half links that are non-adjacent,

and then generate entanglement in the rest links that are used to swap the entanglement. Based on

this, we present a non-nested repeater structure, shown in Fig. 3.5.

Repeater rates. Let us consider the scenario of a total distance L and 2m repeater links.

In the first step, the entanglement is generated in every second links (m links) simultaneously.

Then, the entanglement is mapped to the nuclear spins and the remaining m links start generating

entanglement. As all the process except the entanglement generation are deterministic, the total

entanglement distribution time is

(〈n(1)max,m〉+ 〈n(2)max,m〉)
L

2mc
+Tm +Ts, (3.26)

where c = 2∗108ms−1 is the speed of light in fiber, Tm is the entanglement mapping time, Ts is the

entanglement swapping time, n(1)max,m and n(2)max,m are the total number of entanglement generation

attempts to establish entanglement in all m links, i.e., nmax,m = max{n1,n2, ...,nm} and here nk

is the number of attempts before successful entanglement generation in the k th link. Thus, the

expectation value 〈n(2)max,m〉= 〈n(1)max,m〉= 〈nmax,m〉. For a single link, the probability of a successful

entanglement generation with n trials is given in Eq. 3.21. Thus the joint probability of successful
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Repeater node Electron spin Nuclear spin EntanglementTi
m

e

Figure 3.5: Schematic overview of the entanglement connection scheme with a non-nested struc-
ture. In step (a), the entanglement is generated in half of the links and is stored in the electron spin.
Then the entanglement is mapped to the corresponding nuclear spin, while the electron spins are
freed (step b). Next, the entanglement is generated in the rest links (step c) and mapped to the nu-
clear spin (step d). With measuring all the nuclear spins in between (mediated by the corresponding
electron spin), the entanglement is successfully distributed (step e).

entanglement generation for all m links with attempts n1,n2, ...,nm is

Pj(n1,n2, ...,nm) =
m

∏
k=1

P(nk) = pm
0 (1− p0)

∑
m
k=1 nk−m. (3.27)

The probability distribution function of nmax,m is

P(nmax,m) =
m

∑
k=1

Pj(nk = nmax,m,n6=k < nmax,m)+
l

∑
k=1

m

∑
l=2

Pj(nk = nmax,m,nl = nmax,m,n 6=k 6=l < nmax,m)

+ ...+Pj(n1 = n2 = ...= nm = nmax,m).

(3.28)

To calculate 〈nmax,m〉, let us simplify the problem by assuming m = 2n. The PDF of nmax,m can
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Table 3.1: Numerical results of k(n))

n 1 2 3 4 5
k(n) 1.5 2.08 2.72 3.38 4.05

be calculated using a iterative process

Pj(n1,n2) = P(n1)∗P(n2)

P(nmax,2) = Pj(n1 = nmax,2,n2 < nmax,2)+Pj(n1 < nmax,2,n2 = nmax,2)

...

Pj(nmax1,2k ,nmax2,2k) = P(nmax1,2k)∗P(nmax2,2k)

P(nmax,2k+1) = Pj(nmax1,2k = nmax,2k+1,nmax2,2k < nmax,2k+1)+Pj(nmax1,2k < nmax,2k+1,nmax1,2k = nmax,2k+1).

(3.29)

We define 〈nmax,2n〉= k(n)/p0,and the numerical result of k(n) is given in Tab. 3.1. For example,

k(1) = 1.5, which is the well-know 3/2 relation [16]. The function k(n) is almost linearly increase

with n, and the regression result gives us

k(n) = 0.64n+0.83. (3.30)

Therefore, the average entanglement distribution time in Eq. 3.26 can be rewritten as

(0.64log2(m)+0.83)
L

mcp0
+Tm +Ts. (3.31)
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Chapter 4

Ensemble based quantum repeater protocols

4.1 DLCZ protocols

The DLCZ protocol is one of the first practical quantum repeater protocols using atomic ensem-

bles as quantum memories. Different from the single emitter systems, atomic ensembles utilize

the collective effects related to a large number of atoms in the ensemble, which allows a strong

memory-photon interaction. This could greatly enhance the storage and retrieve efficiency, and

therefore the entanglement generation rates [36, 52, 53]. The DLCZ protocol has inspired a large

number of highly influential experiments [30, 54–61], showing that the approach of using atomic

ensembles, linear optics, and photon counting is indeed very attractive from a practical point of

view.

4.1.1 Protocol description

The basics of the DLCZ scheme is to generate photon-memory entanglement using a Raman-type

quantum memory, which is ensemble of three-level systems with one exited state |e〉 and two

ground states |g1〉 and |g2〉. Both |g1〉− |e〉 and |g2〉− |e〉 transition are permitted.

Memory-photon entanglement. To generate photon-memory entanglement, all the atoms are

prepared in the ground state with lower energy, say |g1〉. An off-resonant laser pulse on the |g1〉−

|e〉 transition leads to the spontaneous emission of a Raman photon on the |e〉− |g2〉 emission. By

convention, the emitted photon is denoted as “Stokes” photon. The process is shown as the “write

process” of Fig. 4.1. Detection of the photon in the far field reveals no information about which

atom it came from, and therefore creates an atomic state that is a coherent superposition of all
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Figure 4.1: Illustration of the write (a) and read (b) process. Note in the write process, the write
pulse is detuned from the transition frequency between |g1〉 and |e〉.

possible state with one atom in |g2〉 and the rest in |g1〉

1
NA

NA

∑
k=1

ei(kw−kS)xk |g1〉1 |g1〉2 ... |g2〉k ... |g1〉NA
, (4.1)

where kw is the wave vector of the write laser, kS is the wave vector of the detected Stokes photon,

and xk is the position of the kth atom. It is important to note that there is no collective interference,

because each atom emits photon in random directions and the which-way information is stored in

the atomic ensemble.

The collective excitation in 4.1 can be read out efficiently by converting it back to a single

photon that propagates in a well defined direction. A read pulse on the |g2〉 − |e〉 transition is

applied to the state, leading to an analogous state with one atom in |e〉 and the rest in |g1〉. A

supplementary phase eikrx′k , where kS is the wave vector of the read laser and xk is the position of

the kth atom before read out, is added to the state. The excitation decays to the ground state and

emit a photon on the |e〉− |g1〉 transition (anti-Stokes photon). The amplitude for the photon to be

emitted from the kth atom is proportional to

ei(kw−kS)xkei(kr−kAS)x′k , (4.2)

where kAS is the wave vector of the anti-Stokes photon. If the atoms are at rest between the write

and the read process, i.e., xk = x′k, the constructive interference requires a phase matching condition
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kS +kAS = kw +kr. This means the amplitude for photon that fulfill the condition is maximal and

the direction of the anti-Stokes photon is predominantly by kw +kr−kS.

In the write process, an off-resonant write pulse is used to decrease the multi-photon emission.

Let us analyze this process with the effective Hamiltonian

H = χ(a†s† +as), (4.3)

where χ is a coupling constant that is inverse propositional to the laser detuning ∆, a† is the creation

operator for a Stokes photon, and s† is the creation operator for the superposition state Eq. 4.1.

The Hamiltonian is equivalent to the Hamiltonian for parametric down-conversion process [62].

The state evolution can be derived using operator ordering techniques [63]

e−iHt |0〉 |0〉= 1
cosh(χt)

e−i tanh(χt)a†s†
|0〉 |0〉= 1

cosh(χt)

∞

∑
m=0

(−i)m tanhm (χt) |m〉 |m〉 , (4.4)

where the state |m〉 |m〉 represents m photons and m collective atomic excitations in |g2〉, respec-

tively. For small values of χt the expression can be expanded as[
(1− 1

2
(χt)2)

]
|0〉 |0〉− iχt |1〉 |1〉− (χt)2 |2〉 |2〉+O((χt)3). (4.5)

Thus, the probability of emitting one photon and two photons are (χt)2 and (χt)4, respectively.

The emission of multiple photons will significantly decrease the state fidelity after the entangle-

ment generation process, and therefore the one photon emission probability χt should be small to

mitigate the error.

Entanglement generation. To generate entanglement between two remote memories A and

B, both memories should first generate memory-photon entanglement, and then send the photons

to the central beam-splitter, where a single-photon Bell-state measurement is performed. With a

desired detector click, the state is(
1+
√

p
2
(s†

aa†eiφa + s†
bb†eiφb)+O(p)

)
|0〉 , (4.6)

where the subscript a and b denote the two memories, a† and b† represent the photon modes

emitted by the two memories, φa and φb are the phases of the pump laser at two locations, and |0〉
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is the vacuum state for all modes. After the single-photon Bell-state measurement, the state are

projected to

|ψab〉=
1√
2
(s†

aei(φa+ξa)+ s†
bei(φb+ξb)) |0〉 , (4.7)

where ξa and ξb are phases acquired by the photon in the corresponding channel. This state can ve

rewritten as

|ψab〉=
1√
2
(|1a〉 |0b〉+ |0a〉 |1b〉eiθab), (4.8)

where |0a/b〉 denotes an empty ensemble A/B, |1a/b〉 denotes the state with a single excitation,

and θab = φb− φa + ξb− ξa is the relative phase. The success probability for the entanglement

generation process is p0 = pηdηt , where p=(χt)2 is the probability of emitting a single photon, ηd

is the detector efficiency, and ηt = exp(−L0/2Latt) is the transmission efficiency corresponding a

distance of L0/2 and fiber attenuation length Latt (a typical value is 22 km for optimal wavelength).

Entanglement connection. Let us consider two links AB and CD with B and C in the same

node, where entanglement has been generated independently in both links. The entanglement

swapping requires to read out the atomic excitation that are probabilistically stored in the ensem-

bles B and C. The single-photon Bell-state measurement is performed on the possible emitted

photon, and a single click will result in the state

|ψad〉=
1√
2
(|1a〉 |0d〉+ |0a〉 |1d〉ei(θab+θcd)). (4.9)

In the case that the detector efficiency ηd and memory efficiency ηm are not unity, or the de-

tector cannot resolve photon number, the detector may also give expected click when two photons

are emitted while one of them is lost during transmission. This will create a vacuum component

ρad = α
(1) |ψad〉〈ψad|+β

(1) |0〉〈0| , (4.10)

where α(1) = 1/(2−η) is the fidelity of the state, β (1) = (1−η)/(2−η), and η = ηmηd . The

success probability for the first swapping is p(1)s = η(1−η/2).

The entanglement swapping at higher nesting level follows the same procedure. The fidelity of

the state in the next nesting level and the swapping probability depend on the fidelity of the state
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in the present nesting level. Consider the state of two links before swapping

ρ1 = α1 |ψ1〉〈ψ1|+(1−α1)ρ
′
1

ρ2 = α2 |ψ2〉〈ψ2|+(1−α2)ρ
′
2,

(4.11)

where |ψ1〉 and |ψ2〉 are the entangled state and ρ ′1, ρ ′2 are the unwanted state. After swapping, the

new state can be expressed as

ρ = α |ψ12〉〈ψ12|+(1−α)ρ ′, (4.12)

where |ψ12〉 is the entangled state determined by the Bell-state measurement, and ρ ′ is the un-

wanted state. Single-photon BSM will keep creating vacuum states since it cannot exclude the

situation where the two photons are stored in the two local nodes in neighboring links. Therefore,

the fidelity of resultant state α is

α =
α1α2

α1 +α2−α1α2ηp
, (4.13)

and the success probability is

ps =
1
2
(α1ηp +α2ηp−α1α2η

2
p), (4.14)

where ηp is the probability that a photon can be retrieved and detected. For DLCZ scheme ηp =

η = ηmηd .

To calculate the probability and the fidelity for higher nesting level, it is valid to assume α1 =

α2 = α(i), and thus

α
(i+1) =

α(i)

2−α(i)η
, (4.15)

and

p(i+1)
s = α

(i)
η

(
1− α(i)η

2

)
, (4.16)

with p(1)s = η (1−η/2).

Postselection. It is important to note that single-photon BSM requires qubits to be encoded as

the collective excitation state (photon number state), which cannot be used directly for quantum
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QMa1’ QM z1’

QMa2’ QM z2’

Figure 4.2: Sketch of the postselection process. Entanglement has been independently distributed
in both link. For both ends the atomic excitations are read out, and single-photon BSMs are
performed.

communication tasks, and thus postselection is necessary to convert the qubits into a useful two-

photon entangled state analogous to qubit states in two-photon BSM [16]. The process is shown in

Fig. 4.2. Entanglement is first generated independently in two links with the same spacial location.

Then the atomic excitations are read out for both ends of the links, and for each end, the photon is

retrieved, resulting state

|ψaz〉=
1√
2
(a′†1 z′†2 + ei(θ2−θ1)a′†2 z′†1 ) |0〉 , (4.17)

where a′†1/2 and z′†1/2 are photon mode in the corresponding channel, and θ1 and θ2 are the phases

acquired in A1−Z1 and A2−Z2 link, respectively. The state is analogous to a conventional po-

larization or time-bin entangled state. Measurements in arbitrary basis are possible by combining

modes in the same location in a beam-splitter followed by a photon detection. The probability of

the postselection process is pps = (α(n)η)2/2, where the one half is the intrinsic probability of

two-photon Bell-state measurement.

4.1.2 Entanglement distribution time

The total entanglement distribution time for the DLCZ scheme is

Ttot =
L0

c
f0 f1 · · · fn

p0 p(1)s · · · p(n)s pps

, (4.18)

where as we mentioned in the previous chapter, fi is the extra factor required to generate entangle-

ment in both link of ith nesting level and 3/2 is a good approximation. Substituting Eq. 4.15 and
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Eq. 4.16, we can rewrite the total time as

Ttot = 3n+1 L0

c
∏

n
k=0(2

k− (2k−1)η)

ηdηt pηn+2 . (4.19)
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Figure 4.3: Sketches of quantum repeater protocols we mainly discuss in this paper. Here we show
the two-link version of these repeater protocols. (a)Single-photon source(SPS) with single-pho-
ton BSM (“1 + 1”). (b)Deterministic photon-pair source(dPPS) with two-photon BSM (“2 + 2”).
(c)Non-deterministic photon-pair source(ndPPS) with single-photon BSM (“2̃ + 1”). (d) Non-de-
terministic photon-pair source(ndPPS) with two-photon BSM (“2̃ + 2”).
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4.2 Improved protocols

Though the DLCZ scheme has attracted broad interest, its limitations are also obvious. To begin

with, in the entanglement generation process, the single-photon emission probability must be small

to reduce multi-photon emission, which severely limits the repeater rates. Besides, the entangle-

ment distribution requires interferometric stability over long distances. Moreover, the wavelength

of the Stokes photon has to be in the telecom-wavelength range (around 1.5 µm) to minimize the

photon loss, which greatly restricts the choices of the atomic ensemble without frequency conver-

sion.

Many improved protocols were proposed to mitigate these issues by separating memory and

photon source [48, 64–69]. In this thesis, we will focus on four of them, namely, scheme with

single-photon sources and single-photon Bell-state measurements [64], scheme with determin-

istic photon-pair sources and two-photon Bell-state measurements [68], and scheme with non-

deterministic photon-pair sources and single-photon [65] or two-photon [69] Bell-state measure-

ments. The schemes are shown in Fig. 4.3.

4.2.1 Single-photon source(SPS) with single-photon BSM scheme (“1 + 1”)

Entanglement generation. The “1 + 1” protocol uses deterministic single-photon sources at each

node. A single photon is generated in each node and sent through a local beam-splitter, after which

is with probability γ stored in a quantum memory and with probability 1− γ injected to the central

interferometer. The quantum state with photon modes is (with a†
i becomes s†

i )

(
√

1− γa′†1 +
√

γa†
1)⊗ (

√
1− γa′†2 +

√
γa†

2) |0〉 , (4.20)

where a† and a′† represent the creation operator of photon mode transmitted (send to central beam-

splitter) and reflected (send to qauntum memory), respectively. As the central beam splitter erases

the which-path information, the successful detection of a single-photon in the central station will
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create an entangled photon number state of two memories

|ψab〉=
1√
2
(s†

1 + s†
2) |0〉 , (4.21)

where s† is the creation operator of memory state with single atomic excitation.

In the presence of photon loss and non-unity quantum memory efficiency, a vacuum component

is created during the process, resulting in the state

(1− γ) |ψab〉〈ψab|+ γ |0〉〈0| , (4.22)

and the success probability is p0 = 2ηsγηtη , where ηs is the single-photon source efficiency. Here

we have considered the memory efficiency which is the product of storage efficiency and retrieval

efficiency, in the entanglement generation process.

Entanglement swapping, postselection and entanglement distribution time. The entangle-

ment swapping follows the same process as in the DLCZ process and the entanglement swapping

probability can be calculated using Eq. 4.15 and Eq. 4.16. Here the swapping probability for the

first nesting level is p(1)s = (1− γ)η [1− (1− γ)η/2]. Postselection is also necessary with proba-

bility pps = (α(n)η)2/2.

One can show that the total entanglement distribution time for a repeater link a nesting level n

is

Ttot =
3n+1

2
L0

c
∏

n
k=0(2

k− (2k−1)ηs(1− γ)η)

ηdηtη
n+3
s γ(1− γ)n+2ηn+2

. (4.23)

4.2.2 Deterministic photon-pair source(dPPS) with two-photon BSM (“2 + 2”)

Entanglement generation. The protocol uses deterministic entangled photon-pair sources that

emit a photon-pair, where one photon is sent to a quantum memory and the other one to a central

station, respectively. Depending on the qubit encoding(time-bin, frequency, polarization, etc), the

two-photon BSM will project the two quantum memories into an entangled state in the correspond-

ing space. Take polarization photon-pair source as an example: the source emits a pair of photon

that are of same polarization, and one photon is stored by the quantum memory and the other is
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sent to a central beam-splitter. The state can be expressed as

1√
2
(a′†1Ha†

1H +a′†1V a†
1V )⊗

1√
2
(a′†2Ha†

2H +a′†2V a†
2V ) |0〉 , (4.24)

where H and V represent horizontal and vertical polarization, and a′†H/V and a†
H/V are creation oper-

ators of photon modes with horizontal/vertical polarization that are sent to the memory and central

beam-splitter, respectively. After two-photon Bell-state measurement, the final state depends on

the BSM result, and one example is

|ψ〉ab =
1√
2
(s†

1Hs†
2V + s†

1V s†
2H) |0〉 . (4.25)

The success probability for an desired detector click is p0 = η2
t η2

s η2/2, where the one half is due

to the intrinsic probability of two-photon Bell-state measurement.

It is important to note the fidelity of this scheme is robust against photon loss as it will not

give the desired detector click. Besides, the photon sources do not require phase stabilization of

the linear interferometer [70]. Moreover, the photon-pair source can have a different frequency

in the two arms, and it is not hard to tune one of them to match the telecom frequency while

another match the transition frequency of the memory. Therefore, one has more flexible choices of

quantum memories in terms of transition frequency.

Entanglement swapping and entanglement distribution time. In the entanglement swap-

ping process, the photons stored in the local quantum memories are retrieved and sent to the Bell-

state measurement station. As the entanglement swapping produce no vacuum state, the swapping

probability at any nesting level is p(i)s = η2/2. Postselection is no longer necessary. Therefore, the

total entanglement distribution time is

Ttot = 3n L0

c
2

η2
t η2

s ηn+2 . (4.26)

4.2.3 Non-deterministic photon-pair source (ndPPS) with single-photon BSM scheme (“2̃ + 1”)

The ndPPS emits photon-pair probabilistically, with one photon stored in the quantum memory

and another sent to the central station. As for the “1 + 1” scheme, a successful single-photon
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BSM will project the two memories into the entangled photon number state. Similarly to the

DLCZ scheme [36], the emission probability should be small to suppress multi-pair emission. The

success probability of entanglement generation is p0 = 2ηtηsη , and the state created is the same as

the state generated in the DLCZ scheme (Eq. 4.10). The entanglement swapping and postselection

process are also the same as DLCZ scheme, and thus the total entanglement distribution time is

Ttot = 3n+1 L0

c
∏

n
k=0(2

k− (2k−1)η)

ηdηtηsηn+2 , (4.27)

where ηs is the probability of emitting a photon-pair for non-deterministic photon source. It is

important to notice that in the “1 + 1” and “2 + 2” scheme we have defined source efficiency ηs,

which refers to the probability to extract a photon in deterministic photon source. In this paper, we

do not distinguish these two terms and call them “source efficiency” ηs.

4.2.4 Non-deterministic photon-pair source (ndPPS) with two-photon BSM scheme (“2̃ + 2”)

This scheme is similar to the “2 + 2” scheme while using non-deterministic entangled photon-pair

sources. It is possible, albeit with small probability, to get coincident photon-pair emission from

two ndPPS. The successful two-photon BSM will project the two memories into the two-photon

entangled state. Again the multi-pair emission probability has to be kept small; the associated

errors can be mitigated by appropriately designed entanglement swapping [67] and photon-number

resolving detection [69]. The total entanglement distribution time is

Ttot = 3n L0

c
2

η2
t η2

s ηn+2 , (4.28)

which is the same as Eq. 4.26, however, with the difference that the source efficiency ηs here is

much smaller.

4.3 Comparison of repeater rates

We plot the comparison of repeater rates for these four schemes and the case of direct transmission,

shown in Fig. 4.4. The parameters used here considered high memory efficiency and infinite mem-
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Figure 4.4: Comparison of repeater rates for various quantum repeater protocols: (A): direct trans-
mission of photons through optical fiber with single-photon generation rate of 10 GHz as a refer-
ence; (B): the “1 + 1” scheme; (C): the “2 + 2” scheme; (D): the “2̃ + 1” scheme; (E): the “2̃ + 2”
scheme. The plots are for 8 elementary links, corresponding nesting level 3. The parameters used
are memory efficiency and detector efficiency ηm = ηd = 0.9, fiber attenuation distance Latt = 22
km, local beam-splitter transmission probability γ = 0.16 for the “1 + 1” scheme, ηs = 0.9 for the
“1 + 1” scheme and the “2 + 2” scheme, ηs = 0.05 for the “2̃ + 1” scheme and the “2̃ + 2” scheme.

ory lifetime. The four schemes outperform direct transmission at 510 km (the “2 + 2” scheme),

590 km (the “2̃ + 2” scheme), 600 km (the “1 + 1” scheme), and 660 km (the “1̃ + 1” scheme),

respectively. The two-photon BSM scheme outperforms the corresponding single-photon BSM

scheme though the entanglement generation probability is much smaller. This is because the post-

selection process is not required for the two-photon BSM schemes, and time saved surpasses the

impact of smaller entanglement generation probability. The schemes with deterministic photon

source have higher repeater rates than the corresponding non-deterministic photon source due to

the higher source efficiency and therefore higher entanglement generation probability.
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Chapter 5

Near-term repeater performance for ensemble based quantum

memories

There has recently been significant experimental progress in the entanglement of two remote quan-

tum memories (corresponding to one repeater link) [22, 30, 71–73]. For example, Ref. [30]

demonstrated entanglement between two 87Rb atomic ensembles separated by 22 km of coiled

fiber. Simple repeater demonstrations with two links, however, have not been reported yet. The

main limitation is the imperfect quantum devices, especially short memory lifetime. It is there-

fore important to make realistic theoretical predictions for such demonstrations. In this thesis, we

consider a near-term case of two repeater links with finite quantum memories. We have developed

a unified approach to estimate the repeater rates with imperfect quantum memories for different

repeater protocols. Our results suggest that such demonstrations are within reach of current tech-

nology. This work has been published in PRA [29].

5.1 Mathematical derivation

Previous papers have studied the performance of repeaters with imperfect ensemble-based mem-

ories [16, 68, 69, 74–77], but they have typically either focused on more long-term scenarios and

made assumptions that are not quite realistic yet, such as a high degree of multiplexing, or have

made idealizations that may affect quantitative rate predictions, such as a simple cut-off for the

storage time, rather than an exponential decay. Decoherence in ensemble-based memories results

in a reduction of efficiency rather than fidelity [27]. While this is positive from the point of achiev-

ing high final-state fidelity in quantum repeater protocols, it complicates the derivation of accurate

repeater rates because it makes the swapping probabilities time-dependent.
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5.1.1 General framework of rates calculation

Two-link situation. Let us first recall the basic probability distribution functions (PDFs) asso-

ciated with repeater rates calculation. For an elementary link, one has to try many times until

the entanglement is successfully generated. After each attempt, one has to wait for the Bell-state

measurement signal that tells whether the attempt is successful. If not, the memories need to be

emptied and one needs to try again. In this paper, we do not consider the time of memory reini-

tialization (which is typically negligible compared with communication time) and thus the time

required for each attempt is T0 = L0/c, where L0 is the length of an elementary link and c = 2∗108

ms−1 is the speed of light in an optical fiber. Considering an entanglement generation probability

of p0 and the case that entanglement is generated until the nth attempt, the PDF for n is

P(n) = p0(1− p0)
n−1. (5.1)

We do not consider the dark counts of the detectors since they can be vary small. Superconducting

nanowire single-photon detectors with a 30Hz dark count rate are already used in measurement-

device-independent quantum key distribution [21], and milli-Hz dark count rate has also been

demonstrated [78].

Now let us consider the repeater with two links, where the entanglement is generated inde-

pendently with probability p0 for each link. The entanglement swapping can be performed only

after the entanglement is established in both links. We define variables n1 and n2 as the number

of attempts to establish the two links, respectively, and thus the joint PDF for these two vari-

ables is P(n1,n2) = p2
0(1− p0)

n1+n2−2. We further define three variables nmax, nmin, and ndi f ,

denoting max{n1,n2}, min{n1,n2} and |n1 − n2|, respectively. Obviously, they are related by

nmax = nmin +ndi f . It is useful to show the probability distribution function of ndi f

p(ndi f ) =


2p0(1− p0)

ndi f

2− p0
ndi f 6= 0

p0

2− p0
ndi f = 0

(5.2)
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and the expectation of these variables

〈nmax〉=
3−2p0

(2− p0)p0
;〈nmin〉=

1
(2− p0)p0

〈ndi f 〉=
2−2p0

(2− p0)p0
.

(5.3)

We call nmaxT0 the ”preparation time”, and ndi f T0 the ”decay time”(waiting time). This is to say,

the entanglement swapping is performed after the preparation time, and the entangled state of one

link is destroyed during the decay time. The memory decay, which will not decrease the fidelity

but the efficiency [27], is modeled as the following general situation

α |Ψ〉〈Ψ|+(1−α)ρ
decay−−−→

e−∆t/τmα |Ψ〉〈Ψ|+(1− e−∆t/τmα)ρ ′,

(5.4)

where |Ψ〉〈Ψ| represents the maximized entangled state that we are interested in, ρ and ρ ′ are

“unwanted states” that have no contribution to the repeater performance, and ∆t and τm are the

decay time and the lifetime of the memory, respectively. It is important to notice that the “effi-

ciency” mentioned above is actually ηme−∆t/τm , where ηm is the efficiency of quantum memory

without decay. To make a clear distinction between memory efficiency and lifetime, we call ηm

the memory efficiency in the text.

The decay time in Eq. (5.4) is the waiting time for the single-photon BSM, while it is two times

the waiting time for two-photon BSM since both memories in a link will decay. The entanglement

swapping probability ps and resultant state, therefore, depend on the decay time, and thus ndi f .

This dependence can be understood via the following calculation: before swapping, one has to

establish two neighboring links, which could not be perfect and thus we consider two mixed states

ρ1 = α1 |Ψ1〉〈Ψ1|+(1−α1)ρ1

ρ2 = α2 |Ψ2〉〈Ψ2|+(1−α2)ρ2,

(5.5)

where |Ψ1〉 and |Ψ2〉 are the entangled state and ρ1, ρ2 are the unwanted state. After swapping,

the new state can be expressed as

ρ = α |Ψ12〉〈Ψ12|+(1−α)ρ, (5.6)
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where |Ψ12〉 is the entangled state determined by the Bell-state measurement, and ρ is the unwanted

state. It is important to notice that the unwanted state in the single-photon BSM is a pure vacuum

state, while in two-photon BSM it contains the resultant states from both single-memory decay

and two-memory decay(vacuum state). For the two-photon BSM, the swapping will eliminate all

other cases than the entangled state. The expression of α and the success probability ps, depend on

the type of Bell-state measurement(BSM). Single-photon BSM will create a vacuum state since it

cannot exclude the situation where the two photons are stored in the two local nodes in neighboring

links. Therefore, the fidelity of resultant state α is

α =
α1α2

α1 +α2−α1α2ηd
, (5.7)

and the success probability is

ps =
1
2
(α1ηd +α2ηd−α1α2η

2
d ), (5.8)

where ηd is the detector efficiency. It is important to note that the definition of fidelity and success

probability is different from the definition in Ref. [16], where we substitute the product of detector

efficiency and memory efficiency ηdηm with only detector efficiency ηd . This is because we will

consider the memory efficiency in the entanglement generation process, where an unsuccessful

storage or retrieval of the photon will create a vacuum state, and thus α1 and α2 depend on the

memory efficiency.

On the other hand, the resultant state of two-photon BSM is a pure entangled state and thus the

fidelity is

α = 1. (5.9)

The success probability is simply

ps = α1α2η
2
d/2, (5.10)

where the half is the intrinsic success probability of usual two-photon BSM.

In the entanglement swapping process, if the first link establishes the entanglement first, the

memory in this link would decay and thus α1 = α0exp(−ndi f T0/τm), α2 = α0, where α0 is the

38



entangled state fidelity after entanglement generation. Therefore, the swapping probability in both

case, and the state fidelity after swapping in the single-photon BSM situation depend on ndi f .

Now let us calculate the average entanglement distribution time(EDT) for the two-link situa-

tion. Without loss of generality, we consider a successful entanglement swapping after rth swap-

ping attempts and the EDT for this case is given by the following expression:

T (1)
tot =

∞

∑
k=1

[(
k

∑
r=1

nr,maxT0)pk,s

k−1

∏
r=1

(1− pr,s)], (5.11)

where the subscript “k” denotes the kth swapping attempt, and therefore ∑
r
k=1 nk,maxT0 is the total

preparation time in total r swapping attempts and pr,s ∏
r−1
k′=1(1− pk′,s) is the corresponding prob-

ability. The expectation of the EDT also requires averaging nk,max, and nk,di f , which is difficult

since both pk,s and nk,max depend on nk,di f . It is easier to rewrite nk,max as nk,di f + nk,min, where

nk,min is independent of nk,di f . It is however, still difficult to calculate analytically the result with-

out assumptions on 〈nk,di f ∗ pk,s〉, where pk,s depends on the waiting time and therefore on nk,di f .

We define a new variable β = 〈nk,di f ∗ pk,s〉/〈nk,di f 〉〈pk,s〉, and clearly, we have

0 < β < 1, (5.12)

where the right side “<” is because nk,di f and pk,s are negatively correlated. The numerical evi-

dence discussed in Appendix B suggests that in single-photon BSM,

β ≈ 1. (5.13)

On the other hand, in the two-photon BSM, β can reach lower bound and upper bound in Eq. (5.12)

in different regimes: in the low-p0 regime, β ≈ 1, while in the high-p0, high-lifetime regime, β ≈ 0.

With Eq. (5.13) and Eq. (5.12), we can simplify Eq. (5.11)

〈T (1)
1tot〉=

1
〈ps〉

(〈ndi f 〉+ 〈nmin〉)T0 =
〈nmax〉
〈ps〉

T0, (5.14)

for single-photon BSM and
〈nmin〉
〈ps〉

T0 < 〈T
(1)

2tot〉<
〈nmax〉
〈ps〉

T0. (5.15)

39



for two-photon BSM, where the detailed derivation can also be found in Appendix A. It is important

to notice that for two-photon BSM, T (2)
2tot can be estimated using the average of the lower and upper

bound (〈nmin〉T0/〈ps〉+〈nmax〉T0/〈ps〉)/2 = T0/p0〈ps〉. As we can see from Eq. (5.3), in the worst

case 〈nmax〉 is no more than 3〈nmin〉, and the error rate of this estimation is thus no more than 50%,

which is still a good estimation since repeater rates vary over many orders of magnitude.

Postselection and beyond two links. Though we have given the EDT for repeater schemes

with single-photon BSM in Eq. (5.14), the entanglement is imperfect and cannot be used directly

for quantum communication purpose and thus postselection is necessary. To implement postse-

lection, a separate chain of two links is placed in such a way that the two end nodes are placed at

the same location as the two end nodes from the original chain, respectively. After entanglement

is established in both chains, single-photon BSM is performed at each end and the state is pro-

jected into a two-photon entanglement state [36]. The treatment of the postselection is analog to

the four-link situation(nesting level of 2). It is important to note that the EDT beyond two links is

interesting in general, even if our motivation here is to include postselection.

We consider the establishment times T1 and T2, and state fidelities α1 and α2, respectively for

two sublinks. The average establishment time and the state fidelity are given in Eq. (5.14) and Eq.

(5.7). Here we follow the same procedure in the two-link situation and consider the postselection

is successful at the jth attempt. The EDT is expressed as

T (2)
tot = (

j

∑
i=1

Ti,max)p j,ps

j−1

∏
i′=1

(1− pi′,ps), (5.16)

where the subscript “i” represent the ith postselection attempt, pi,ps = αi,1αi,2exp(−Ti,di f r) is the

postselection probability for ith attempt, Ti,max = max{Ti,1,Ti,2}, and Ti,di f = |Ti,1−Ti,2|. Hence,

∑
j
i=1 Ti,max is the total time for a success in the jth postselection attempt and p j,ps ∏

j−1
i′=1(1− pi′,ps)

is the corresponding probability. The calculation also requires averaging j, Ti,max and Ti,di f , which

is difficult since both Ti,max and pi,ps depend on Ti,di f and we do not know the exact probability

distribution function. Fortunately, we can bypass the problem with solid approximations. First, it

is safe to claim that αi,1 is independent of Ti,1 and same for αi,2. This is because αi,1 is defined in
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Eq. (5.7) and it only depends on the waiting time in the first entanglement swapping. Thus, we

rewrite the postselection probability as

pi,ps = 〈αi,1〉〈αi,2〉exp(−Ti,di f r). (5.17)

Then, we substitute Ti,max with Ti,min+Ti,di f , where Ti,min = min{Ti,1,Ti,2} and is independent with

Ti,di f . If we define β ′ = 〈Ti,di f pi,ps〉/〈Ti,di f 〉〈pi,ps〉, similar to Eq.5.12, we have

0 < β
′ < 1, (5.18)

which gives the lower bound and upper bound of T (2)
tot

〈Tmin〉
〈α〉2〈exp(−Tdi f r)〉

< 〈T (2)
tot 〉<

〈Tmax〉
〈α〉2〈exp(−Tdi f r)〉

, (5.19)

where we have used 〈αi,1〉= 〈αi,2〉= 〈α〉 So far, we have not made assumptions on the probability

distribution function on T1 and T2, which is necessary to derive the expectation value of Tmin, Tmax,

and exp(−Tdi f r). Here we assume the establishment time for one sublink, i.e., two elementary

links, is mT0, where the probability distribution function of m is P(m) that defined in Eq. (5.1),

except substituting p0 for

p′0 = 2p0〈ps〉/3. (5.20)

This assumption gives the same expectation value of establishment time for two links as given in

Eq. (5.14), while the probability distribution function is different. In fact, the numerical evidence

in Appendix B shows that substituting p0 for p′0 in Eq. (5.2) and Eq. (5.3), gives a good approxi-

mation of the probability distribution function of Tdi f and the expectation value of Tmin and Tmax.

Thus, we can calculate the lower bound and the upper bound in Eq. (5.19), and similarly to the

treatment in the two-photon BSM situation, we use the average of the lower bound and the upper

bound to approximate 〈T (2)
tot 〉

〈T (2)
tot 〉 ≈

〈Tmax〉+ 〈Tmin〉
2〈α〉2〈exp(−Tdi f r)〉

. (5.21)
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5.1.2 Two-link repeater performance for different schemes

One can calculate the average entanglement distribution time from Eq. (5.21) and Eq. (5.15)

for single-photon BSM and two-photon BSM. respectively. Here we give a detailed procedure of

calculating repeater rates for each repeater scheme.

The “1 + 1” scheme. In the “1 + 1” scheme, the single photon emitted from each source will

be partially transmitted to the central beam-splitter and the memory (controlled by a local beam-

splitter). With one click after the central beam-splitter, i.e., the single-photon Bell-state measure-

ment, the entanglement is claimed to be a success while a mixed state α(0)|Ψ〉〈Ψ|+(1−α(0))|0〉〈0|

is produced. The success probability is 2γ(1−γ)ηtηsηd +2γ2ηt(1−ηt)ηsηd , where γ is the trans-

mission coefficient, ηt = exp(−L0/Latt) is the transmission loss, Latt the fiber attenuation length,

and ηs is the single-photon source efficiency. The first term is the case that only one photon is sent

to the central beam-splitter, while the second term represents both photons being sent to the central

beam-splitter while one of the photons is lost due to the fiber attenuation. The success probability

of entanglement generation can be approximated as

p0 = 2γηtηsηd, (5.22)

since ηt � 1. The fidelity of the resultant state with unity-efficiency quantum memory is 1− γ ,

while an unsuccessful storage or retrieval of the photon will cause a vacuum component. Thus,

considering memory efficiency ηm, the fidelity of the resultant state is

α
(0) = ηm(1− γ). (5.23)

It is important to note that the memory efficiency here is the product of the storage efficiency and

the retrieval efficiency, i.e., the efficiency without considering decay.

Based on Eq. (5.7) and Eq. (5.8) and with α1 = α(0) and α2 = α(0)exp(−n(1)di f r), we can derive

the average fidelity after swapping

〈α(1)〉= 〈
α(0)exp(−n(1)di f r)

1+(1−α(0)ηd)exp(−n(1)di f r)
〉, (5.24)
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and the average swapping probability

〈p(1)s 〉=
α(0)ηd

2
〈1+(1−α

(0)
ηd)exp(−n(1)di f r)〉. (5.25)

The average entanglement distribution time can now be calculated via Eq. (5.21).

The “2̃ + 1” scheme. The “2̃ + 1” scheme is similar to the DLCZ scheme since the probability

of photon-pair emission should be small to suppress multi-pair emission. It is important to recall

that in Sec. 4.2 we do not distinguish the emission probability of non-deterministic photon source

from the source efficiency of a deterministic photon source and call both the “source efficiency”

ηs. The success probability of the state after entanglement generation can be easily derived as

p0 = 2ηtηsηd (5.26)

As ηs� 1, one can ignore the situation of coincident emission, and thus the fidelity of the resultant

state is

α
(0) = ηm. (5.27)

Similarly, the average fidelity after swapping is

〈α(1)〉= 〈
exp(−n(1)di f r)

1+(1−ηd)exp(−n(1)di f r)
〉, (5.28)

and the average swapping probability is

〈p(1)s 〉=
ηd

2
〈1+(1−ηd)exp(−n(1)di f r)〉. (5.29)

The “2 + 2” scheme and the “2̃ + 2” scheme. The calculation for the “2 + 2” scheme and

the “2̃ + 2” scheme are the same, but it is worth noting that ηs for the non-deterministic source is

much smaller than for the deterministic source. The probability generation probability for the “2 +

2” scheme and the “2̃ + 2” scheme is

p0 = η
2
t η

2
s η

2
d/2, (5.30)

where the one half is the intrinsic success probability of two-photon BSM. The fidelity of the

created mixed state is

α
(0) = η

2
m. (5.31)
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The average success probability can thus be derived from Eq. (5.10)

〈ps〉= η
2
d η

4
m〈exp(−ndi f r)〉/2. (5.32)

5.2 Implementation and limitations

In this section, we consider physical platforms for both quantum memories and photon sources. For

quantum memories, we focus on rare-earth-ions(REIs) based memory [79–91] and Rydberg atom-

ensemble (RA) memory [60, 92–95], which are evaluated in terms of memory lifetime and effi-

ciency. As for photon sources, we consider quantum dots(QDs) as SPS [96, 97] and dPPS [98], Ry-

dberg atoms as SPS [99, 100] and semi-dPPS [101], and spontaneous parametric down-conversion

source as ndPPS [102, 103]. Thus, we propose the implementations for repeater schemes we men-

tioned in Sec. 4.2, shown in Tab. 5.1.

Table 5.1: Repeater scheme implementations (QDs: quantum dots; REIs: rare-earth-ions; RAs:
Rydberg atoms; PDC: parametric-down conversion.)

Schemes Implementations
1+1 QDs + REIs; RAs
2+2 QDs + REIs; RAs
2̃+1 PDC + REIs
2̃+2 PDC + REIs

5.2.1 Rare-earth-ions (REIs) based quantum memory

Rare-earth-ion doped crystals are attractive as quantum memories [104], with good performance in

terms of storage efficiency [91, 105], multimode capacity [86, 106], and polarization qubit storage

[107, 108]. At cryogenic temperatures, rare-earth-ion doped crystals exhibit long ground state

coherence time: the electron spin coherence time of milliseconds is seen in many experiments

[79, 80], and the nuclear spin coherence time can reach seconds or even hours [81–84].
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The relevant transitions in rare-earth ions in solids have narrow homogeneous lines in combi-

nation with large inhomogeneous broadening. This can be used to create a periodic structure of

narrow absorption peaks, a so-called atomic frequency comb (AFC) [37]. AFC is of great inter-

est in the repeater applications since it allows efficient storage and readout of multiple temporal

modes, which could greatly enhance the repeater performance [75]. The temporal modes ranging

from dozens to thousands with a typical storage time of milliseconds level and efficiencies ranging

from 1-35% [85–89]. Though theoretically the upper bound for the AFC quantum memory effi-

ciency is unity, the requirement of a large optical depth [37] is hard to achieve. Putting the memory

inside an asymmetric optical cavity can greatly enhance the efficiency by meeting the “impedance

matching” condition [109]. So far, 53% [90] and 56% [91] memory efficiency have been reported

in cavity-based AFC memory, with milliseconds storage time.

5.2.2 Rydberg atoms (RAs): Rydberg-state based photon sources and ground-state quantum

memories

Rydberg states are characterized by a high principal quantum number and a corresponding large

size [110]. Due to the large dipole moments and strong dipole-dipole interactions, the excitation

of Rydberg atoms shifts the excited energy levels of nearby atoms, which excludes the resonant

excitation of these atoms and is called the Rydberg-blockade [92]. The Rydberg-blockade, as the

central topic of Rydberg atoms’ application in quantum information processing, makes it possible

to realize photon sources [99–101].

Both deterministic single-photon source (SPS) and semi-deterministic photon-pair source (PPS)

can be realized in Rydberg atoms ensembles. The SPS relies on the Rydberg blockade effect, where

the shifting in the energy level will inhibit transition into all but single-excitation states [92]. The

spin-wave state is then converted into a light field by retrieving the excitation back to the intermedi-

ate level [99]. Room temperature SPS has also been demonstrated, though with low efficiency(4%)

[100]. A semi-dPPS can also be realized via the Rydberg blockade effect, where two excitations

with different momentum can be entangled. After mapping one excitation to a photon, a photon
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and an atomic excitation can be entangled in the polarization domain. By further retrieving the

ground-state excitation, the atom-photon entanglement is converted into a photon pair entangle-

ment [101]. The intrinsic efficiency of this method is 50%, which is semi-deterministic. In the

future, with more efficient qubit manipulation, 100% intrinsic efficiency, i.e., nPPS, can also be

realized.

Cold atoms are also attractive as quantum memories since they allow both rapid and deter-

ministic preparation of quantum states and their efficient transfer into single-photon light fields

[60, 92–95]. Although the optical lifetime of highly excited Rydberg atoms can reach several hun-

dred microseconds [110], the optical coherence time is only several microseconds [94] because

Rydberg atoms are vary sensitive to the environment. Thus, to realize a long memory lifetime, we

need to transfer the Rydberg excitation to a long-lived ground state. The demonstrated mapping

efficiency from the Rydberg state to the ground state is already more than 70% [95]. The coherence

time of the excitation stored in the ground state, is mainly limited by the motion of the atoms and

the fluctuation of the residual magnetic field. Combining optical lattice, “clock state” storage and

cavity enhancement read-out, 220ms spin-wave lifetime, and initial intrinsic retrieval efficiency of

76% have been demonstrated [60]. It is worth noting that the size of the Rydberg blockade radius

poses a limitation on the number of atoms that can be used. The low optical depth will decrease the

coupling strength between the single-photon and the ensemble, and thus the retrieval efficiency. It

is therefore necessary to couple the ensemble with a cavity to enhance the overall efficiency.

5.2.3 Quantum dots (QDs) based single-photon and photon-pair source

Quantum dots(QDs) [111] are recognized as one of the best on-demand single-photon sources

that possess the highest quantum efficiency in solid-state quantum emitter schemes [96]. In one

experiment, near-perfect single-photon purity (99.1%), indistinguishability (98.6%), and high ex-

traction efficiency (66%) have been reported based on resonant excitation of InAs-GaAs QDs in a

micropillar cavity [97].

Photon-pair sources can also be realized by radiative cascades in quantum dots. In a recent
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experiment, high fidelity (90%), pair extraction efficiency (62%), and indistinguishability (90%)

are demonstrated by a single InGaAs quantum dot coupled to a circular Bragg grating bullseye

cavity with broadband high Purcell factor up to 11.3 [98].

It is important to notice that the overall efficiency is usually limited by the scattering loss

and fiber coupling efficiency, and the best overall efficiency is about 25% [112]. Fortunately, the

photonic nanowire approach to fabricating efficient quantum light sources has been proposed [113]

and shown great promise to achieve high extraction efficiency and high fiber coupling efficiency.

The collective efficiency has realized 72% in single-photon source based on InAs QDs embedded

in a GaAs photonic nanowire [114]. A photon-pair source has also been reported in nanowire

quantum dots [115–117] with extraction efficiency around 15%. With further optimization of the

nanowire shape, extraction efficiency of more than 90% can be expected [113].

5.2.4 Parametric down-conversion (PDC) based photon-pair source

One of the most widely-used techniques to produce entangled photon-pair is by spontaneous non-

linear parametric processes. The process where one photon in the pumping laser goes through

materials with second-order (χ(2)) nonlinearity and is converted into two photons is called spon-

taneous parametric down-conversion (SPDC). A similar process for third-order (χ(3)) materials is

called spontaneous four-wave mixing(SFWM) [102]. Photons can be entangled in polarization,

frequency, and time. A recent outstanding polarization-entanglement source uses narrow-band

spectral filters that eliminate spectral correlations and has demonstrated high indistinguishability

(97%) and purity (99%) [103]. It is important to note that, in order to suppress the multi-pair

emission, the emission probability should be low and thus the photon-pair generation process is

non-deterministic. On the other hand, it is relatively easy for this type of source to match the

emission frequencies of each photon to a desired wavelength. For example, one photon can be in

resonance with a quantum memory, while the other one matches the telecom band of optical fibers.
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5.3 Numerical results

5.3.1 Memory requirements

We first study the repeater rates as a function of memory lifetime and efficiency. It is worth

noting that the efficiency of photon sources should be predetermined to use Eq. (5.19) and Eq.

(5.15) to calculate the repeater rates, defined as the reciprocal of EDT. We consider high, but

realistic efficiencies of 75% and 50% for SPS and PPS, respectively, and the photon-pair emission

probability 3% for ndPPS. The transmission coefficient γ = 0.2 in the “1 + 1” scheme, the fiber

attenuation length Latt = 22km (for telecom-wavelength range around 1550nm), and the detector

efficiency ηd = 0.95. In Fig. 5.1 we show the repeater rates for a total distance of 100 km, where

the contour line represents the same repeater rates for various parameters of memory lifetime and

efficiency.

The figures can provide useful information. To begin with, the graphs show the potential

trade-off between memory lifetime and efficiency to achieve a target repeater rate, say 1 Hz. For

example, in the “2 + 2” scheme, to realize the target repeater rate, one can use memories with 1ms

lifetime and 50% efficiency, or with unity efficiency and 0.2ms lifetime, or with 15% efficiency

and 1s lifetime.

One can find the most efficient way to improve the repeater performance by improving the

memory parameter along the gradient in the contour graphs. In particular, one can see that for

a short lifetime but high efficiency, there is limited benefit in improving the efficiency further

and vice versa. Conversely, in the high lifetime regime (e.g. > 10 ms for the “2 + 2” scheme),

the gradients of the contour lines are parallel to the efficiency axis, meaning that the increase in

efficiency will considerably improve the repeater rates. We also notice that the contour line is more

concentrated in the small memory lifetime(< 1ms) and efficiency(< 20%) regime, which means an

improvement in lifetime or efficiency respectively in the corresponding regimes will dramatically

improve the repeater rates.

Moreover, the graphs give the upper bound of the repeater rates that can be achieved in these
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Figure 5.1: (Color online) Rates of various repeater schemes for a total distance of 100km. The
numbers in the contour line represent the corresponding repeater rates in Hz. The plot shows
the situation of two links(nesting level is 1). The corresponding repeater protocols and parameter
regimes are (a) SPS + single-photon BSM(1+1) with local beam-splitter transmission probability
0.8 and single-photon emission probability 0.75; (b)dPPS + two-photon BSM(2+2) with photon–
pair emission probability 0.5; (c)ndPPS + single-photon BSM(2̃+ 1) with photon-pair emission
probability 0.03; (d) ndPPS + two-photon BSM(2̃+2) with photon-pair emission probability 0.03.
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Table 5.2: Parameters for numerical calculation (QDs: quantum dots; REIs: rare-earth-ions; RAs:
Rydberg atoms; PDC: parametric-down conversion; ηs: photon source efficiency; ηm quantum
memory efficiency; τm quantum memory lifetime.)

Schemes Implementations Parameters

1+1
QDs + REIs ηs = 0.75, ηm = 0.7, τm = 1ms

RAs ηs = 0.15, ηm = 0.75, τm = 0.22s

2+2
QDs + REIs ηs = 0.5, ηm = 0.7, τm = 1ms

RAs ηs = 0.15, ηm = 0.75, τm = 0.22s
2̃+1

PDC + REIs ηs = 0.03, ηm = 0.7, τm = 1ms
2̃+2

schemes for this distance. The maximum repeater rate under the present assumptions is of order

10 Hz in the “1 + 1”, “2 + 2”, and “2̃+1” scheme and 10−3 Hz in the “2̃+2” scheme. These upper

bounds of the repeater rates, which correspond to perfect quantum memories, can be improved by

using better sources, more links, or multiplexing [16].

These results were obtained for exponential decay of memory efficiency as described in section

III. In Appendix C we compare our results to what one would obtain under the common simpli-

fied assumption of a memory cut-off time. The main conclusion is that the cut-off is not a good

approximation for short lifetimes.

5.3.2 Comparison of implementations

Let us now consider the practical implementations in Tab. 5.1, and give the expected repeater rates

with realistic parameter regimes, shown in Tab. 5.2.

We plot the corresponding two-link repeater performance with various platforms as a function

of distance in Fig. 5.2. The solid lines represent the performance of different implementations that

are labeled on the figure. The schemes with more deterministic sources achieve higher rates, but

even the schemes with non-deterministic sources can allow meaningful proof-of-principle demon-

strations, especially the “2̃ + 1” scheme. Note that the rate for the “1 + 1” scheme with RAs

decreases more slowly with distance under our assumptions compared with other implementations
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Figure 5.2: Comparison of repeater implementations with two links: the “1 + 1” scheme with QDs
and REIs (A); the “1 + 1” scheme with RAs (B); the “2 + 2” scheme with QDs and REIs (C); the
“2 + 2” scheme with RAs (D); the “2̃ + 1” scheme with PDC and REIs (E); the “2̃ + 2” scheme
with PDC and REIs (F). (QDs: quantum dots; REIs: rare-earth-ions; RAs: Rydberg atoms; PDC:
parametric-down conversion.)

mainly because of the longer memory lifetime.

It is possible to improve the repeater rates by adopting the optimized memory buffer time

protocol of Ref. [118] that limits the entanglement generation time in elementary links. We discuss

this approach in detail in Appendix D. The improvement is not dramatic in the considered regime

for the two-link situation (first nesting level), but it might be more helpful for higher nesting levels.
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Chapter 6

Conclusion and outlook

In this thesis, we studied quantum repeaters with both single-emitter based and ensemble-based

quantum memories, and in particular, we considered imperfections of photon sources and quan-

tum memories in a near-term situation with two repeater links and performed an analytical and

numerical analysis of the latter. Our results provide guidance for the near-term implementation

of long-distance quantum repeater demonstrations, suggesting that such demonstrations are within

reach of current technology.

In our analysis, we have considered imperfections such as fiber photon loss, photon detector

inefficiency, photon source inefficiency (for deterministic photon sources), quantum memory inef-

ficiency, and finite lifetime. However, in realistic situations, other imperfections like multi-photon

(pair) emission, non-identical photon sources and quantum memories, and phase instability cannot

be ignored.

Note that the purpose of the calculations is not to beat direct transmission, but to give theoretical

predictions for the natural next-step, i.e., realizing a two-link quantum repeater over a meaningful

distance that demonstrates the entanglement swapping process between physical memories. Such

demonstrations would be of significant importance since quantum repeaters with more links can

be done in a similar manner.

To realize global quantum networks, we provide several comments for future studies. Firstly,

the performance of quantum repeater links with minimal resources (considered in this thesis) has a

limited range of distance that could provide a meaningful advantage over direct transmission. For

example, the “1 + 1” scheme outperforms direct transmission for a distance of 580 km, with an en-

tanglement generation time of 44 s, and this is even under the infinite-memory-lifetime assumption

[16]. One could consider using schemes with multiplexing in frequency, time, or space to improve
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the repeater rates, and this may require quantum memories and photon sources to have the corre-

sponding feature. Besides, error-correction assisted quantum repeater protocols could also reduce

the requirements on the quantum devices. Secondly, as we have mentioned the imperfections in im-

plementing quantum repeaters come from many aspects: photon sources, memories, optical fibers,

photon detectors, and etc. Improvements in all of these aspects are not possible to achieve for a

single research team. One should recognize the importance of collaboration that could gather all

these components with state-of-the-art development. Thirdly, different platforms are being inves-

tigated and no one could claim at this stage which is the best. Therefore, future quantum networks

may consist of nodes with different implementations of photon sources and quantum memories. It

is thus important to enable network nodes with different implementations to talk with each other.

As different implementations may have distinct optical frequencies, quantum transductions would

be necessary [119]. This may also require a uniform standard or agreement on both the hardware

and software side to connect the quantum networks between different countries.
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Appendix A

Detailed derivation of Eq. (5.14) and Eq. (5.15)

In this section, we give a detailed derivation of Eq. (5.14) and Eq. (5.15). Let us recall the original

expression of EDT in Eq. (5.11), if we substitute nr,max = nr,min +nr,di f , we will get

(
k

∑
r=1

nr,minT0)pk,s

k−1

∏
r=1

(1− pr,s)

+(
k

∑
r=1

nr,di f T0)pk,s

k−1

∏
r=1

(1− pr,s).

(A.1)

To calculate the expectation time, we should average k, nr,max, and nr,di f (contained in ps). The

calculation for the first term in Eq. (A.1) is easy since ps and nmin are independent, while it is hard

in the second term where ps depends on ndi f . Let us first give the expectation value of the first

term. As nr,di f is independent of pr,s, we derive

T0

∞

∑
k=1

[(
k

∑
r=1
〈nr,min〉)〈pk,s〉

k−1

∏
r′=1

(1−〈pr′,s〉)

=T0

∞

∑
k=1

[k〈nr,min〉〈pk,s〉
k−1

∏
r′=1

(1−〈pr′,s〉)]

=
〈nmin〉
〈ps〉

T0,

(A.2)

where we have used the fact that the expectation of nmin and ps are the same for different swapping

attempts, i.e., 〈nr,min〉= 〈nmin〉 and 〈pr,s〉= 〈ps〉.

To calculate the expectation value for the second term in Eq. (A.1), we need an assumption

on the expectation value of nr,di f pr,s. As in the main text, we have defined β = 〈ndi f ps〉/〈ndi f ps〉,

where 0 < β < 1. In the upper bound β = 1, the expectation value of the second term in Eq. (A.1)
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can be expressed as

T0

∞

∑
k=1

[(
k

∑
r=1
〈nr,di f 〉)〈pk,s〉

k−1

∏
r′=1

(1−〈pr′,s〉)

=T0

∞

∑
k=1

[k〈nr,di f 〉〈pk,s〉
k−1

∏
r′=1

(1−〈pr′,s〉)]

=
〈ndi f 〉
〈ps〉

T0,

(A.3)

while in the lower bound β = 0, the expectation value of the second term in Eq. (A.1) is negligible

compared to the first term. Thus, depending on β , the average EDT is different. If β = 1, the

average EDT is the sum of Eq. (A.2) and Eq. (A.3)

〈nmin〉
〈ps〉

T0 +
〈ndi f 〉
〈ps〉

T0 =
〈nmax〉
〈ps〉

T0. (A.4)

On the other hand, if β = 0, the average EDT is simply the value in Eq. (A.2)

〈nmin〉
〈ps〉

T0. (A.5)
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Appendix B

Numerical evidence for assumptions

In this section, we give the numerical evidence that supports our assumptions in the main text,

especially Eq. (5.13) and Eq. (5.20). The parameter regime, if not specified, is p0 = 0.01, r =

T0/τm = 1, ηd = 0.95, and α(0) = 1.

First, let us give the numerical evidence for Eq. (5.13), i.e., β = 〈ndi f ∗ ps〉/〈ndi f 〉〈ps〉 ≈ 1 in

single-photon BSM. We plot β as a function of p0, shown in Fig. B.1(a-c) with different choices

of state fidelity(after entanglement generation) and different lifetime regime. The result shows

that the minimum ratio varies with different p0− tM regime and the lowest ratio in our considered

regime is 84%, which means in Eq. (5.13), β ≈ 1 is a good approximation. We also plot the ratio in

the two-photon BSM scenario: in the low-p0 regime, β is almost 0, while in the high-p0 and high

memory lifetime regime, β is close to 1. The ratio values 0 and 1 corresponds to the lower bound

and upper bound in Eq. (5.15), respectively, and thus we approximate the average EDT using the

average of lower bound and upper bound.

Secondly, we show the assumption in Eq. (5.20) is valid in the approximation of probability

distribution of Tdi f and the expectation value of Tmin and Tmax. Based on the probability assump-

tion, we plot the theoretical predicted probability distribution of Tdi f in comparison to the numer-

ical result, shown in Fig. B.2. The four subfigures correspond to different p0− tM regimes and

the theoretical results(red solid line) fit well with the numerical result(blue dots) in all considered

parameter regimes. We also compare the theoretical and numerical results of the expectation value

of Tmin and Tmax, shown in Fig. B.3. The theoretical results(blue dots) fit well with the numerical

results (yellow crosses) for different τm (subfigures a and c) and p0(subfigures b and d).
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Figure B.1: (Color online) The relation between β and p0 in different T0/τm regime:
T0/τm = 0.001(blue dots), 0.01(yellow triangles, 0.1(green squares), and 1(red diamonds). The
first three subfigures shows results for single-photon BSM(a, b and c) and two-photon BSM(d).
For single-photon BSM situation, we consider fidelity of the generated entangled state α(0), which
depends on the memory efficiency, as 0.9(a), 0.5(b) and 0.1(c).

Figure B.2: (Color online) The numerical (blue dot) and theoretical (red solid line) probability
distribution for Tdi f . In the high-memory-lifetime regime (T0/τm = 0.01), low-memory-lifetime
regime (T0/τm = 1), high-p0 regime (p0 = 0.1), and low-p0 regime (p0 = 0.01). The theoretical
prediction fits well with the numerical result.

57



Figure B.3: (Color online) The numerical (blue dots) and theoretical (yellow xs) expectation value
of Tmin (a and b) and Tmax (c and d). We plot the dependence on T0/τm (a and c) and p0 (c and d),
and find the numerical results and theoretical results fit well.
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Appendix C

Comparison of exponential decay and memory cut-off

In this section, we calculate the repeater rates using the memory cut-off assumption, and compare

it with our result. Here we focus on the “2 + 2” scheme.

Given the initial memory state as α |Ψ〉〈Ψ|+(1−α)ρ , the memory cut-off assumption is that

after time t, the memory state is

F =


α |Ψ〉〈Ψ|+(1−α)ρ t ≤ τ

ρ
′ t > τ

, (C.1)

where ρ and ρ ′ are ”unwanted states”, and τ is usually the lifetime. It is clear that the fidelity and

storage time are negatively correlated, and thus the lower bound and upper bound of the average

EDT have the same expression as in Eq. (5.15). We notice the only difference is the average

swapping probability 〈ps〉. Without loss of generality, we assume the prefactor in Eq. (5.10) as 1,

and therefore

ps =


1 t ≤ τm/2

0 t > τm/2
, (C.2)

where the τm/2 is because in the “2 + 2” scheme, both memory will decay. Given t = ndi f T0, and

the probability distribution function as shown in Eq. (5.2), the expectation value of ps is

〈ps〉cut = 1− 2(1− p0)
τm/2T0

2− p0
. (C.3)

In comparison, with exponential memory decay, the swapping probability is shown in Eq. (5.32),

and the expectation value is

〈ps〉exp =
p0

2− p0

eT0/τm +1− p0

eT0/τm−1+ p0
. (C.4)

We plot the average swapping probability under memory cut-off and exponential decay in

different p0 and τm/T0 regimes, shown in Fig. C.1. In the high τm/T0 regimes(>10), the memory
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Figure C.1: (Color online) Average swapping probability in memory cut-off assumption
〈ps〉cut(diamond) and exponential decay assumption 〈ps〉exp(circle). The plots show the depen-
dence of average swapping probability with different τm/T0 regime: τm/T0 = 1(blue), 10(red),
100(green), and 1000(magenta).

cut-off seems to be a good assumption since the the two expectation values are well matched.

However, in the low τm/T0 regime(�10), we find a distinct difference between the two value. For

example, in the regime τm/T0 = 1, which is represented by blue lines in Fig. C.1, 〈ps〉cut/〈ps〉exp =

48.5 and 521 corresponding to p0 = 0.1 and 0.01. Thus, in low memory time regime(τm ∼ T0), the

memory cut-off is not a good approximation.
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Appendix D

Improving the repeater rates with optimized memory buffer

time

In this section, we focus on the two-photon BSM schemes (2+ 2 and 2̃+ 2 scheme) with one

nesting level. We consider the protocol of Ref. [118] where we abort the trial and start over again

if the entanglement generation time of the elementary link exceeds a time threshold τ . Similarly

to Eq. (5.11), the entanglement distribution time in this case is thus

T (τ) =
∞

∑
k=1

[(
k

∑
r=1

min{nr,maxT0,τ})p′k,s
k−1

∏
r=1

(1− p′r,s)]. (D.1)

Here p′r,s is the swapping probability in the rth swapping attempt, and depends on τ as

p′r,s =


ps nmax ≤ τ/T0

0 nmax > τ/T0

(D.2)

which is independent of r. Here ps is the swapping probability defined in Eq. (5.32) and is a

function of ndi f . For simplicity, we calculate the upper bound of the expectation value of T (τ)

〈T (τ)〉 ≈ 〈min{nmaxT0,τ}〉
〈p′s〉

, (D.3)

where we have used the condition that 〈nr,max〉= 〈nmax〉 and 〈p′r,s〉= 〈p′s〉 for all r. The numerator

in Eq. (D.3) can be calculated with the PDF for nmax, which is defined as

P(nmax) = 2
nmax−1

∑
i=1

P(i,nmax)+P(nmax,nmax), (D.4)

where P(n1,n2) = p2
0(1− p0)

n1+n2−2 is the joint PDF of n1 and n2 defined in Sec. 5.1.1. Thus,

〈min{n′maxT0,τ}〉

=
τ/T0

∑
nmax=1

nmaxT0P(nmax)+
∞

∑
nmax=τ/T0+1

τP(nmax).
(D.5)
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Calculating the denominator requires the conditional probability (conditioned on nmax ≤ τ/T0)

of ndi f . The joint probability of ndi f and nmax is

P(ndi f ,nmax) = 2P(n1 = nmax,n2 = nmax−ndi f ). (D.6)

The conditional probability is

Pc(ndi f ) = P(ndi f |nmax ≤ τ/T0)

=
∑

τ/T0
nmax=ndi f+1 P(ndi f ,nmax)

∑
τ/T0
nmax=ndi f+1 P(nmax)

.
(D.7)

We can now calculate the denominator as

〈p′s〉=
τ/T0−1

∑
ndi f=0

ps(ndi f )Pc(ndi f ). (D.8)

Now the average entanglement distribution time defined in Eq. (D.3) can be calculated with Eq.

(D.5) and Eq. (D.7). Considering τ0 such that 〈T (τ0)〉= max〈T (τ)〉, we define

λ =
〈T (∞)〉
〈T (τ0)〉

, (D.9)

representing the ratio of entanglement distribution rates for the case with and without limited mem-

ory buffer time.

In the numerical calculation, we use detector efficiency ηd = 0.95 and memory efficiency

ηm = 0.5, and thus λ only depends on the memory lifetime τm and the entanglement generation

probability p0. To give an example, we plot the dependence of the average entanglement distribu-

tion time on the time threshold τ in the case that p0 = 0.1, and τm = 10T0, see Fig. D.1. As the

time threshold increases, the average entanglement generation time first decreases and reaches a

minimum value at τ0. Then it increases and finally reaches 〈T (∞)〉.

To see how the ratio λ depends on p0 and τm, we plot the numerical results in Fig. D.2. It is

clear that the improvement of the repeater rates is concentrated in the low-τm, low-p0 regime. The

maximum ratio in the considered regime is about 2.4.
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Figure D.1: Average entanglement distribution time with limited entanglement generation time.
The parameters used are ηd = 0.95, ηm = 0.5, p0 = 0.1, and τm = 10T0. The minimum value
(maximum rate) is obtained with τ0 ≈ 16T0, and λ ≈ 1.06.
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Figure D.2: (Color online) The ratio λ of Eq. (D9), which represents the improvement achieved
by optimizing the memory buffer time.
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and Nicolas Gisin. Long-distance entanglement distribution with single-photon sources.

Physical Review A, 76(5):050301, 2007.

[65] Christoph Simon, Hugues De Riedmatten, Mikael Afzelius, Nicolas Sangouard, Hugo

Zbinden, and Nicolas Gisin. Quantum repeaters with photon pair sources and multimode

memories. Physical review letters, 98(19):190503, 2007.

[66] Zeng-Bing Chen, Bo Zhao, Yu-Ao Chen, Jörg Schmiedmayer, and Jian-Wei Pan. Fault-

tolerant quantum repeater with atomic ensembles and linear optics. Physical Review A,

76(2):022329, 2007.

[67] Bo Zhao, Zeng-Bing Chen, Yu-Ao Chen, Jörg Schmiedmayer, and Jian-Wei Pan. Ro-

bust creation of entanglement between remote memory qubits. Physical review letters,

98(24):240502, 2007.

[68] Neil Sinclair, Erhan Saglamyurek, Hassan Mallahzadeh, Joshua A Slater, Mathew George,

Raimund Ricken, Morgan P Hedges, Daniel Oblak, Christoph Simon, Wolfgang Sohler,

et al. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb

quantum memory and feed-forward control. Physical review letters, 113(5):053603, 2014.

[69] Hari Krovi, Saikat Guha, Zachary Dutton, Joshua A Slater, Christoph Simon, and Wolf-

gang Tittel. Practical quantum repeaters with parametric down-conversion sources. Applied

Physics B, 122(3):52, 2016.

71



[70] Taehyun Kim, Marco Fiorentino, and Franco NC Wong. Phase-stable source of polarization-

entangled photons using a polarization sagnac interferometer. Physical Review A,

73(1):012316, 2006.

[71] Xiao-Hui Bao, Xiao-Fan Xu, Che-Ming Li, Zhen-Sheng Yuan, Chao-Yang Lu, and Jian-Wei

Pan. Quantum teleportation between remote atomic-ensemble quantum memories. Proceed-

ings of the National Academy of Sciences, 109(50):20347–20351, 2012.

[72] Wolfgang Pfaff, Bas J Hensen, Hannes Bernien, Suzanne B van Dam, Machiel S Blok,

Tim H Taminiau, Marijn J Tiggelman, Raymond N Schouten, Matthew Markham, Daniel J

Twitchen, et al. Unconditional quantum teleportation between distant solid-state quantum

bits. Science, 345(6196):532–535, 2014.

[73] G Vittorini, D Hucul, IV Inlek, C Crocker, and C Monroe. Entanglement of distinguishable

quantum memories. Physical Review A, 90(4):040302, 2014.

[74] Jonatan Bohr Brask and Anders Søndberg Sørensen. Memory imperfections in atomic-

ensemble-based quantum repeaters. Physical Review A, 78(1):012350, 2008.

[75] OA Collins, SD Jenkins, A Kuzmich, and TAB Kennedy. Multiplexed memory-insensitive

quantum repeaters. Physical review letters, 98(6):060502, 2007.

[76] E Shchukin, F Schmidt, and P van Loock. Waiting time in quantum repeaters with proba-

bilistic entanglement swapping. Physical Review A, 100(3):032322, 2019.

[77] Sumeet Khatri, Corey T Matyas, Aliza U Siddiqui, and Jonathan P Dowling. Practical

figures of merit and thresholds for entanglement distribution in quantum networks. Physical

Review Research, 1(2):023032, 2019.

[78] Carsten Schuck, Wolfram HP Pernice, and Hong X Tang. Waveguide integrated low noise

nbtin nanowire single-photon detectors with milli-hz dark count rate. Scientific reports,

3:1893, 2013.

72



[79] P Siyushev, K Xia, R Reuter, M Jamali, N Zhao, N Yang, C Duan, N Kukharchyk,

AD Wieck, R Kolesov, et al. Coherent properties of single rare-earth spin qubits. Nature

communications, 5:3895, 2014.

[80] Kangwei Xia, Roman Kolesov, Ya Wang, Petr Siyushev, Rolf Reuter, Thomas Kornher,

Nadezhda Kukharchyk, Andreas D Wieck, Bruno Villa, Sen Yang, et al. All-optical prepa-

ration of coherent dark states of a single rare earth ion spin in a crystal. Physical review

letters, 115(9):093602, 2015.

[81] Elliott Fraval, MJ Sellars, and JJ Longdell. Dynamic decoherence control of a solid-state

nuclear-quadrupole qubit. Physical review letters, 95(3):030506, 2005.

[82] Jevon J Longdell, Elliot Fraval, Matthew J Sellars, and Neil B Manson. Stopped light with

storage times greater than one second using electromagnetically induced transparency in a

solid. Physical review letters, 95(6):063601, 2005.

[83] Manjin Zhong, Morgan P. Hedges, Rose L. Ahlefeldt, John G. Bartholomew, Sarah E. Bea-

van, Sven M. Wittig, Jevon J. Longdell, and Matthew J. Sellars. Optically addressable

nuclear spins in a solid with a six-hour coherence time. Nature, 517(7533):177–180, jan

2015.
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