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Abstract

Long-distance transfer of quantum information is an essential ability for many applications

of quantum science. A natural choice to distribute quantum information is to encode it into

photons and transfer it through optical fibers. However, due to the unavoidable transmission

losses present in every communication channel, the distances for efficient quantum commu-

nication via direct state transfer are limited to a few hundred kilometers. To overcome this

limitation, the use of quantum repeaters has been suggested. A quantum repeater protocol

aims to establish entanglement (i.e., quantum correlation) between remote nodes by first

generating entanglement over shorter distance pieces, storing it in quantum memories, and

finally extending it to the whole distance using entanglement swapping.

The main goal of this thesis is to design quantum repeater architectures using single

solid-state quantum emitters and to develop the two-qubit gates required for performing

entanglement swapping. We first explain the basic ideas of quantum repeaters and intro-

duce potential material candidates, single erbium (168Er) and europium (151Eu) ions doped

yttrium orthosilicate photonic crystals. Next, we propose a quantum repeater scheme comb-

ing erbium and europium ions to generate and distribute entanglement over long distances.

We study the entanglement generation rate of the protocol and compare it with the rate of

a well-known ensemble-based quantum repeater. Then, using cavity assisted interactions,

we propose three different schemes to perform high fidelity two-qubit gates between single

quantum systems. We quantify their expected performance in detail by taking into account

many realistic imperfections and compare their strengths and weaknesses. The ability to

perform local two-qubits gates is especially crucial in terms of distributing entanglement.

Finally, based on our gained knowledge through these projects, we propose our second quan-

tum repeater architecture based on erbium (167Er) ions , which outperforms the first scheme.

We study two possibilities for distributing entanglement and calculate the overall fidelity as

well as the distribution rate of the protocol.
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Chapter 1

Introduction

Quantum communication is the art of encoding quantum states into photons and transmit-

ting them between distant locations to perform communication tasks that are impossible

using classical resources [1]. Among many quantum communication applications are quan-

tum teleportation [2], quantum cryptography [3], long-baseline telescopes [4] and in the

long-term, a network of quantum computers or a quantum internet [5, 6].

The use of quantum repeaters could overcome distance barriers to long-distance quan-

tum communications such as transmission loss [7]. The realization of quantum repeaters

requires the ability to interface various components such as quantum emitters and quantum

memories. The primary objective of the work done for this thesis has been to investigate

the possibilities of designing fiber-based quantum repeaters using individual rare-earth ions

doped into crystals.

This thesis is organized as follows: In the first chapter, I present a brief description of the

essential elements and resources required in quantum communication and how they relate

to each other. Next, I discuss the physical systems we employed to propose our quantum

repeater protocols, i.e., individual rare-earth ions. Chapters 3, 4 and 5 contain published

papers. To be more precise, the third chapter presents our first quantum repeater scheme

based on single erbium (168Er3+) and europium (151Eu3+) rare-earth ions as communication

1



and memory qubits, respectively. The fourth chapter covers cavity mediated interactions be-

tween quantum systems. The fifth chapter explains our second quantum repeaters protocol,

where we perform the entanglement generation and storage processes using a single species

of ion, i.e., 167Er3+. Finally, the thesis is concluded in chapter six.

1.1 Qubits

While a classical bit can take values of either ’0’ or ’1’, the basic unit of quantum information,

known as a qubit (i.e., a quantum bit [8]), could be in a coherent superposition of orthogonal

quantum states |0〉 and |1〉 as follows

|ψ〉 = α |0〉+ β |1〉 , (1.1)

where α and β are complex parameters that satisfy the equation |α|2 + |β|2 = 1. The

probability of finding the quantum state |ψ〉 in the state |0〉 (|1〉) is therefore given by |α|2

(|β|2). In this thesis, we also use some other standard notations to represent qubit states;

|0〉 = |↑〉 and |1〉 = |↓〉.

One can also visualize qubit states as points on a spherical surface with radius 1 and

represent an arbitrary qubit state as

|ψ〉 = cos (
θ

2
) |0〉+ eiϕsin (

θ

2
) |1〉 , (1.2)

where in spherical coordinates 0 ≤ ϕ ≤ 2π can be interpreted as the longitude (with respect

to the x-axis) and 0 ≤ θ ≤ π as the colatitude (with respect to the z-axis). This sphere,

which is called the Bloch sphere, is shown in Fig. 1.1. The north pole of this unit sphere

represents the state |0〉, and the south pole represents the state |1〉. Clearly the superposition

state 1/
√

2(|0〉+ |1〉) (1/
√

2(|0〉+ i |1〉)), could be depicted by a Bloch vector pointing to the

equator along the x̂ (ŷ) axis. The most general state of a qubit could be represented by a

2



Figure 1.1: Bloch sphere representation of a qubit state. The state of any two-level quantum
system, such as the Bloch vector |ψ〉, represents by a point on the Bloch sphere

2× 2 matrix, i.e., density matrix ρ as follows

ρ =
1

2
(I + ~r.~σ) =

1

2

 1 + z x− iy

x+ iy 1− z

 , (1.3)

where I is the 2 × 2 identity matrix, ~r is a vector in the Bloch sphere and ~σ = (σ1, σ2, σ3)

are Pauli matrices which are commonly denoted by a variety of notations (see Sec.1.2).

Therefore, points on the surface of the Bloch sphere represent pure states (Bloch vectors of

unit length). In contrast, mixed states (i.e., statistical ensembles of pure states [9]) lie in

the interior of the sphere (as an example r = 0 corresponds to the mixed state ρ = 1
2
I). In

general, a quantum memory consisting of n qubits could be in a linear combination of 2n

possible quantum states.

Similarly, a pure state of a qudit (i.e., a d-dimensional quantum system) can be written

as

|ψ〉 = α0 |0〉+ α1 |1〉+ ...+ αd−1 |d− 1〉 . (1.4)

The density matrix of a qudit is also in the form of ρ = 1
2

(
I + ~r. ~Γ

)
where Γi, i = 1, 2, ..., d2−

3



1 are traceless hermitian operators in the space of a qudit.

Although quantum has the advantage of using superposition states, in the end, the qubit

(or qudit) state can only be measured in one basis (i.e., the result of the measurement is

interpreted as either ‘0’ or ‘1’). However, using, for example, the quantum dense coding,

one can transmit two classical bits of information to another party using only one qubit [10].

Besides, using two classical bits, quantum teleportation allows us to transfer one qubit state

between two distant locations (see Sec 1.6).

1.2 Quantum gates

Analogues to logic gates in classical computers, quantum gates are building blocks of quan-

tum computers. Quantum gates are represented by unitary matrixes. The matrix U is

unitary if UU † = U †U = 1 where U † is conjugate transpose of U . In general, a 2n × 2n

unitary matrix can represent a gate that acts on n qubits. In the following, we explain some

simple quantum gates that will be used in the next chapters.

1.2.1 Single-qubit gates

•Pauli-X gate: The X gate, which is equivalent to the NOT gate in classical computa-

tion, in matrix form is written as

σ1 ≡ σx ≡ X ≡

 0 1

1 0

 . (1.5)

In a vector notation qubit states |0〉 and |1〉 are denoted by |0〉 = ( 1
0 ) and |1〉 = ( 0

1 ).

Therefore, the corresponding output from the Pauli-X gate (also called bit-flip gate) is to

map |0〉 to |1〉 and |1〉 to |0〉.

•Pauli-Z gate: This gate rotates the quantum state of a qubit around the ẑ-axis of the

Bloch sphere by π (it is therefore also called a phase-flip gate). In the matrix notation, this

4



gate is represented by

σ3 ≡ σz ≡ Z ≡

 1 0

0 −1

 . (1.6)

As a result, this gate leaves the state |0〉 unchanged and flips the sign of |1〉 to − |1〉.

•Pauli-Y gate: This gate represents a rotation by π about the ŷ-axis of the Bloch

sphere:

σ2 ≡ σy ≡ Y ≡

 0 −i

i 0

 . (1.7)

Hence, the Pauli-Y gate, which is equivalent to XZ gate (except for an ’i’), flips both phase

and bit of a qubit state.

•Hadamard gate: The Hadamard gate acts as a rotation around the (x̂+ ẑ)/
√

2-axis

by π (or equivalently a rotation about the ŷ-axis by π/2, followed by a π rotation about the

x̂-axis)

H ≡ 1√
2

 1 1

1 −1

 . (1.8)

Therefore, it maps the state |0〉 to (|0〉 + |1〉)/
√

2 (i.e., first column of H which is half way

between |0〉 and |1〉) and |1〉 to (|0〉 − |1〉)/
√

2 (i.e., second column of H).

1.2.2 Two-qubit gates

•Controlled-Z (CZ) gate: This gate is a controlled version of the Z gate with two

input qubits, i.e., control and target qubits. It, therefore, flips the phase of the second qubit

(i.e., target qubits), only if the control qubit is in the state |1〉. In the matrix notation, this

gate is represented by

CZ ≡



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


. (1.9)
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In Chapter 4, we propose three different schemes to perform the CZ gate between two

quantum systems.

•Controlled-X (CNOT) gate: The most well-know two-qubit gate is the CNOT gate.

This gate performs a conditional negation of the target qubit. To be more precise, it performs

a NOT operation on the target qubit only if the control qubit is in the state |1〉. The matrix

representing the CNOT gate is

CNOT ≡



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (1.10)

Hence, this gate is analogous to the XOR operation in classical computation. The CNOT

gate can be decomposed as a sequence of a CZ gate and two Hadamard gates, i.e., (I ⊗

H)CZ (I ⊗H) (see section 5.3.2 for more information).

1.3 Entanglement

Entanglement is a form of non-classical correlation between two or more particles that could

be potentially distantly located. A system composed of two or more subsystems is in an

entangled state if its state can not be written as a tensor product of the states of the

individual subsystems (or for mixed states, a convex combination of product states).

A pure bi-partite state |ψ〉A,B, for example, is not entangled if it is separable as follows

|ψ〉A,B = |ψ〉A ⊗ |ψ〉B . (1.11)

In a more general case, a mixed bi-partite state which is represented by a density operator

ρA,B (i.e., a matrix that describes a system’s statistical state), is separable if it can be written
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as

ρA,B =
∑
i

pi ρ
(i)
A ⊗ ρ

(i)
B , (1.12)

where
∑

i pi = 1 and pi is a probability distribution.

A possible state of two qubits could be in any linear combination of basis states, |00〉, |10〉,

|01〉 and |11〉. As an example, consider a bi-partite entangled state 1/
√

2 ( |0〉1|1〉2 + |1〉1|0〉2 )

where the subscript 1 (2) represent the first (second) qubit. Obviously, one cannot write this

state in terms of the individual qubit states. Here, either the first qubit is in the state |0〉1

and the second is in the state |1〉2 or the second qubit is in the sate |0〉2 and the first is

in the state |1〉1. If one measures the first qubit to be in the state |1〉1, the state of the

second qubit is instantaneously projected into the state |0〉2. However, until the moment of

measuring, the second qubit could take any of the states |0〉2 or |1〉2 with equal probabilities

|1/
√

2|2 = 1/2.

Therefore, entanglement prohibits the description of each subsystem as an individual

entity. Instead, it leads to a quantum correlation between the outcomes of experiments

that can be performed on subsystems individually. In section 3.3.1, we study a method to

generate entanglement between photon-ion and ion-ion pairs in detail.

1.4 Bell State Measurement

In bi-partite systems, the maximally entangled states are commonly known as Bell states

[9]:

|ψ±〉 =
1√
2

(|01〉 ± |10〉),

|φ±〉 =
1√
2

(|00〉 ± |11〉).
(1.13)

These four states form an orthonormal basis (i.e., unit vectors that are orthogonal to each

other) for the two-qubit state space. A measurement in this basis, called a Bell state mea-

surement (BSM), projects the state of the two qubits into one of the Bell states. Hence, it
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is also referred to as an entangling measurement. The most common way to do a partial

Bell state measurement is by employing a beam splitter (BS) with two input and two output

ports and a measurement device at each output port. The measurement devices should be

able to identify two orthogonal modes of the degree of freedom that is used to encode the

qubits. Two indistinguishable (in all except the chosen degree of freedom for qubit encoding)

photons that have never interacted are directed into the input ports of a BS and detected

by single-photon detectors. The projection of the state of photons into one of the Bell states

will then happen due to the two-photon interference principle.

For example, consider that input spatial modes of the BS are labelled as 1 and 2, and

output modes are 3 and 4. After undergoing the BS transformation, the Bell states become

|ψ+〉1,2 =
1√
2

(|01〉1,2 + |10〉1,2) =⇒ i√
2

(|01〉3,3 + |10〉4,4)

|ψ−〉1,2 =
1√
2

(|01〉1,2 − |10〉1,2) =⇒ 1√
2

(|01〉3,4 − |10〉3,4)

|φ±〉1,2 =
1√
2

(|00〉1,2 ± |11〉1,2) =⇒ i

2
(|00〉3,3 + |00〉4,4 ± |11〉3,3 ± |11〉4,4).

(1.14)

Therefore, simultaneous detection of photons in orthogonal state |0〉 and |1〉 in different out-

put ports of the beam-splitter corresponds to a projection into the state |ψ−〉. On the other

hand, the coincidence of photons in orthogonal states, but the same output port corresponds

to a projection into the state |ψ+〉. It is obvious that this setup cannot distinguish other

two Bell states |φ±〉 from each other. However, they are still distinguishable from the states

|ψ±〉. Since only half of the four Bell states are identified by measurement outcomes, the

maximum success rate of this scheme is 50% [11].

Bell state measurements perform a key role in many quantum communication protocols

such as quantum teleportation, entanglement swapping and quantum repeaters, as discussed

in the next sections.
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1.5 No-cloning theorem

Although in classical information the possibility of copying is an essential feature, the no-

cloning theorem states that it is impossible to copy an arbitrary unknown quantum state

perfectly [12]. It should be noted that entanglement generation does not violate the no-

cloning theorem as cloning refers to the generation of the separable and definite quantum

states, whereas entangled systems do not have well-defined states individually. To under-

stand the no-cloning theorem, assume that we want to make a copy of the quantum state

|ψ〉 starting from the quantum state |0〉 using a cloning machine with a unitary operation

Û :

Û (|ψ〉 ⊗ |0〉) = |ψ〉 ⊗ |ψ〉 . (1.15)

Similarly, we can demand that for another quantum state |φ〉 which is orthogonal to the state

|ψ〉 (i.e.,〈φ|ψ〉 = 0) we have Û (|φ〉 ⊗ |0〉) = |φ〉 ⊗ |φ〉. Now consider an arbitrary unknown

quantum state as a state we want to make a copy of. In this case for a perfect copier we

would need to have

Û ((α |ψ〉+ β |φ〉)⊗ |0〉) = (α |ψ〉+ β |φ〉)⊗ (α |ψ〉+ β |φ〉) . (1.16)

If we expand the right hand side of the above equation and multiply it once by 〈ψ| 〈ψ| and

once by 〈φ| 〈φ|, knowing that 〈φ|φ〉 = 〈ψ|ψ〉 = 1, we get α2 = α and β2 = β, respectively.

Using these results, one can simplify Eq.1.16 as:

αβ |ψ〉 ⊗ |φ〉+ βα |φ〉 ⊗ |ψ〉 = 0 (1.17)

Multiplying Eq.1.17 by 〈ψ| 〈φ| then, leads to αβ = 0, which is satisfied only if α = 0 or

β = 0, which clearly is not the case for an arbitrary quantum state. Although the no-cloning

theorem forbids the perfect copying of an unknown quantum state, it is still possible to

approximately clone the state using a universal quantum-cloning machine (see Ref [13] and
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references therein).

The no-cloning theorem has important consequences: it is essential for the quantum

cryptography security as it does not let eavesdroppers make copies of transmitted quantum

states in the quantum key distribution protocols [3, 13]. Besides, this theorem also ensures

the impossibility of faster-than-light communication in quantum mechanics [14]. To under-

stand this, assume that quantum states could be cloned. Then, consider two parties (i.e.,

Alice and Bob) that are distantly located, sharing a maximally entangled state (e.g., |φ+〉).

Alice and Bob have agreed on a way of sending bits to each other: if Alice wishes to transmit

a ’0’, she does not do any measurements on her qubit. Otherwise (i.e, to transfer ’1’), she

measures her qubit in the Z basis (see Sec.1.2.1), which in turn projects the state of Bob’s

qubit into either |0〉 or |1〉 states. Therefore, if Bob makes many copies of his qubit state and

measures them all in Z basis, he will see completely random measurement outcomes if Alice

has transmitted ’0’. On the other hand, he gets the same result for all measurements if Alice

has transmitted ’1’. This would allow Alice and Bob to transfer classical bits over potentially

long distances without any communication, violating Einstein’s theory of relativity.

1.6 Quantum teleportation

It is very easy to determine the state of an unknown classical bit, as it can be either ’0’

or ’1’. On the other hand, as shown in Eq.1.1, the state of an unknown qubit could be in

any superposition state that cannot be uniquely determined by any quantum measurement.

However, one can use quantum teleportation to transfer an unknown quantum state to

a spatially separated location without the carrier’s transmission [2]. Consider that |p〉 =

α |0〉 + β |1〉 is the state of a photon that we want to teleport. To perform this process,

we share a maximally entangled state of two photons between the sender (e.g., Alice) and

receiver (e.g., Bob), as shown in Fig.1.2. In this case, the original state of the three photons

10



p a b

Alice Bob

BSM

Figure 1.2: An example of a quantum teleportation scheme to teleport an unknown state
α |0〉 + β |1〉 of the photon ’p’ to Bob. Here we assume the state |φ+〉 remains entangled,
meaning that the transportation is free from decoherence.

is

|ψ〉abp = |φ+〉ab ⊗ |p〉p =
1√
2

(|00〉ab + |11〉ab)⊗ (α |0〉p + β |1〉p), (1.18)

where |φ+〉ab is the state of the shared entangled photon pair between Alice and Bob. Using

Eq.1.13, one can re-write the above equation as follows

|ψ〉abp =
1

2
( |φ+〉ap ⊗ (α |0〉b + β |1〉b)+

|φ−〉ap ⊗ (α |0〉b − β |1〉b)+

|ψ+〉ap ⊗ (β |0〉b + α |1〉b)+

|ψ−〉ap ⊗ (−β |0〉b + α |1〉b) ).

(1.19)

To transfer the state of photon ’p’ into the photon ’b’, Alice performs a BSM on her two

photons (i.e., ’a, and ’p’). Depending on the result of the Bell state measurement, the state

of Bob’s photon collapses into one of the states shown in Eq.1.19. As an example, if the

resulting Bell state is |ψ+〉ap, Bob’s photon state collapses (β |0〉b + α |1〉b). Now, all Alice

needs to do is inform Bob about the BSM results using classical communication. Then, Bob

can perform an appropriate unitary transformation (here the spin-flip gate X) to recover

the original state. Note that, since classical communication is an essential ingredient of this

protocol, one cannot use entanglement teleportation to send messages faster than light.
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Figure 1.3: Distributing entanglement by performing entanglement swapping. Initially, there
are two entangled pairs (a,b) and (c,d). Performing a BSM on photons ’b’ and ’c’ teleports
the state of the photon ’b’ to ’d’ and ’c’ to ’a’ and leaves photons ’a’ and ’d’ in an entangled
state.

1.7 Entanglement swapping

Entanglement swapping is very similar to quantum teleportation except that the qubit we

aim to teleport is now part of an entangled state [15]. This process, which is also known

as teleportation of entanglement, requires two pairs of entangled particles like photons (a,b)

and (c,d). The idea is to interfere one member of each pair (i.e., ‘b’ and ‘c’) to perform a

BSM so that the other members (i.e., ‘a’ and ‘d’) are projected into an entangled state, as

shown in Fig. 1.3.

As an example, we consider the original state of the four photons as

|ψ〉abcd =
1√
2

(|00〉ab + |11〉ab)⊗
1√
2

(|00〉cd + |11〉cd), (1.20)

which is equivalent to

|ψ〉abp =
1

2

(
|φ+〉ad ⊗ |φ

+〉bc + |φ−〉ad ⊗ |φ
−〉bc + |ψ+〉ad ⊗ |ψ

+〉bc + |ψ−〉ad ⊗ |ψ
−〉bc

)
.

(1.21)

Therefore, after Bell state measurement, if the state of photons ‘b’ and ‘c’ is projected, for

instance, into |ψ−〉bc, the resulting entangled state between ‘a’ and ‘d’ would be |ψ−〉ad.
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Figure 1.4: Quantum repeaters aim to create a pair of entangled quantum systems between
two distant locations. To generate this pair, first, we create and store entanglement between
shorter distance pairs over elementary links. Then, we swap entanglement between neigh-
boring nodes. As a result, we have an entangled pair between the outer nodes. By repeating
the swapping process, one can distribute entanglement over the entire distance.

1.8 Quantum repeaters

The maximum distance over which one can transmit photons is limited by the attenuation of

the transmission channel. A convenient way in both classical and quantum communication

is to distribute photons using optical fibers. The attenuation length of the available optical

fibers in the telecommunication wavelengths ( between 1.530 and 1.565 µm) is about Latt =

22 km (corresponding to a loss of 0.2 dB/km). As a result, the transmission loss, which

grows exponentially with distance, becomes very significant over large distances. To give

an example of the impact of such loss, consider that for a single-photon source with a very

high repetition rate of 10 GHz, the photon transmission rate over 1000 km would be 10−10,

which corresponds to 300 years. Classical communication overcomes this limitation using

amplifiers that compensate for the loss by copying and regenerating the original signal. In

quantum communication, however, due to the no-cloning theorem, it is impossible to make

an exact copy or reproduce an unknown quantum state. Therefore, using amplifiers for

quantum communication add too much noise to the amplified signal and eventually destroy

the coherence of the quantum states [16] (see also chapter 7 of Ref [17]). Instead, quantum

communication can use quantum repeaters based on entanglement swapping [7]. The idea
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of a quantum repeater is to divide the total desired distance L into ’m’ sub-links (refer

to as elementary links) of length L0 = L/m. Then, entanglement needs to be established

between the ends of each elementary link individually. The successful realization of remote

entanglement can be announced by a heralding signal after a photon detection event. i.e.,

“click”. Most of the entanglement generation protocols are probabilistic, meaning that it

may not be possible to generate entanglement over all elementary links at the same time.

However, after generating entanglement over an elementary link, one can store it using

quantum memories until entanglement is established in neighboring links as well. Once

entanglement is generated over neighboring links, it is distributed via entanglement swapping

by performing, for example, Bell state measurement between adjacent quantum memories.

Using fiber-based quantum repeaters, it should be possible to distribute entanglement

up to a few thousand kilometer range. For global distances, however, we may require quan-

tum networks that incorporate quantum satellite, i.e., low-earth orbit satellites (alone or in

combination with quantum repeaters) or geostationary satellites.

1.9 Quantum memory

Many approaches to designing quantum repeaters are based on linear optics and atomic

ensembles as quantum memories [18, 19]. These schemes require the collective excitation

of atomic ensembles. Hence, it is relatively easy to control the coupling between memory

and photons. However, when using linear optics, due to its intrinsic limitation (see Sec.1.4),

entanglement distribution rates of these protocols are relatively low. On the other hand,

it is possible to overcome this limitation using single-emitter-based quantum repeaters and

perform entanglement swapping deterministically (see Chapters 3 and 5).

Over the last few years, several experimental groups have addressed single rare-earth

ions [20, 21, 22, 23], making it possible to envision a scalable quantum repeater scheme

using them. Therefore, in this thesis, we focus on the quantum repeater protocols based on

14



single emitters and, more specifically, individual rare-earth ions.

•Storage time: Within the main requirements of a quantum memory is storing en-

tanglement for a certain amount of time (referred to as storage time). In principle, in the

context of quantum communication, longer storage time will increase the maximum trans-

mission distance. In this thesis, we encode qubit states into the ground state energy levels of

ions. Therefore, the spin coherence time defines the storage time of the ion (see also sections

3.3 and 5.3 for more information).

In chapter 5, we discuss a repeater protocol that uses two species of ions, one as a commu-

nication qubit to generate entanglement over elementary links, and one as a memory qubit

to store entanglement. To generate entanglement between remote ions, we first generate

entanglement between each ion and a spontaneously-emitted photon. Then, we perform a

Bell state measurement on the emitted photons in a station located half-way between the

ions (to make the scheme more robust against some errors such as detector and photon loss

we repeat this process twice [24]). It means that the communication qubit’s storage time

should be at least twice the time it takes for the photon to travel to the middle station

plus a classical signal to go back the same distance to inform us about the result of the

measurement. On the other hand, after generating entanglement over an elementary link,

the quantum memory should be able to store entanglement until it is also created across

the adjacent link (in section 3.4 we will discuss this waiting time in detail). Later, in Chap-

ter 5, we use a single species of ions (rather than a doubly doped crystal) to design our

second repeater protocol. Therefore, in this case the ion’s coherence time should be long

enough to cover the entanglement generation and waiting times required before performing

entanglement swapping.

•Fidelity and efficiency: In quantum communication, it is also crucial for quantum

memories to allow the implementation of entanglement swapping with a high fidelity and

efficiency. In the context of entanglement swapping between two quantum memories, for ex-

ample, efficiency is the success probability of performing it (how often it succeeds). Therefore,
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the efficiency or the scheme’s repeatability directly affects the entanglement distribution rate

of a repeater protocol. Fidelity, on the other hand, shows how close the imperfect final state

is to the ideal state after performing a Bell state measurement or any other quantum opera-

tions. It is, therefore, a measure of how well a quantum state is maintained. In section 4.6.1,

we discuss the fidelities of three different schemes to implement a two-qubit gate, which

could be used to perform entanglement swapping between two quantum memories.
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Chapter 2

Physical system

Both quantum repeater protocols described in this thesis rely on the use of rare-earth (RE)

ions. Therefore, in this chapter, we explain the main features of rare-earth ions (including

erbium and europium) that are important for the development of our proposed quantum

repeaters.

2.1 Rare-earth ions

The rare-earth elements (also known as lanthanide series) are 15 metallic elements with

atomic numbers between 57 (lanthanum) to 71 (lutetium). The electron configuration of

these elements is [Kr] 4d10 5s2 5p6 4fn 5d1 6s2 where n = 0, 2, · · · , 14. Rare-earth ions doped

into crystals usually lose their three outer electrons (i.e. the 5d and two 6s electrons) and

occur as triple-positive ions. In these ions, the 4f shell is to some extent shielded from the

crystal environment by the outer 5s and 5p shells which have larger radial distributions. As

a result, even when doped into crystals, these ions keep many of the optical properties of

free ions, e.g., they have a weak interaction with the environment. Therefore, the 4f − 4f

transitions are less subject to the decoherence at low-temperature [25].

When an ion is doped into a crystal, the electrostatic crystal field splits its energy states

depending on the number of 4f electrons and the crystal symmetry. Hence, RE ions divide
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into two groups; ions with an odd number of 4f electrons (also called Kramers ions) and

ions with an even number of 4f electrons ( non-Kramers ions) [26]. The magnetic properties

of Kramers and non-Kramers ions are different. Because of the unpaired electron, Kramers

ions tend to have significant magnetic moments on the order of the Bohr magneton µB. As a

result, they are more susceptible to interact with the environment, e.g., through the magnetic

dipole-dipole interaction. Ions belonging to this group are Er3+, Yb3+, Nd3+, Sm3+, Dy3+

and Ce3+. On the other hand, weaker magnetic interactions in non-Kramers ions result

in slower spin-relaxation rates and longer coherence times in these ions compared to the

Kramers ions. Eu3+, Pr3+, Tm3+, Pm3+, Tb3+ and Ho3+ belong to this category.

In free ions, the energy eigenstates have a 2J + 1 fold degeneracy, where J is the total

angular momentum. However, when the ion is doped into a crystal, depending on the crystal

symmetry and the number of 4f electrons, the crystal field splits energy levels with the same

J but different mj. Kramers ions with an unpaired electron can be split into at most J+1/2

energy levels (so-called Kramers doublets). However, for non-Kramers ions, the crystal field

totally removes the J degeneracy and split it into 2J + 1 level.

2.1.1 Homogeneous broadening

The homogeneous linewidth, Γh, is a measure of the intrinsic spectral linewidth for an indi-

vidual ion, i.e., the frequency interval in which an individual ion absorbs or emits radiation.

The homogeneous linewidth is connected to the coherence lifetime (also known as optical

phase memory), T2 as:

Γh =
1

πT2

. (2.1)

The coherence time T2 is the time in which a quantum state keeps its phase. The coherence

time can be at most twice the population lifetime T1. The latter is the average time for

an ion in an excited state to decay into a lower-lying state. The homogeneous linewidth is

therefore bounded by the excited state lifetime T1 of the relevant transition (Γh ≥ 1/2πT1).
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In certain ion-host combinations where all other dephasing processes are minimized, it is

possible to approach this ultimate limit. For instance, for erbium and europium ions doped

into yttrium orthosilicate crystal, the homogeneous linewidth can reach the order of Hertz

[27, 28, 29].

In general the main processes, which could lead to the homogeneous line broadening,

are interactions between the dopant ions [30, 31], electron and nuclear spin fluctuations of

the host ions, and lattice phonons [32]. Interaction between rare-earth ions with each other

in the host material can be suppressed by increasing the average distance between the ions

through the spin ensemble dilution [33]. Choosing host materials with small or zero nuclear

magnetic moments, on the other hand, can minimize the fluctuating field caused by flipping

of nuclear spins of neighboring atoms [34]. Besides, applying a magnetic field is also able

to decrease spin flipping around the ion, for example, through the frozen-core (see Sec 3.5)

[35, 36]. Finally, density of lattice phonons can be reduced by decreasing the temperature

to a few Kelvin or less [33].

Information on the homogeneous linewidth can be obtained from the decay of the two-

pulse photon echo. In this method, using the first pulse (which is ideally a π/2 pulse), we

create a coherent superposition of the ground and excited states. Following the first pulse,

the different ions get out of phase as ions have a slightly different resonant frequency (see

next section for more information). After a time t2, a second pulse (which is ideally a π

pulse) is applied to reverse all phases. Then, the phase of each ion continues to evolve

until at a time 2 t2, when all ions are in phase again, and the photon echo is produced. By

measuring the echo intensity as a function of pulse delay, one can extract information about

the coherence time T2, and therefore the homogeneous linewidth.

2.1.2 Inhomogeneous broadening

Rare-earth ions feel slightly different crystal fields at different positions of a host crystal.

This spatial dependency of the crystal field usually happens because of the manufacturing
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Figure 2.1: Inhomogeneous broadening. a. Ions in the host crystal experience different local
environments. b. Number of ions with respect to the optical transition frequencies of ions.
The sum of the homogeneous broadening of individual ions, Γh, forms the inhomogeneously
broadened absorption line Γih. This figure is reproduced from Ref.[37].

imperfections, the random distribution of the dopants, and also the different size of the doped

ion compared to the host ion it is replacing in the crystal. Hence, the optical transition

frequencies of individual ions are also slightly different (see Fig. 2.1). This variation in the

transition frequencies results in the inhomogeneous broadening of an absorption line. The

width of the total frequency interval in which an ensemble of ions can collectively absorb

or emit radiation is called inhomogeneous linewidth, Γih. The inhomogeneous linewidth

depends strongly on the host crystal, and up to the first order is independent of temperature.

In general, the inhomogeneous broadening increases by increasing the dopant concentration.

The number of addressable frequency channels is given by the ratio Γih/Γh. The rate is

especially important as it determines the number of available spectral modes that can be

used for information storage (see Sec.3.4 for more information).

2.1.3 Er3+:YSO

Triple-positive erbium ions have eleven electrons in their 4f shell with the ground state

4I15/2 and the lowest excited state of 4I13/2. Therefore, these states have a 16 (corresponding
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Figure 2.2: Ground state energy levels of erbium ions in a host crystal. The optical transition
frequency of this ion is in the telecom wavelengths, where absorption loss in optical fibres is
minimum. This figure is reproduced from Ref.[38].

to J = 15/2) and 14 (corresponding to J = 13/2) fold degeneracy, respectively. The host

crystal we focus on in this thesis is yttrium orthosilicate Y2SiO5 (YSO) because of the small

magnetic moments of its constituents (see section 3.5 for more information). When doped

into the YSO crystal, Er ions replace yttrium (Y3+) ions of the host. The crystal field splits

the degeneracy of the energy levels and form eight doublets in the ground and seven doublets

in the excited states. At low temperatures, only the lowest doublet of the ground state is

populated. This doublet is described with an effective spin Seff = 1/2, which is a fictitious

angular momentum. In the presence of an external magnetic field, the Zeeman splitting

happens, and each Kramers doublets splits into two levels. Figure 2.2 shows the ground

state doublets and Zeeman splitting of erbium ions.

167Er3+ is the only stable isotope of erbium with a non-zero nuclear spin I = 7/2. For

this isotope, due to hyperfine and quadrupole (i.e., second-order hyperfine) interactions with

the crystal field [25], the electronic ground state doublets split further into 16 hyperfine

sub-levels each with nuclear magnetic numbers mI = −7/2 · · · 7/2, as shown in Fig.2.2. This

splitting happens even in the absence of an external magnetic field due to the low symmetry

of the crystal.

21



Free Ion Crystal field Quadrupole 
Splitting

Zeeman 
splitting

MHZ
580 nm

Figure 2.3: Ground state energy levels of europium ion doped a crystal.

Erbium is an attractive ion because of its optical transition frequency at the optimal

wavelength for telecommunication fibers, i.e., the separation between the lowest doublets in

the ground state and the lowest doublet of the excited state corresponds to a wavelength of

≈ 1536 nm [39].

2.1.4 Eu3+:YSO

Europium is a non-Kramer rare-earth ion that has two isotopes, 151Eu and 153Eu, both with

a I = 5/2 nuclear spin. Triple-positive europium ions have 6 electrons in their 4f shell.

When doped into the YSO crystal, this ion also substitutes for Y3+ ions of the host. A free

europium ion has a ground state energy level 7F0. Therefore, after doping into a crystal,

the crystal field will not split the ground state further. At zero external magnetic field,

however, nuclear electric quadruple interactions split the crystal field singlets into three

non-degenerate hyperfine levels in both of the ground and excited states. When an external

magnetic field is imposed on the ion-doped crystal, doubly degenerate hyperfine energy levels

split further into nuclear Zeeman levels [25]. The ground state energy levels of the europium

ion are shown in Fig. 2.3.

Europium ions are known for their long coherence and relaxation times between the
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hyperfine levels. For example, when doped into the YSO crystal, the coherence time of this

ion is measured to be six hours, and its relaxation time could be several days [40, 33]. Hence,

this ion is an excellent candidate for storage applications. In section 3.3.2, we explain how

to utilize europium ions as memory qubits to store entanglement.
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Chapter 3

Paper 1: Quantum repeaters with

individual rare-earth ions at

telecommunication wavelengths

3.1 Preface

Global quantum networks will enable many applications from secure quantum communi-

cation to quantum internet in the long term. Here we propose an approach to quantum

repeaters architecture as an essential ingredient of a future quantum network combining

individual erbium and europium ions, which serve as spin-photon interfaces and long-term

memories, respectively.

This work was done in collaboration with several co-authors. I contributed to this publi-

cation by proposing the quantum repeater scheme and performing the entanglement mapping

and repeater rate calculations. I also wrote the first draft of the manuscript.
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Abstract

We present a quantum repeater scheme that is based on individual erbium and europium

ions. erbium ions are attractive because they emit photons at telecommunication wavelength,

while europium ions offer exceptional spin coherence for long-term storage. Entanglement

between distant erbium ions is created by photon detection. The photon emission rate of

each erbium ion is enhanced by a microcavity with high Purcell factor, as has recently been

demonstrated. Entanglement is then transferred to nearby europium ions for storage. Gate

operations between nearby ions are performed using dynamically controlled electric-dipole

coupling. These gate operations allow entanglement swapping to be employed in order to

extend the distance over which entanglement is distributed. The deterministic character of

the gate operations allows improved entanglement distribution rates in comparison to atomic

ensemble-based protocols. We also propose an approach that utilizes multiplexing in order

to enhance the entanglement distribution rate.
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3.2 Introduction

Entanglement is a key requirement for many applications of quantum science. These in-

clude, for example, quantum key distribution [41], global clock networks [42], long-baseline

telescopes [4], and the quantum internet [5, 6]. However, due to transmission loss the di-

rect transmission of entanglement over distances of more than several hundred kilometers is

practically impossible using current technology. The use of a quantum repeater has been sug-

gested to reduce (or eliminate) the impact of loss in order to establish entanglement between

distant locations. [7]. In many quantum repeater schemes, entanglement is first distributed

between two locations that are separated by a short distance, referred to as an elemen-

tary link. Then, the range of entanglement is extended to successively longer distances

by performing entanglement swapping operations between the entangled states that span

each elementary link. Due to the availability and diversity of component systems and the

strong light-matter coupling offered by atomic ensembles, many quantum repeater proposals

use sources of entanglement, ensemble-based quantum memories, and linear optics-based

entanglement swapping operations [18]. However, the success probability of linear optics-

based entanglement swapping (without auxiliary photons) cannot exceed 50%, which has a

compounding effect for more complex quantum networks. The use of auxiliary photons to

improve the entanglement swapping probability is possible [43, 44], but adds complexity and

compounds errors, thereby restricting their use in practice. Single-emitter-based quantum

repeaters, on the other hand, offer the possibility to outperform ensemble-based repeaters by

using deterministic swapping operations [45]. Impressive demonstrations of certain parts of

a single-emitter quantum repeater schemes have been performed using atom-cavity systems

[46, 47], color centers in diamond [24, 48], trapped ions [49, 50], donor qubits in silicon [51],

as well as quantum dots [52, 53].

Over the years, crystals doped with rare earth (RE) ions have attracted considerable

attention for their use in electromagnetic signal processing applications that range from

quantum memories [54, 55] to biological imaging [56]. Narrow optical and spin homogeneous
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linewidths, their convenient wavelengths as well as their ability to be doped into solid-state

crystals are some of the most desired properties of RE ions. Compared to nitrogen-vacancy

centers in diamond [57] and quantum dots [58], they also exhibit smaller spectral diffusion

[59, 60, 61], and have a reduced sensitivity to phonons.

Among the different RE ions, Er3+ is attractive due to its well-known optical transition

(around 1.5 µm) in the conventional telecommunication wavelength window, in which ab-

sorption losses in optical fibers are minimal. Another unique aspect of certain RE ions is the

presence of hyperfine levels that feature long lifetimes, which allows for long-term quantum

state storage [62, 63, 64, 65]. In particular, a coherence lifetime of six hours was reported in

a europium-doped yttrium orthosilicate crystal (151Eu3+:Y2SiO5) [40]. Motivated by these

properties, we propose and analyze a quantum repeater protocol that is based on individual

RE ions in which Er3+ ions are used to establish entanglement over elementary links and

151Eu3+ ions are employed to store this entanglement.

One disadvantage of RE ions is their weak light-matter coupling, which has mostly pre-

cluded their use as single quantum emitters. However, optical detection and addressing of

single RE ions has recently been shown by multiple groups [22, 66, 21, 23, 20]. Moreover,

very recently Dibos et al. [66] demonstrated an enhancement in the emission rate of a single

Er3+ ion in Y2SiO5 by a factor of more that 300 using a silicon nanophotonic cavity. Strong

coupling of ensembles of Nd ions was previously demonstrated using nanophotonic cavities

fabricated from Y2SiO5 [22] and yttrium orthovanadate [67] hosts. In light of these results,

for our scheme we propose to couple single RE ions to a high-finesse cavity in order to en-

hance the light-matter coupling and thus to increase the collection efficiency as well as the

indistinguishability of the emitted single photons.

The paper is organized as follows. In Sec. 3.3 we introduce our proposal and discuss the

required components as well as the underlying principles. The entanglement distribution

rates and possible implementations are discussed in Secs. 3.4 and 3.5. We conclude and

provide an outlook in Sec. 3.6.
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3.3 Quantum repeater protocol

The goal of our repeater scheme is to generate entanglement between nodes that are separated

by a long distance by swapping entanglement that is established between nodes that are

separated by smaller distances. Each node consists of a Y2SiO5 crystal containing an Er3+

ion that features an enhanced emission rate of its telecommunication transition due to a

high-finesse cavity, and a nearby 151Eu3+ ion that acts as a quantum memory due to its long

spin coherence lifetime (note that, in principle, our proposed scheme is equivalent to use an

external deterministic photon source in combination with single-particle quantum memories

that can absorb and re-emit photons [68, 69]). Entanglement is then transferred, or gates

are performed, between nearby atoms using electric dipole-dipole coupling [70, 71]. Our

proposal has some similarity to a scheme that involves the excitation of electron spins in

nitrogen-vacancy centers to generate entanglement between nodes, nuclear spins of carbon

atoms for storage, and gates that are performed using a magnetic dipole-dipole coupling [72].

We emphasize that our (electric dipole) approach to implementing gates is quite different

than previous approaches, as are many of the physical properties of the system (in addition

to the emission wavelength).

In the first step, entanglement between pairs of neighboring Er3+ ions is created (see

Fig.3.1 (a)) which illustrates this step for the i-th and i+1-th ions) by first creating lo-

cal entanglement between the spin state of each ion and a spontaneously-emitted single

photon. Then, by performing a joint Bell-state measurement (BSM) on photons that are

spontaneously-emitted by neighboring Er3+ ions, the spin state of these ions is projected onto

a maximally-entangled state. This procedure is the same as that used to create entanglement

between two remote nitrogen-vacancy centers in diamond [73, 24].

Next, the quantum state of each Er3+ ion is mapped to a nearby 151Eu3+ ion for storage

by exploiting a non-vanishing permanent electric dipole moment, a common feature of many

RE ions that are doped into solids. This mapping is achieved using a mutual electric dipole-

dipole interaction between close-lying Er3+ and 151Eu3+ ions. The small nuclear magnetic
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Figure 3.1: In each cavity, the blue and black dots represent individual 151Eu3+ and Er3+

ions, respectively. In order to distribute entanglement to the nodes that are situated at each
end of a long channel, first a) entanglement between two neighboring Er3+ ions is created
via the detection of two photons; b) the quantum state of each Er3+ ion is then mapped
to a nearby 151Eu3+ ion using an electric dipole interaction; c) using two-photon detection,
Er3+ ions are used again to establish entanglement between the other neighboring Er3+ ions.
Finally, we extend the entanglement distance by performing entanglement swapping using
an electric dipole interaction between nearby ions (red circle). d) Flow-chart that depicts
our scheme. e) Simplified energy level structure of Er3+ and 151Eu3+ ions in the presence
of an external magnetic field. The electronic Zeeman levels of Er3+, and nuclear hyperfine
levels of 151Eu3+, are split. We encode qubit states |↑〉 and |↓〉 in the ms = −1

2
and ms = 1

2(
mI = −3

2
and mI = 3

2

)
levels for the Er3+ (151Eu3+) ion, respectively.
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moment of 151Eu3+ results in a magnetic-dipole coupling that is orders of magnitude smaller

than the electric-dipole coupling, thus our scheme allows for much shorter gate durations in

comparison to those based on magnetic interactions [72]. Another advantage of the proposed

scheme is the ability to dynamically control the interaction optically by bringing the ion to

the excited state and back to the ground state. This allows for the realization of deterministic

two-qubit gate operations.

The mapping allows the Er3+ ions to be re-initialized so that new elementary links can be

created between them. Fig.3.1(c) illustrates this processes for the (i− 1)th and (i)th nodes.

Immediately after generating entanglement between (the other) neighboring Er3+ ions, the

entanglement distance is extended by performing entanglement swapping between each of

the closely-lying Er3+ and 151Eu3+ ions. As a result, the outer nodes becoming entangled.

Fig. 3.1 (d) depicts a flow chart of our scheme. Photon loss and errors might cause some

steps in the protocol to fail.

As will be discussed in Sec. II A–C, the generation of entanglement between Er3+ ions,

the mapping of entanglement to the 151Eu3+ ions, and the entanglement swapping steps, all

rely on the detection of single photons that are spontaneously emitted from the Er3+ ions.

However, the lifetime of the 4I15/2 ↔4I13/2 telecommunication transition of Er3+:Y2SiO5

is relatively long T1 = 11.4 ms [25] with radiative lifetime being even longer Trad = 54

ms [74], which necessitates the need for a high-finesse cavity to enhance the emission rate.

Nonetheless, the cavity will also significantly increase the probability of collecting the emitted

photons as compared to emission into free space. We emphasize that the repetition rate of

the protocol (i.e., the number of attempts of the protocol per unit time) is limited by the

communication time between distant nodes (assuming the initialization time of the ions is

negligible. See Sec.5.5 for more information), which means that there is no need for very

fast emission. Next we discuss each of the steps of the protocol in detail.
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3.3.1 Entanglement generation

Our scheme considers several remote cavities that each contain a single pair of close-lying

Er3+ and 151Eu3+ ions. Note that there may be other RE ions within each cavity, but we

assume that we can address a single such close-lying pair. See also section3.5 below. An

externally-applied magnetic field splits the degenerate electronic ground levels of Er3+ via

the Zeeman effect. We refer to the resultant ms = −1
2

and ms = 1
2

Zeeman levels as the

qubit states |↑〉 and |↓〉, respectively (see Fig. 3.1 (e)).

To generate entanglement between distant Er3+ ions that are separated by a long distance

L0, we follow the scheme of Barret and Kok [73, 24] (see also Fig. 3.1 (d)). First, each Er3+

ion is prepared in one of the qubit states (herems = −1
2
; denoted |↑〉). After this initialization

step, a π
2

microwave (MW) pulse rotates each Er3+ ion into a superposition of |↑〉 and |↓〉

states. The application of a brief laser pulse that is resonant with the |↑〉 ↔ |e2〉 transition,

followed by spontaneous emission, will entangle each qubit state with the emitted photon

number. That is, when the qubit state is |↑〉 (|↓〉) there will be 1 (0) emitted photon(s). The

spontaneously-emitted photons are then directed to a beam splitter located in between the

ions using optical fibers. A single-photon detection at one of the two beam splitter output

ports projects the Er3+ ions onto an entangled state.

A possible loss in the fiber can lead to a situation where both Er3+ ions emit a photon

but only one photon is detected while the other is lost. In this case, the ions are left in a

product state rather than an entangled state. To exclude this possibility, immediately after

the first excitation-emission step of each Er3+ ion, a π MW pulse inverts each qubit state.

Then a second excitation pulse is applied. The detection of two consecutive single photons

at the beam splitter will leave the qubits in an entangled state:

|ψ〉±Er =
1√
2

(|↑↓〉 ± |↓↑〉). (3.1)

Here the + (-) sign corresponds to the case in which the same (different) detector(s) received
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Figure 3.2: General pulse sequence of π-rotations to perform a controlled logic gate between
nearby Er3+ and 151Eu3+ ions. The numbers indicate the sequential time ordering of the
pulses. For this gate, the Er3+ spin state acts as the control qubit and the 151Eu3+ spin state
acts as the target. A π pulse excites the Er3+ ion if it is in the state |↑〉. When this occurs,
pulses 2, 3 and 4 are not resonant with the 151Eu3+ ion, leaving its state unaffected. Pulse
5 then brings the Er3+ ion back to its original state. On the other hand, when Er3+ is in
the state |↓〉, pulses 1 and 5 will be ineffective and hence it will remain in the ground state.
Instead pulses 2, 3 and 4 will now be resonant with the 151Eu3+ ion and (optically) swap its
spin-state

a photon.

3.3.2 Controlled logic

After successful entanglement of the two distant Er3+ ions we transfer this entanglement

to the neighboring 151Eu3+ ions for a long-term storage. Efficient entanglement mapping

between neighboring rare-earth ions can be employed by performing CNOT gate operations

and single qubit rotations and read-out. Here we first explain the underlying mechanism

and general scheme for how to implement a CNOT gate in our system, and in Sec.3.3.3 we

will discuss in more detail how to swap entanglement between the ions using this gate.

Due to a lack of site symmetry when doped into a crystal, a RE ion can have a permanent

electric dipole moment that is different depending on whether the ion is in its ground or

optically excited state. The difference in the permanent dipole moments affects the optical

transition frequency of other nearby RE ions via the Stark effect due to a modified local

electric field environment. It is possible to dynamically control the shift in the transition
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frequency of one ion by optically exciting its neighboring ion. Based on this interaction,

we can perform a controlled-NOT (CNOT) operation between nearby RE ions [75]. The

modification of the transition frequency ∆ν of a 151Eu3+ ion by an Er3+ ion due to the

mutual electric dipole-dipole interaction is given by [76]:

∆ν =
∆µEr∆µEu

4πεε0hr3
((µ̂Er ·µ̂Eu)− 3 (µ̂Er ·r̂) (µ̂Eu ·r̂)) , (3.2)

where r is the distance between the ions, and ∆µ is the change of the permanent electric

dipole moment of each ion, h is the Planck constant, ε0 is vacuum permittivity, and ε is the

dielectric constant (note that we assume the effect of the Stark shift on the qubit states is

negligible).

To perform a CNOT gate between the nearby Er (control) ion and Eu (target) ion, a

sequence of five π pulses is applied (see Fig.(3.2)). First a π pulse is applied to the Er3+

ion on resonance with the |↑〉 ↔ |e1〉 transition. From here, two cases must be considered:

either the state of the Er3+ ion is |↑〉 or it is |↓〉.

If the Er3+ ion is in state |↑〉, it will be excited by pulse 1. This changes the permanent

electric dipole moment of the Er3+ ion, and thus its local electric field. Consequently, the

transition frequency of the nearby 151Eu3+ ion will be shifted by ∆ν. For the case that

this frequency shift is large enough (that is, the 151Eu3+ ion is sufficiently close to the Er3+

ion), the 151Eu3+ ion will be unaffected by pulses 2, 3 and 4, thereby remaining in its initial

ground state (see Sec. 3.5.2 for more discussion). Finally, pulse 5 will bring Er3+ ion back

to its initial state. Hence, in this case, the pulse sequence does not modify the initial state

of the ion pair system.

On the other hand, if the Er3+ ion is initially in |↓〉, then pulses 1 and 5 will have no

effect on the Er3+ ion. Since the Er3+ ion will not be excited, optical pulses 2, 3 and 4 will

be resonant with the transitions of the 151Eu3+ ion, and the pulse sequence will optically flip

the two spin states of the 151Eu3+ ion.
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3.3.3 Entanglement mapping and distribution

Both the ground and excited states of 151Eu3+ have three doubly-degenerate nuclear hyperfine

levels. With the application of a magnetic field, each doublet
(
mI = ±1

2
,±3

2
,±5

2

)
will be

split. For our proposal, we denote the mI = −3
2

and 3
2

hyperfine levels [40] as the 151Eu3+ ion

qubit states, |↑〉 and |↓〉, respectively (see Fig. 3.1 (e)). To map the state of each 168Er3+ ion

onto a nearby europium ion, we first perform a CNOT gate between them. In our scheme,

the 151Eu3+ ion is initially prepared in one of the ground state levels (here |↑〉) using optical

pumping. In this special case where the initial state of the europium is fixed, pulse 4 does

not affect the system and can be neglected (i.e., we only need to transfer the population

from the state |↑〉 to |↓〉 using pulses 2 and 3 if the state of the erbium is |↓〉). This reduces

the total gate time and improves the state mapping fidelity (see Sec. 3.5.2).

After considering the phases that are acquired by performing the CNOT gate on the ions

in neighboring nodes (labeled here as 1 and 2 instead of (i) and (i + 1)), the final state is

|ψ〉±Er,Eu =
1√
2

(
|↑↓〉Er1,Er2

|↑↓〉Eu1,Eu2
± eiφ |↓↑〉Er1,Er2

|↓↑〉Eu1,Eu2

)
, (3.3)

where

φ = (ω↓,Er2 − ω↓,Er1)τ + (ωEu2 − ωEu1)τ2 + (ω↓,Eu2 − ω↓,Eu1)(τ3 + τ4)+

k↓Eu1xEu1 − k↓Eu2xEu2 ,

and x is the distance the photon travels between each 151Eu3+ ion and the beam splitter,

k↓Eu =
ω↓,Eu

c
is the wavenumber, τj is the time elapsed after application of the jth pulse and

τ is the total time duration that is needed to perform a CNOT gate. Since these phases are

known, they can be compensated by applying local operations on the ions.

To conclude the mapping step, a π
2

microwave (MW) pulse is applied to rotate each Er3+

qubit. This is followed by a state measurement of both nearest-neighbor Er3+ ions, see also

Sec. IV below. This projects the 151Eu3+ ions onto an entangled state. Depending on the

outcome of these measurements, the entangled state between remote 151Eu3+ ions would be
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|ψ+〉 or |ψ−〉. For example, in the case that we begin with |ψ〉+Er (given in Eq. 3.1), after

performing the gate, MW rotation, and measurement, if both Er ions are found in the state

|↑〉, the entangled state between remote 151Eu3+ ions is 1√
2

(
|↑↓〉Eu1,Eu2

+ |↓↑〉Eu1,Eu2

)
.

Once entanglement is established in neighboring elementary links, we perform a joint

measurement on both ions at each intermediate node to distribute entanglement (see Fig.

3.1 (c)). In our scheme, it is possible to perform entanglement swapping deterministically

using the permanent electric dipole-dipole interaction.

To perform the desired entanglement swapping, first a CNOT gate is applied in which

Er3+ serves as the control qubit and 151Eu3+ as the target qubit (similarly as before). Here,

both ions are in a superposition state and so all 5 pulses of the CNOT gate sequence are

required. Then the Er3+ ion is measured in the diagonal (X) basis. Next, another CNOT

operation is performed but now the target and control qubits are exchanged. Finally the

Er3+ ion is measured in the logical (Z) basis. This ‘reverse’ CNOT gate is performed in order

to avoid directly measuring the spin state of 151Eu3+ ion optically (the optical lifetime of

151Eu3+ is longer than the Er3+ spin coherence lifetime). Fig.(3.2) shows the pulse sequence

needed to perform the first CNOT gate between the ions.

Based on the outcomes of the measurements on each Er3+ ion, the outer nodes will be

projected onto one of the four Bell states. To be more precise, when performing entanglement

swapping between Eri and Eui, if only one of the state measurements of Eri is |↑〉, the state

of Eri−1 and Eui+1 will project onto the |ψ+〉 or the |ψ−〉 Bell state. On the other hand, if

both measurements of Eri are |↑〉 or both |↓〉, the state will project onto the |φ+〉 or the |φ−〉

Bell state.

To verify or utilize the entanglement that is generated between the distant ions, a mea-

surement must be performed on the endpoint nodes. Our protocol results in an entangled

state of the Er3+ ion at the first node with the 151Eu3+ ion at the last node. A measurement

of the Er3+ ion can be performed by direct optical excitation. A measurement of the 151Eu3+

ion spin can be performed by using the nearby Er3+ as a readout ion. This is done by

35



mapping the 151Eu3+ state to Er3+ using gate operations (also see section 3.5.3 for further

details).

3.4 Entanglement generation rates and multiplexing

In our scheme, the success probability of generating an entangled state between two neigh-

boring Er3+ ions that are separated by a distance L0 is pt = 1
2
η2
t p

2η2
d, where ηt = e

− L0
2Latt

is the transmission probability of a photon through optical fiber and Latt ≈ 22 km (which

corresponds to a loss of 0.2 dB/km), ηd is the detection efficiency, and p is the success prob-

ability of emitting a single photon into a cavity mode. Similarly, the success probability of

mapping the state of an Er3+ ion onto a nearby 151Eu3+ ion is pm ≈ pηd, because it requires

one optical read-out of each Er3+ ion. Therefore, the average time to generate entanglement

in an elementary link and perform the state mapping steps is

〈T 〉L0 =
L0

c

(
1

ptp2
m

)
, (3.4)

where c = 2× 108 m
s

is the speed of light in fiber.

The average time that is required to distribute entanglement over two neighboring ele-

mentary links, which corresponds to a distance L = 2L0, can be estimated as follows. First,

entangled pairs of 151Eu3+ ions are generated over an elementary link and, once successful,

Er3+ ions are then generated in a neighboring elementary link. Thus, the probability of

establishing entanglement for both links is

p0 =

(
1

PA
+

1

PB

)−1

, (3.5)

where PA = pt and PB = ptp
2
m represent the success probability of generating entangle-

ment between Er3+ and 151Eu3+ ions, respectively. Then, entanglement is extended by

performing a BSM between the close-lying Er3+ and 151Eu3+ ions at the center node. The
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success probability for the entanglement swapping step is ps ≈ p2η2
d because it requires two

optically-induced spin read-outs of an Er3+ ion. Consequently, the average time to distribute

entanglement over a distance 2L0 is

〈T 〉2L0
=
L0

c

1

p0ps
. (3.6)

Accordingly, the average time to distribute an entangled pair over a distance L = 2nL0,

with n denoting the number of nesting levels, is [45, 18]:

〈T 〉L =

(
3

2

)n−1
L0

c

1

p0pns
. (3.7)

The factor 3/2 for each of the next nesting levels, which is a good approximation for the

exact result [18], can be understood in following way.

In contrast to the first nesting level, a successful entanglement distribution for higher

nesting levels does not require waiting for a success in one link before the establishment of

entanglement in another link can be attempted; rather, the establishment of entanglement

can be attempted in both links simultaneously. For example, if a goal is to distribute

entanglement over the distance 4L0, entanglement must be generated in two neighboring

links each of length 2L0 before entanglement swapping is performed. If the average waiting

time for a success in one link of length 2L0 is 〈T 〉2L0
, entanglement will be established in

one of two links after 〈T 〉2L0
/2. Then, after another 〈T 〉2L0

time duration, entanglement will

be established in the other link. Hence, the average time to establish entanglement in the

two neighboring links is 3 〈T 〉2L0
/2. The same arguments hold for the next nesting levels,

resulting in a factor
(

3
2

)n−1
for n nesting levels.

Multiplexing can be employed to significantly enhance the rate of entanglement distri-

bution. Referring to the encoding of several individual qubits, each into their own dis-

tinguishable modes, multiplexing has been utilized for some quantum repeater proposals

[18, 77, 78, 79]. As outlined in Fig. 3.3, we consider an array of m cavities in which each
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Figure 3.3: Our multiplexed scheme consists of 2n+1 nodes that span the total channel
distance L. Each node consists of an array of m cavities that emit photons which fea-
ture differing carrier frequencies. The carrier frequency of each photon is determined by a
frequency translation device. A coupling element (COUPLER) ensures that each photon
traverses a common channel to a Bell-state measurement station that consists of a beam
splitter, decoupling element (DECOUPLER), and 2m single photon detectors. This set-up
allows m entanglement generation protocols to be operated in parallel.

cavity emits a photon that features a distinguishable resonance frequency from the rest.

This can be accomplished using frequency translation (see Sec. IV for more details). Using

a coupler device, each photon is directed into a common fiber and is directed towards a

BSM station that is composed of similarly-designed decouplers and single-photon detectors.

Benefiting from the distribution of entanglement into m parallel modes, the probability that

at least one entangled state is distributed over the entire channel is 1− (1−Pt)m, which can

be made unity for a sufficiently high m. Here, Pt = (2/3)n−1p0p
n
s is the success probability

of distributing entanglement over a distance L using a qubit that is encoded into a single

mode. Further details of this set-up are described in Sec.3.5.4.

The entanglement distribution rate of our scheme is plotted as a function of distance for

n = 3 in Fig. 3.4 and compared to that employing the well-known DLCZ scheme [19], which

uses ensemble-based memories, as well as that using direct transmission with a single-photon

source which produces photons at 10 GHz. This 10 GHz photon rate is an optimistic rate

for the direct transmission of photons. The rate that we assume for a single photon source is

38



much faster than the rate for the proposed repeater because they have different limitations.

Even though the photon rate of our scheme (which depends on the cavity characteristics and

the optical lifetime of the Er3+ ion) is much lower, the time scale for the repeater is actually

determined by the communication time L0/c which is even longer. Note that the direct

transmission scheme can also be interpreted as the Pirandola bound [80] for a repetition rate

of 10/1.44=6.9 GHz. The performance of our protocol and the DLCZ scheme with m = 100

multiplexed channels is also shown Fig. 3.4. For more information on other approaches see

Ref. [18]. In this review paper, the multiplexed DLCZ outperformed the other repeater

protocols considered (see Fig. 18 of ref.[18]). As will be discussed in Sec. IV B, the use of

even more than m = 100 parallel spectral channels is possible.

Fig. 3.4 shows that our use of deterministic gates is advantageous for the rate. The

scaling of the DLCZ scheme with distance is slightly better than that of our scheme due to

the requirement of detecting only one photon for each elementary entanglement creation step

(rather than two photons for our scheme). However, this comes at the significant expense of

requiring phase stabilization for the long-distance fiber links.

3.5 Implementation

For our scheme, we consider ion beam-milled Y2SiO5 photonic crystal cavity systems that

have been weakly-doped with 168Er3+ and 151Eu3+ ions [81, 67, 82]. Co-doped crystals may

be grown from the melt [82], or individual RE ions may be implanted into single Y2SiO5

crystals [83]. After a milling step, the output of the cavity can be coupled to an optical

waveguide using, e.g., microscopy [84], bonding [85] or a pick-and-place technique [86], with

the latter having been used to heterogeneously interface InAs/InP quantum dots with Si

waveguides. Despite the lack of on-demand control of the position and relative orientation

of each ion [83], a suitable Er-Eu ion pair can be identified by performing laser-induced

fluorescence spectroscopy. This involves exciting each Er3+ (151Eu3+) ion with a laser and
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Figure 3.4: A comparison of the entanglement distribution rate for various schemes. Direct
transmission scheme using a 10 GHz single-photon source (E) is compared with original
DLCZ protocol (A) and our scheme (B) using 8 elementary links, each of length L0. Also
shown are the rates that correspond to the multiplexed versions of DLCZ (C) as well as
our scheme (D) with m = 100 using the same number of elementary links. We assume that
the detection efficiency and the success probability of emitting a single photon by an ion is
p = ηd = 0.9, and in the case of DLCZ, a storage efficiency of ηm = 0.9. The repetition rate
for each repeater protocol is set by the communication time L0/c.

measuring the spectral shift of the resultant fluorescence from other 151Eu3+ (Er3+) ions due

to the aforementioned electric-dipole coupling (see Sec. 3.3.3) [82]. Note that measurements

using a 0.02%Er:1%Eu:Y2SiO5 bulk crystal revealed the optical transition frequency of sets

of Er3+ ions that lie within approximately one nanometer from adjacent Eu3+ ions [82].

These results suggest that the transition frequencies of suitable Er-Eu pairs can be rapidly

distinguished from other spectator ions.

The magnetic field applied in the D1 − D2 plane at 135 degrees relative to the D1 axis

results in the decay of the excited Er3+ ion back into the initial spin state via spontaneous

emission with a probability of higher than 90%[87], and a Zeeman-level lifetime of about

130ms was measured for a magnetic field of 1.2 mT at 2.1 K temperature[87]. At large

external magnetic fields of 1 T or more and temperatures below 3 K, one-phonon direct

process is the dominant spin-relaxation mechanism and the temperature and magnetic field
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dependence of the relaxation rate could be approximated by [88]:

R(B) = R0 + αDg
3B5coth(

gµBB

2kT
) (3.8)

where αD is the anisotropic constant, µB is the Bohr magneton, and k is the Boltzmann

constant. The field independent contribution R0 can be attributed to cross-relaxations with

paramagnetic impurities in the crystal and hence depends strongly on the crystal purity.

Extrapolating from Refs [88, 87], the spin relaxation time would be about 40ms at 20mK

for an external magnetic field of 1T at the 135◦ in D1 − D2 plane. At this magnetic field,

however, the splitting of the Zeeman levels would be too large to address it with microwave

pulses and optical Raman pulses should be applied instead.

For an ensemble-doped Er3+:Y2SiO5 the spin coherence lifetime at mK temperatures and

external magnetic fields of few hundred mT can be as short as ∼ 7 µs [89]. However, for an

ensemble-doped Er3+:Y2SiO5 crystal spin flip-flop processes are one of the main sources of

decoherence, the spin coherence lifetime of a single Er3+ ion in Y2SiO5 is largely determined

by spin-spin magnetic dipole interactions. The magnetic moments of the constituent spins

of Y2SiO5 are small: −0.137µN , −0.5µN , and −1.89µN for 89Y, 29Si, and 17O respectively.

Compared to yttrium ions, 29Si and 17O have low isotopic natural abundances, so we assume

the contribution of these isotopes to be negligible and only consider the Er-Y interactions.

In a large enough magnetic field compared to the Er-Y coupling strength, the magnetic

moment of Er3+ will detune the closest-proximity Y ions from resonance with those further

away. This well-known effect referred to as the “frozen core” has been observed and results

in weaker decoherence of the Er3+ ion by nearby Y ions [90, 91, 35]. Hence, for a single

168Er3+ in Y2SiO5, the presence of a strong magnetic field (a few hundred milli-tesla up to

a few tesla) may increase the spin coherence lifetime into the milliseconds range. Note that,

further increasing the external field will increase the splitting between the Zeeman levels,

making the system more subject to photon assisted transitions (which in turn decreases both
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of the spin coherence time and lifetime of the ion). However, for the 167Er3+ (the only stable

isotope of the erbium with non-zero nuclear spin), increasing the external magnetic field will

increase the nuclear spin coherence time by freezing out the electron spin dynamics [92].

Therefore, one can use nuclear spin states of the 167Er3+ as qubit states with relatively high

coherence time (see chapter 5).

To further increase the spin coherence lifetime, dynamical decoupling immediately af-

ter the second optical excitation step is necessary. While this has not been demonstrated

in Er3+:Y2SiO5, it is a widely-employed method, and has been used to extend coherence

lifetimes in Ce-doped yttrium aluminum garnet [93] as well as nitrogen-vacancy centers [72].

Spin polarization of up to 90% in Er3+:Y2SiO5 has been realized by using stimulated

emission and spin-mixing methods [94]. The efficiency of spin polarization is determined by

a competition between decay of the ground-level population relative to the optical pumping

efficiency of the ion. Since the latter will be enhanced due to the cavity-induced decay rate,

we expect a near-unity Er3+-spin polarization for our scheme. Since the ground state lifetime

of 151Eu3+ is several hours, spin polarization can be achieved by performing continuous

optical pumping of all but one of the ground states.

In Y2SiO5, RE ions can occupy two crystallographically inequivalent sites with C1 sym-

metry. Due to this lack of symmetry, the orientation of the dipole moments and their

magnitudes, and hence their dipole-dipole interaction strengths, are unknown. Previous

measurements of the linear Stark shift of Er3+:Y2SiO5 [95] allow the calculation of the pro-

jection of the electric-dipole moment difference onto the direction of the externally applied

electric field to be approximately 0.84 × 10−31Cm [96]. The dipole moment difference for

151Eu3+:Y2SiO5 can be as high as ∆µEu = 0.81 × 10−31Cm [97], resulting in the shift of

the transition frequency of 10 and 0.01 MHz for rij = 1 and 10 nm, respectively. As a

comparison, the magnetic dipole-dipole interaction between Er3+ magnetic moment, which

can be as high as µEr = 14.65 µB [98], and 151Eu magnetic moment with its intrinsic value

of µEu = 3.42 µN [99] is much weaker and amounts to 363 and 0.363 kHz for rij = 1 and 10
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nm, respectively.

3.5.1 Cavity

The cavity serves three main purposes in this proposal. It improves the quantum efficiency,

enhances the single-photon indistinguishability, and increases the rate of Er3+ emission. To

achieve these benefits, the cavity must provide a significant Purcell enhancement to the

|e2〉 −→ |↑〉 transition of Er3+.

In the context of RE ions, Purcell factors of several hundred have been achieved [66, 22],

and up to 103 seems to be a reasonable goal [100]. The Purcell factor can be written:

P = (γ/γr)C, where 1/γ is the excited state lifetime, γr is the radiative decay rate, and C

is the cavity cooperativity. The cavity-enhanced quantum efficiency (probability of emitting

a photon into the cavity mode) is then given by: p = ηP/(1 + ηP ), where η = βγr/γ is

the Er3+ spin-conserving quantum efficiency, and β is the probability of an excited ion to

relax into the initial spin state via the spontaneous emission. For Er3+:Y2SiO5, β = 0.9,

γ = 2π × 14 Hz, and γr = 2π × 3 Hz [74], resulting in η = 0.19. For P = 100, a cavity

quantum efficiency of p = 0.95 is possible. Increasing the Purcell factor to P = 1000 allows

p = 0.995.

The single-photon indistinguishability is a metric that quantifies the quality of interfer-

ence between photons that originate from the same quantum emitter. Without a cavity, the

single-photon indistinguishabilty can be defined as I1 = T2/2T1 = γ/(γ + 2γ?) where γ? is

the optical pure dephasing rate [101] (i.e., the pure dephasing can degrade the coherence of

the emitted photons by the ion). The dephasing can be caused by processes that change the

optical transition energy on a timescale that is faster than the decay rate of the transition.

For an ensemble of 0.0015% Er3+:Y2SiO5 we have T1 = 11.4ms [25] and optical T2 is around

200µs at 1 T and a temperature of a few K [102]. This would imply I1 = 0.009 without a

cavity, which would require significant spectral filtering to achieve successful entanglement

generation. For a single-photon emitter inside a cavity, one can derive the degree of indistin-
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guishability of photons from the probability of two-photon interference in a Hong-Ou-Mandel

experiment as [101, 103]

I1 =

∫∞
0

∫∞
0
| 〈â†(t+ τ) â(t)〉 |2dtdτ∫∞

0

∫∞
0
〈â†(t+ τ) â(t+ τ)〉 〈â†(t) â(t)〉 dtdτ

, (3.9)

where â (â†) is the cavity mode annihilation (creation) operator. Therefore, in our system,

the Purcell-enhanced single-photon indistinguishability can be approximated by: I1 = (1 +

ηP )/(ζ + 1 + ηP ), where ζ = 2T1/T
?
2 = 2T1/T2 − 1 is the dephasing ratio. Therefore, with

Purcell factors P = 1000 and P = 20, 000 the single-photon indistinguishability would be

I1 = 0.63 and I1 = 0.97, respectively. In a large magnetic field, however, T2 = 4 ms was

measured at a few K [102]. For an ensemble-doped Er3+:Y2SiO5 spin flip-flop processes are

the dominant decoherence mechanism and applying a large magnetic field can freeze these

processes. As a result we have a long optical T2. The flip-flop process can also be suppressed

by reducing the Er3+ concentration. Therefore in our system, where we assume very low

dopant concentration, we still can expect to have optical coherence times of the order of

a few ms even at lower magnetic fields (hundreds of mT). With P = 100 and T2 = 4ms,

I1 = 0.82 is possible, which could be further improved by attempting to spectrally filter the

narrow 2π × 1.4 kHz bandwidth photons. With P = 1000, I1 = 0.98 could be achieved

without spectrally filtering the 2π× 14 kHz photons (corresponding to a duration of 11 µs).

3.5.2 CNOT gate

To perform the CNOT gate, it is necessary for Er3+ to remain excited for a time that is long

enough to apply three π-pulses to 151Eu3+. This implies that each Er3+ ion must be excited

to a different Zeeman level (|e1〉) than the level that is coupled to the cavity (|e2〉). This

can be done if the Zeeman splitting between |e1〉 and |e2〉 is much larger than the cavity

linewidth. In this section, for Er3+ we use |e〉Er = |e1〉.

To quantify the fidelity of the CNOT gate and state transfer procedures, we use a model
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nine-level system where both Er3+ and 151Eu3+ are represented by three-level systems with

two lower-energy spin states (|↑〉, |↓〉) and a single excited state (|e〉) (see Fig. 3.2). We use

the dipole-interaction Hamiltonian:

H = ∆νσ+
Er↑σ

−
Er↑σ

+
Eu↑σ

−
Eu↑ +

∑
k,l

Ωk,l

2

(
σ+
k,l + σ−k,l

)
, (3.10)

where ∆ν is the dipole interaction strength and Ωk,l is the Rabi frequency for transition {k, l}

for l ∈ {↑, ↓}, k ∈ {Er,Eu}. Without loss of generality, we choose ∆ν > 0 and Ωk,l > 0. The

master equation is

ρ̇ = −i[H, ρ] +
∑
k,l

γk,lD(σ−k,l)ρ+
γ?k
2
D(σ+

k,lσ
−
k,l)ρ+

∑
k

χk
2
D(σz,k)ρ, (3.11)

where D(σ)ρ = σρσ† − σ†σρ/2 − ρσ†σ/2. The operators are defined as σ+
k,l = |e〉 〈l|k,

σ−k,l = (σ+
k,l)
†, and σz,k = (|↑〉 〈↑|k − |↓〉 〈↓|k)/2. The rate γk,l is the decay rate for transition

{k, l}, γ?k is the optical pure dephasing rate, and χk is the spin decoherence rate for ion k.

To solve for the Er-Eu state after applying the five-pulse CNOT gate sequence, we first

assume that each π-pulse is a square pulse and that they are applied to the system sequen-

tially with no time delay between pulses. In this case, the time taken to apply each π-pulse is

given by Tk,l = π/Ωk,l. We also assume that Ωk,l and ∆ν are much larger than any dissipative

rate so that we can treat the dissipation perturbatively.

We then define the zero-order (reversible) superoperator L0 where L0ρ = −i[H, ρ]. Then

we define the first-order (irreversible) perturbation superoperator L1 as L1ρ = ρ̇−L0ρ. From

this, we define the rotation superoperator Rk,l(θ) corresponding to the pulse where Ωk,l 6= 0

and Ωk′,l′ = 0 for all k′ 6= k and l′ 6= l. This superoperator is given by

Rk,l(θ) = e
L0

θ
Ωk,l

[
1 +

∫ θ
Ωk,l

0

dτe−L0τL1e
L0τ

]
, (3.12)

which is accurate to first-order in γk′,l′ , γ
?
k′ , χk′ � Ωk,l,∆ν for all k′ and l′.
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To simulate the entanglement swapping between 151Eu3+ and Er3+, we begin with an

initial superposition state ρ0 where |ψ〉 = (|↑〉 + |↓〉)Er(|↑〉 + |↓〉)Eu and ρ0 = |ψ〉 〈ψ|. Then

after applying the CNOT pulse scheme, the final state is

ρ = REr,↑(θ)REu,↑(θ)REu,↓(θ)REu,↑(θ)REr,↑(θ)ρ0,

where ideally θ = π; however, we set θ = π + ε to simulate a π-pulse with a small rotation

deviation |ε| � π caused by a non-ideal pulse area. The total time taken to apply this

sequence is Tgate = 2TEr,↑ + 2TEu,↑ + TEu,↓.

For a high fidelity gate, the pulse durations must be small so that the gate is fast and

qubit states do not dephase during the sequence. This favors larger Rabi frequencies. On the

other hand, it is also necessary that the three Eu pulses do not excite the 151Eu3+ spin state

if Er3+ is excited. One way to achieve this is to set ΩEu,l to satisfy the detuning condition

Ω2
Eu,l/∆ν

2 � 1 so that there is little chance for off-resonant excitation. However, since ∆ν

cannot be arbitrarily large (the separation between Er and Eu cannot be arbitrarily small),

the detuning criteria necessitates a very slow gate, which cannot provide a high fidelity.

Alternatively, the detuning condition can be circumvented if ΩEu,l is chosen so that the

Eu pulses perform an effective 2π rotation on the Eu spin state when Er is excited, but

still perform a π-pulse when Er is not excited. This can be accomplished by requiring

that ΩEu,l satisfies the effective Rabi frequency relation
√

∆ν2 + Ω2
Eu,l = 2ΩEu,l. This sets

ΩEu,l = ∆ν/
√

3. As a consequence of fixing the Rabi frequency, an accurate characterization

of the dipole interaction strength for each Er-Eu pair is necessary to achieve a high fidelity.

This is because any mischaracterization δν from the true value ∆ν−δν will cause a deviation

from the desired 2π rotation. To account for this, we also consider a perturbation of the

fidelity for deviation ∆ν → ∆ν − δν where we assume |δν| � ∆ν ∝ Ωk,l.

The effective 2π pulse leaves a relative phase between the 151Eu3+ ground-state spins of

ϕ = −π(2 −
√

3)/2. If Er3+ is in |↓〉, then only π-rotations are applied to 151Eu3+. Hence,
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in this case, there is no acquired relative phase from the detuned pulses. However, if the

state is |↑↓〉, 151Eu3+ will be affected by the third pulse performing an effective 2π rotation,

and so |↑↓〉 will acquire a relative phase of ϕ. Likewise, if the state is |↑↑〉, 151Eu3+ will be

affected by the second and fourth pulses performing an effective 2π rotation, and so |↑↑〉 will

acquire a relative phase of 2ϕ. Hence, in the absence of dissipation and using perfect square

π-pulses, the expected final state is

|ψf〉 =
1

2

(
|↓↓〉+ |↓↑〉+ eiϕ |↑↓〉+ ei2ϕ |↑↑〉

)
(3.13)

Since the expected acquired phase ϕ = −π(2 −
√

3)/2 is known, and independent of the

dipole interaction strength ∆ν, it can be tracked or corrected and so we use |ψf〉 as the final

state when calculating the fidelity.

We use the above expressions for ρ and |ψf〉 to compute the fidelity FCNOT = | 〈ψf | ρ |ψf〉 |.

For simplicity, we choose to set ΩEr,l = ΩEu,l = Ω = ∆ν/
√

3; however, ΩEr,l is not restricted

by the dipole interaction strength and could be made larger than Ω to further decrease the

total gate time and increase fidelity. The solution FCNOT to first-order in γk,l, γ
?
k, χk � Ω ∝

∆ν for all k, l and second-order in ε� π and ξ = δν/∆ν � 1 is

FCNOT ' 1− TCNOTΓ− ε2 − 13π

16
εξ − 43π2

128
ξ2 (3.14)

Here TCNOT = 5π/Ω = 5π
√

3/∆ν is the total gate time and Γ is the effective dissipation

rate:

Γ ' 1

80
[31γEr + 17γ?Er + 8χEr + 11γEu + 8γ?Eu + 17χEu] , (3.15)

where we define γk = γk↑ + γk↓. To obtain the reverse CNOT fidelity, it is only necessary to

swap the dissipative parameters for Er3+ and 151Eu3+.

For a dipole interaction strength of ∆ν = 2π × 46 kHz corresponding to an Er-Eu

separation of about 6 nm, the CNOT gate time can be as small as TCNOT = 94 µs. To
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estimate the fidelity, we use the parameters γEr = 2π×3 Hz, γ?Er = 2π×8 Hz, γEu = 2π×1.3

Hz, and γ?Eu = 2π × 19 Hz estimated from Ref. [74]; also χEr ' 2π × 80 Hz and χEu ' 0.

In this case, for a small π-pulse over-rotation of ε ' π/64 and a dipole interaction strength

over-estimation of 2% (ξ ' 0.02), the fidelity is FCNOT = 0.986. The reverse CNOT fidelity

is slightly smaller due to the spin dephasing of Er: FR-CNOT = 0.980.

This method can also be used to compute the fidelity of state transfer from Er3+ to

151Eu3+. In this case, we remove the fourth pulse (REu,↑) and use the initial state |ψ〉 =

(|↑〉+ |↓〉)Er |↑〉Eu. The expected final state is |ψf〉 = |↓↓〉+ ei2ϕ |↑↑〉. In this case, the fidelity

is similar to the CNOT gate (Eq. (3.14)):

FST ' 1− TSTΓ− 5

8
ε2 − 3π

16
εξ − 21π2

256
ξ2 (3.16)

where TST = 4π/Ω = 4π
√

3/∆ν. The effective dissipation rate was found to be very similar

to Eq. (3.15), but depends less strongly on 151Eu3+ dissipation:

Γ ' 1

80
[29γEr + 16γ?Er + 9χEr + 11γEu + 7γ?Eu + 9χEu] . (3.17)

Using the same parameters as above, the fidelity of state transfer is FST = 0.989.

3.5.3 State measurement

The spin readout of Er3+ is performed by optical excitation. Since only the |↑〉 − |e2〉

transition is coupled to the cavity, optical excitation will result in a presence or absence of

a photon emission depending on the state of the Er3+ ion. The measurement of the 151Eu3+

ion can be performed through its nearby Er3+ ion as a readout ion, provided that the Er3+

ion is initially prepared in the |↑〉 state. Performing spin readout of the 151Eu3+ ion in the

Z basis is then achieved by optically exciting the 151Eu3+ ion (|↑〉 to |e〉 transition) followed

by exciting the Er3+ ion (|↑〉 to |e1〉 transition). The Er3+ ion will excite to |e1〉 (remain in

(|↑〉) if the state of the 151Eu3+ ion is |↓〉 (|↑〉) due to the permanent electric dipole-dipole
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interaction which shifts the Er3+ optical resonance. To readout in the X basis, a π
2

MW

pulse should be applied to the 151Eu3+ ion in order to rotate the ground-state spins before

the optical excitation step.

State measurement of each Er3+ ion requires the detection of an emitted photon. Due

to the Purcell effect, as discussed in Sec. 3.5.1, the emission of a single photon from the ion

is highly preferential into the cavity mode. For a high quality cavity, the probability that

the photon emits into the cavity tends to unity. Therefore, the detection probability will be

limited by coupling losses and single photon detectors, which can have detection efficiency

as high as 95%, as has been demonstrated in superconducting detectors [104, 105]. To do

better than this limit, it is necessary to pump the Er3+ ion into a cycling transition such that

many photons will be emitted by the cavity, and eventually detected. Using such a cycling

transition, detection probability can be as high as 98.7% [100]. The detection efficiency is

not 100% in this case because there is a small chance for the ion to decay into a different

state than the initial state, thus ending the photon cycling [106]. This chance grows linearly

with the number of cycles before detection.

3.5.4 Spectrally-multiplexed implementation

Our spectral multiplexing scheme relies on the possibility that many spectral channels can

be operated in parallel. This requires that, in one node, different cavities emit photons that

feature different carrier frequencies. This can be accomplished by frequency translation.

Noise-free translation over tens of gigahertz [79, 107] can be achieved by using voltage-swept,

commercially-available, waveguide electro-optic modulators that can be optically-coupled to

the output port of each cavity. After frequency translation, the output can be coupled to

a common spatial mode (e.g. a waveguide or fiber) by using a tunable ring resonator filter

that features resonance linewidths as narrow as 1 MHz [108]. Arrayed waveguides or fiber-

Bragg gratings may also be used, however they are bulky and their resonance linewidths

are currently not at the MHz level. The modulators and filters may be fabricated on a
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single chip, offering the possibility of low loss and up to 104 spectral modes. The Bell-state

measurement station consists of a beamsplitter, two sets of ring resonator filters which are

identical to that used at the nodes, and an array of superconducting nanowire-based photon

detectors, chosen due to their combination of high-efficiency and low noise properties [105].

3.6 Conclusion

Our proposal for a quantum repeater which is based on individual RE ions promises the

deterministic establishment of high-fidelity entanglement over long-distances at a rate which

exceeds that corresponding to the direct transmission of photons. Our scheme utilizes some

of the most desirable features of RE-ion-doped crystals, specifically emission within the low-

loss telecommunications window (Er3+) and the hours-long nuclear spin coherence lifetime

(151Eu3+:Y2SiO5) that is needed to perform long-distance transmission and swapping of

entanglement. Moreover, control logic gates between close-lying individual 151Eu3+ and Er3+

ions allow the quasi-deterministic swapping of entanglement by means of a permanent electric

dipole-dipole interaction. The multiplexed version of our scheme improves the entanglement

distribution rate by at least a factor of 100 over that of the single-mode version of our

repeater.

So far, we have only discussed a single entanglement generation attempt per communica-

tion time L0/c. However, one can also trigger the source many times in every communication

time interval, i.e., temporal multiplexing [18]. In this case, we require memories that can

store multiple temporal modes [109]. In general, the best-case scenario is to use both tem-

poral and spectral multiplexing in the same system.

Looking forward, it is interesting to consider the possibility of employing individual

167Er3+ ions instead of Er-Eu ion pairs for a telecommunication wavelength quantum re-

peater. In the presence of strong magnetic fields, 167Er3+:Y2SiO5 features a nuclear spin

coherence lifetime in the one-second range [92], allowing the possibility of entanglement gen-
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eration and storage using the same ion, pairs (or small ensembles) of Er3+ ions. One of the

main challenges for future work in this direction is to devise a scheme whereby individual

Er3+ ions may be addressed and coupled within a single cavity. This could be achieved

by using magnetic dipole-dipole interactions in a similar spirit to what has been demon-

strated using nitrogen vacancy centers and carbon spins in diamond [72], or by using the

cavity mode to mediate the interaction. Another interesting direction is the possibility of

long-term storage using host-ion spins such as yttrium in Y2SiO5 [110].
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Chapter 4

Paper 2: Cavity-assisted controlled

phase-flip gate

4.1 Preface

Future quantum networks will require interfaces between stationary qubits (e.g. spins in

solids) and flying qubits (photons), as well as the ability to perform gates between the

stationary qubits in the individual network nodes. In order to be efficient, spin-photon

interfaces typically require high-quality cavities. It is then very natural to ask whether such

cavities can also be used to mediate gates between spins. Here, we propose three different

methods for realizing such gates. We focus on schemes that do not require the strong coupling

regime, which opens up their utilization in a wider range of physical systems.

In this work, I conceived the idea, and building on earlier work, selected the three schemes

to develop. The first two authors jointly advanced the theory and wrote the first draft of

the manuscript.
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Abstract

Cavity-mediated two-qubit gates, for example between solid-state spins, are attractive for

quantum network applications. We propose three schemes to implement a controlled phase-

flip gate mediated by a cavity. The main advantage of all these schemes is the possibility

to perform them using a cavity with high cooperativity, but not in the strong coupling

regime. We calculate the fidelity of each scheme in detail, taking into account the most

important realistic imperfections, and compare them to highlight the optimal conditions for

each scheme. Using these results, we discuss which quantum system characteristics might

favor one scheme over another.

4.2 Introduction

Building a global quantum network or “quantum internet” [5, 6, 111] will enable many ap-

plications such as secure communication, enhanced sensing, and distributed quantum com-

puting. Establishing a quantum network requires interfaces between stationary qubits (e.g.

superconducting qubits, trapped ions, or spins in solids) and flying qubits (photons). The

various quantum internet applications also require local gates between stationary qubits. For

example, two-qubit gates are necessary for entanglement storage and swapping for quantum
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repeater protocols [18], and a basic operation for generating and manipulating entangled

states for quantum computation [112]. So far, to perform two-qubit gates, different types

of interactions including magnetic and electric dipole-dipole interactions [113, 75, 114] and

phonon-mediated couplings [115] have been employed.

To be efficient, interfaces between stationary and flying qubits often need cavities. It is

natural to explore if cavity-assisted interactions can also be used to perform two-qubit gates

[116, 117, 118, 119, 120]. Using cavity quantum electrodynamics (QED), one can perform

two-qubit phase-flip gates between qubits encoded in two modes of the electromagnetic field

(photonic qubits) [121], between a quantum system and a cavity mode [122], and also between

two individual quantum systems (e.g., ions, atoms etc.) inside a cavity [116, 117, 118]. Of

those, the latter is of great interest due to its wide-range of applications. Unlike electric and

magnetic dipole-dipole interactions, cavity-mediated interactions do not require quantum

systems to be very close to each other.

Although the strong coupling regime of cavity QED has been observed for some solid-state

systems such as quantum dots [123, 124, 125] and superconducting qubits [126], achieving

a true strong coupling regime with vacuum Rabi splitting remains an outstanding challenge

in other solid-state systems that are quite attractive from a quantum internet perspective.

For example, rare earth ions (REIs) are attractive because of their convenient wavelengths,

narrow optical transitions, and long coherence times, but have weak dipoles [127]. Defect

centers in diamond are also attractive because of their excellent coherence (even at room

temperature in the case of the NV center); however, fabricating high-quality cavities in

diamond is not straightforward.

In this paper, we propose three different cavity mediated approaches to perform controlled

phase-flip gates between two individual quantum systems. All of these schemes require only

a high cooperativity cavity-emitter system. Therefore, even using materials or quantum

emitters that are unlikely to reach the strong coupling regime, the following schemes are

applicable. We calculate explicit solutions for the fidelity of these gates in detail and compare
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their advantages and disadvantages.

In the first scheme, we propose to perform two-qubit controlled phase-flip gates by scat-

tering a single photon off of a cavity-qubit system. This approach has been discussed before

in the context of a strong coupling regime [116, 128], but not in the so-called ‘bad cavity’

regime that we also consider. For the second scheme, we discuss how to use a dissipative

cavity coupling to perform a controlled phase-flip gate via a virtual photon exchange. This

interaction has been explored in microwave and optical systems [129, 119, 117], but to our

knowledge, the specific details and fidelity calculations for a cavity QED phase-flip gate using

this interaction are not presented in the literature. Finally, inspired by a proposed scheme in

Ref. [118], we propose a third scheme that can perform a controlled phase-flip gate between

qubits with unequal optical transition frequencies using a Raman-assisted virtual photon

exchange interaction. In addition, for each scheme, we provide for the first time a complete

picture of the high-fidelity regime of operation that takes into account finite cavity coopera-

tivity, and we compute each scheme’s robustness to qubit decoherence and imprecise control

of detunings. Moreover, we compare these three schemes using a consistent approach to

highlight the advantages and disadvantage of each scheme in the context of their application

to different solid-state emitters.

4.3 Methods

The starting point for each scheme is to consider a pair of individual quantum systems (A

and B) placed in a cavity. For each system, we employ two of the lowest energy levels (e.g.,

hyperfine or Zeeman levels) to encode one qubit within states |↑〉 and |↓〉. Depending on

the protocol we also require one or two additional excited or ground states. In all of these

schemes we require a high-cooperativity cavity C = 4g2/κγ � 1 where κ is the cavity decay

rate, g is the cavity coupling rate, and γ is decay rate of the quantum system excited state(s).

High cooperativity is achievable in both the bad-cavity regime where κ � g � γ and the

strong-coupling regime where g � κ� γ.
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PhotonDetection

Figure 4.1: Scheme illustration and energy level diagram of both quantum systems in the
photon scattering scheme. The |↑〉 and |↓〉 ground states represent the qubit states and |e〉
is the excited state of the system. The |↑〉–|e〉 transition of both systems is resonant with
the cavity whereas the |↓〉–|e〉 transition is either far-detuned or uncoupled from the cavity.

4.3.1 Photon scattering

Cavity-assisted photon scattering is one way to perform a controlled phase-flip gate between

qubits in the same cavity by scattering a single photon off of the qubit-cavity system and

detecting it. Although it is not necessary to detect the photon after reflection, doing so

can herald the gate, which drastically improves the gate fidelity for realistic single photon

sources.

Performing a phase-flip gate using this scheme has already been discussed in the strong

coupling regime [116, 128, 130, 131]. Moreover, based on this scheme, a theoretical inves-

tigation of the entanglement generation has been studied [132]. Here, for the first time we

present the fidelity calculation for this gate in both bad-cavity and strong-coupling regimes.

We also analyze infidelity due to possible spectral wandering of the incident single photon

and imperfect quantum systems resonance conditions.

In this scheme, we use a single sided cavity and two 3-state quantum systems with a

Λ system (i.e., two ground states |↑〉 and |↓〉 and an excited state |e〉). For both quantum

systems, the |↑〉–|e〉 transition is resonant with the cavity and the |↓〉–|e〉 transition does

not interact with the cavity, as shown in Fig. 4.1. In systems where both qubit states can

interact with the excited state for the same polarization (e.g., rare earth ions), |↓〉–|e〉 should

be far-detuned from the cavity frequency [100].

We denote the state of the photon by |p〉. If both qubits are in the state |↓〉, the photon
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enters and then exits the cavity unhindered. This reflection of the photon from inside the

cavity causes the joint state of the qubit-photon system to acquire a π-phase shift. On the

other hand, if either or both of the qubits are in the state |↑〉, the cavity mode becomes

modified and the photon will not be impedance matched. In this case, the cavity acts as a

mirror and the photon does not enter the cavity but reflects from the out-coupling mirror of

the cavity. Under the correct cavity and photon conditions, the phase of the qubit-photon

system remains unchanged for these three cases.

This phase-flip gate can also be described by a unitary operator U = eiπ|↓↓〉〈↓↓|⊗|p〉〈p|,

meaning that there would be a phase-flip in the system only if both ions are in the state |↓〉.

As a result the states |↑↑〉 |p〉, |↑↓〉 |p〉 and |↓↑〉 |p〉 remain unchanged but |↓↓〉 |p〉 changes to

− |↓↓〉 |p〉. At the end, we can detect the reflected photon to herald the gate.

In the strong coupling regime, the impedance mismatch can be described simply by a

frequency shift (vacuum Rabi splitting). However, in the bad cavity regime, the resonant

systems cause a phase shift that destroys the constructive interference of the photon inside

the cavity within a narrow frequency window; therefore, the photon will not enter the cavity

(see ref. [100]).

In the regime where C � 1 we find that the total gate fidelity of this scheme is well-

approximated by

Fgate = 1− 5

4C
−
δ2
p + σ2

p

8γ2C2

[
11− 20

(
2g

κ

)2

+ 12

(
2g

κ

)4
]
− (δεA− δεB)2

4γ2C
− ΓT, (4.1)

where σp is the spectral standard deviation of an incident photon with a Gaussian intensity

profile, δp is the mean cavity-photon detuning, and δεk for k ∈ {A,B} is the detuning of the

kth system’s optical transition from the cavity resonance. We also introduce Γ as the effective

qubit decoherence rate that is a weighted average of decoherence rates from system-specific

processes that are smal2l compared to cavity dissipation and spontaneous emission. Here

T = 8π
√

2 ln 2/σp is the gate time, which we define to be twice the FWHM duration of the
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photon for this scheme. This effective rate is at least given by the qubit decoherence time:

Γ ≥ 1/2T2. Equation (4.1) is valid to first order in C−1 and ΓT ; and to second order in

δεk/γ, δp/γC, and σp/γC. See Appendices 4.6 and 4.6.3 for detailed calculations.

The second term in equation (4.1) shows the infidelity due solely to a finite cavity coop-

erativity, the third term shows the spectral mode matching sensitivity of the incident single

photon, the fourth term captures the degradation when either of the quantum systems |↑〉

transitions are not exactly resonant with the cavity, and the last term captures a linear

scaling due to a small effective qubit decoherence rate.

For shorter photons, the larger bandwidth can exceed the narrow spectral range over

which the destructive interference occurs within the cavity. This degrades the fidelity of

the phase-flip gate. On the other hand, for very long photons, the gate becomes so slow

that qubit decoherence can dominate and degrade the gate fidelity. These two competing

processes limit high-fidelity operation to a range of gate times (see Fig. 4.2.a) with an optimal

gate time given by T 3
o = (352π2 ln 2)/(γ2C2Γ) in the bad-cavity limit.

We find that there is a non-trivial relationship between the regime of operation and ro-

bustness against photon detuning (see Fig. 4.2.b and 4.2.c). In addition, since the photon

detuning infidelity scales as δ2
p, averaging the fidelity over a Gaussian spectral wandering pro-

file with standard deviation σ? simply results in σ? replacing δp in equation (4.1). Hence, the

effect of photon detuning captured in equation (4.1) and shown in Fig. 4.2 also demonstrates

the effect of random spectral wandering of the incident photon.

Far in the bad cavity regime where g/κ � 1, the system is very resilient to photon

detuning and finite bandwidth effects. In this regime, the spectral window where a phase flip

can occur is small, scaling by g2/κ [100]; however, mode matching so that the photon enters

the cavity when the quantum systems are off resonant is relatively simple to accomplish due

to the large cavity bandwidth. In contrast, in the strong-coupling regime where g/κ � 1,

the spectral window for the phase flip is larger, but mode matching becomes much more

difficult to achieve and so the fidelity is more sensitive to the photon spectral properties.
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(a)

(b)

(c)

Figure 4.2: Fidelity of the photon scattering phase gate as a function of (a) the gate time T ,
(b) the photon-cavity detuning δp for a given cavity regime, and (c) the cavity regime for a
given photon-cavity detuning. Here we set the cavity cooperativity to C = 4000, quantum
system detunings to δεA = δεB = 0, the effective dephasing to Γ/γ = 10−5, and for (a):
δp = 30γ, and (b, c): T = 2/γ. The ratio of cavity coupling rate g to cavity dissipation rate
κ gives the regime of operation with g/κ � 1 and g/κ � 1 indicating the bad-cavity and
strong-coupling regimes, respectively. The solid lines show the numerical solution without
expanding around small δp/γC, σp/γC, and large C. The dashed lines correspond to the
analytic approximation given by equation (4.1). For the numerical simulation, we assume
that the effective decoherence rate Γ exponentially degrades the coherence of the reduced spin
density matrix as opposed to using the linear correction as in the analytic approximation.
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Although the bad-cavity regime is surprisingly robust against spectral wandering, photon

detuning, and finite bandwidth effects, we find that the most robust regime is the so-called

‘critical regime’ where 2g ' κ [133] (see Fig. 4.2.b).

4.3.2 Simple virtual photon exchange

Another type of a cavity-assisted interaction between qubits can be achieved by the exchange

of virtual cavity photons when the quantum systems’ optical transitions are resonant but

dispersively coupled to a cavity mode [129, 119, 117]. Using this interaction, we provide a

description of how to perform a phase-flip gate as well as detailed calculations on the fidelity

of the gate.

For our analysis, we consider two 4-state quantum systems; each system has two ground

states |↓〉 and |↑〉 and two excited states |e1〉 and |e2〉. Since the systems’ optical transitions

are dispersively coupled to a symmetric cavity, there is no energy exchange with the cavity.

To have a phase-flip gate between qubits, first we bring the |↑〉–|e2〉 transition of the first

system into resonance with the |↓〉–|e1〉 transition of the second system using a magnetic

flux or an AC Stark pulse [119, 134]. Next, a π-pulse (P1) is applied to one of the systems

to bring it to the excited state, as shown in Fig. 4.3.a. After a time delay, another optical

π-pulse (P2) is applied to bring the excited quantum system back to its initial state.

To understand how this process performs a phase flip gate between qubits, we have shown

the level diagram of the two-qubit system in the product space in Fig. 4.3.b. If the two-qubit

system is in the state |↓↓〉 or |↓↑〉, pulses P1 and P2 are ineffective and hence the qubits will

be unaffected. If the state is |↑↑〉, then P1 excites system A to the excited state |e2〉. So far as

the splitting between the states |e2 ↑〉 and |↑ e2〉 is large enough, there will be no interaction

between them. Applying another π-pulse P2 to system A, will then return it to the ground

state and leave |↑↑〉 unaffected. However, if the state is |↑↓〉, after exciting system A to

the excited state, the degenerate states |e2 ↓〉 and |↑ e1〉 interact via the virtual exchange of

a cavity photon which adiabatically performs a π phase flip on the state. At the end, the
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Quantum system A Quantum system B(a)

(b)

Figure 4.3: (a) Energy level diagram of the simple virtual photon exchange phase gate.
The |↑〉–|e2〉 transition of system A is brought into resonance with the |↓〉–|e1〉 transition
of system B. To perform a phase-flip gate, we apply a pair of optical π pulses with a time
delay on system A. b) Level diagram in the product space. The splitting between |e2 ↑〉
and |↑ e2〉 states is equal to the difference between the ground and excited states splittings
δeg = |ωe − ωg|. The interaction between the states |e2 ↓〉 and |↑ e1〉 performs a phase flip
gate in the system. However, high fidelity can only be achieved when δeg is large enough so
that the |e2 ↑〉 and |↑ e2〉 states are not interacting.
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optical pulse P2 brings system A back to its initial state but with a relative phase − |↑↓〉.

The virtual interaction can be controlled by detuning the quantum system optical fre-

quencies away from each other. That is, when the detuning between the optical transitions

is much more than the cavity coupling strength, the qubit-qubit interaction can be made

negligible and the gate will not be successful.

We define ∆k = ωC − ωk as the detuning between the cavity and the |↑〉 → |e2〉 tran-

sition of the kth quantum system. In the high cooperativity regime, the cavity detun-

ing ∆ = ∆A ' ∆B + δeg dictates the gate fidelity Fgate and gate time T = π∆/g2, where

δeg = |ωe − ωg| is the difference between ground-state and excited state splittings. If the

detuning is too small, the excited system can emit a photon into the cavity mode, which

can subsequently decay. Hence the fidelity becomes limited by the cavity dissipation rate κ.

However, if the detuning is too large, T is also large, which causes the system to relax before

the gate is complete. Hence the fidelity becomes limited by γ. The maximum gate fidelity

of the simple virtual photon exchange is achieved between these extremes at a detuning of

2∆ = κ
√
C (see Fig. 4.4) and is well-approximated by

Fmax = 1− π√
C
− 3π2

32

[(
To∆ε

2π

)2

+

(
2π

Toδeg

)2

− 12

C

]
− ΓTo, (4.2)

where To = 2π/γ
√
C is the optimal gate time, Γ is the effective decoherence rate, and

∆ε = ωB − ωA − δeg is a small detuning between the systems’ optical transitions. Equation

(4.2) is valid to first order in C−1 and ΓTo, and also to second order in To∆ε and (Toδeg)
−1. See

Appendices 4.6 and 4.6.3 for detailed calculations and the expression for Fgate that includes

dependence on ∆ and κ.

From the above solution we can note that the maximum fidelity is ultimately limited by

the cavity cooperativity. However, we can also see that this maximum can only be reached

if the optical transition of the systems are resonant to within a precision dictated by the

inverse gate time: ∆ε � 2πT−1
o . In addition, there should not be any other optical transitions
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Figure 4.4: Fidelity of the simple virtual photon exchange phase gate Fgate as a function of
the cavity detuning ∆/κ. The analytic solution in the adiabatic regime given in Appendix
B (black dashed curve) matches closely with the numerically exact solution in the weak
coupling regime (solid red curve) with g/κ = 10−1 and accurately predicts the maximum
fidelity Fmax at 2∆ = κ

√
C. High fidelity can also be achieved if the system is not too far

into the strong-coupling regime (gray solid curve) with g/κ = 10, but it is less optimal. Here
∆ε = 0, δeg →∞, and C = 8000.

coupled to the cavity within δeg � 2πT−1
o . If either or both of these conditions are violated,

it may be beneficial to choose a detuning that better optimizes the gate fidelity.

This simple virtual photon exchange scheme operates most optimally in the bad-cavity

regime. In the strong-coupling regime, Rabi oscillations begin to occur when the cavity

detuning is not large enough. This effect pushes the optimal detuning further away and

forces the fidelity to be more limited by decay from the excited state (see Fig. 4.4).

4.3.3 Raman virtual photon exchange

A controlled phase-flip gate can also be performed between distant qubits by virtual excita-

tion of the cavity mode via a Raman coupling. Performing two-qubit gates using the Raman

coupling has been discussed in Ref. [135] for quantum dots. Later, Ref. [118] proposed an

improved version of the latter scheme for trapped ions, which is more efficient in terms of the

number of operations. However, there is a challenge related to shelving the qubit state in
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Figure 4.5: Energy-level diagrams and pulse sequence for the Raman virtual photon exchange
phase gate. For each system, we establish the near two-photon resonance process using a
classical laser field with Rabi frequency Ωk and the cavity-mode with cavity coupling rate
gk, for k ∈ {A,B}. A MW π pulse shelves qubit B into the state |s〉. Then, laser A (B)
applies a 2π pulse on qubit A (B). Another MW π pulse then brings qubit B back to its
original state.

Ref. [118] (see below for more information). Here, we discuss and fully analyze our modified

scheme that overcomes that challenge without limiting our analysis to a specific system.

Using our proposed scheme, one may perform a controlled phase-flip gate between qubits in

quantum systems with unequal optical transitions using a two-photon resonance between a

driving laser and a vacuum cavity field.

For our analysis, we consider two 4-level quantum systems each containing three ground

states that includes two qubit states |↑〉 and |↓〉 and a shelving state |s〉 in addition to an

excited state |e〉. The systems are dispersively coupled to a far-detuned cavity with a high

cooperativity. For each system, we drive the Raman transition between qubit ground states

via the vacuum cavity field and a driving field with Rabi frequencies gk and Ωk, respectively,

for system k ∈ {A,B} as shown in Fig. 4.5. The detuning ∆k is assumed to be large

compared to the Rabi frequencies Ωk so that the excited state will not be populated by the

driving fields. For a fixed cavity frequency ωc, if the driving fields are tuned to satisfy the

resonance condition δA = δB = δ, then an effective coupling between |↑↓〉 and |↓↑〉 is induced.
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To perform the gate, first a microwave (MW) π pulse is applied to shelve qubit B (i.e.,

target qubit) to the shelving state |s〉. Next, the driving fields A and B are turned on

to induce the Raman coupling. During the adiabatic Raman process, the qubits interact

through the cavity mode via a virtual photon interaction. Once the Raman process is

complete, another MW π pulse brings qubit B back to the state |↑〉. The result of this

gate transforms |↑↓〉 into − |↑↓〉 without affecting the relative phases of the remaining qubit

product states.

In the following, we assume that gA = gB = g; however, we discuss how to compensate for

unequal cavity couplings in Appendix B. For high fidelity operation, it is necessary to satisfy

four main conditions: (1) the two-photon resonance detuning δ must be larger than the

cavity linewidth κ, (2) the gate time given by T = πδ∆A∆B/g
2ΩAΩB must not exceed the

lifetime of the shelved state, (3) the driving field intensities should not exceed any detunings

Ωk � ∆k, δ, and (4) the system should be in the bad-cavity regime g < κ.

The maximum gate fidelity of the Raman virtual photon exchange in the high cooper-

ativity regime is achieved under the condition that 2δ = κ
√
C, and is well approximated

by

Fmax = 1− π√
C
− π2

16

[(
Toδε
2π

)2

+
∆2
ε

∆2
− 18

C

]
− ΓTo, (4.3)

where To = (∆/Ω)2(2π/γ
√
C) is the optimal gate time, Ω = ΩA = ΩB

√
∆B/∆A ' ΩB is

the optimal Rabi frequency condition, ∆k is the detuning between the kth quantum system’s

optical transition and the driving field, Γ is the effective decoherence rate that includes

decoherence caused by the shelving state decay rate γs � γ, and δε = |δA − δB| � δ is a

small two-photon resonance error. This expression is valid to first order in C−1 and ΓTo, and

also to second order in Toδε and ∆ε/∆ = |∆A−∆B|/∆, where ∆ = (∆A+∆B)/2 ' ∆A ' ∆B.

See Appendices 4.6 and 4.6.3 for detailed calculations and the full expression for Fgate that

includes the dependence on δ and κ.

The Raman scheme exchange is slower than the simple exchange by a factor of (Ω/∆)−2 �

1, which must be large so that the excited states |e〉k are only virtually populated. Although
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the gate is slower, it gains the advantage of being much less sensitive to γ. In fact, these

two factors seem to exactly cancel to give the same cooperativity scaling. However, as a

consequence of the Raman scheme being slower, it can also suffer a lot from the decay of |s〉.

Therefore, for high fidelity operation, it is necessary to shelve |↓〉B into a metastable state

where γs � γ so that γs/γ � (Ω/∆)2 � 1. In this regime, the first-order correction due to

the shelving decoherence is −γsT/8. Thus the effective decoherence rate Γ must include at

least a contribution of γs/8.

Similar to the simple virtual photon scheme, the Raman scheme has a fairly strict reso-

nance condition scaling by T−1
o . That is, for high fidelity operation, it is necessary that the

two-photon resonance be satisfied more precisely than the inverse gate time: δε � 2πT−1
o .

The main advantage of the Raman scheme is that the gate fidelity is robust against un-

equal optical transitions. Since the maximum fidelity depends only on the relative detuning

difference ∆ε = |∆A−∆B| compared to the magnitude |∆|, there is an inherent trade off

between gate time and system spectral separation. The larger the difference between the

system transitions, the larger both cavity detunings must be to maintain the same fidelity.

This, in turn, increases the overall optimal gate time. However, ∆ cannot be increased in-

definitely because the fidelity will eventually become limited by decoherence. By considering

the bounds on the regime of high-fidelity (see figure 4.6), we find that the spectral separa-

tion that will give a maximum fidelity no less than 1 − 2π/
√
C is ∆ε = κγ/(πΓ

√
8), which

corresponds to Ω = 2∆
√

Γ/γ and 2∆ = ∆ε

√
π
√
C (see Appendix 4.6.3). This limit on ∆ε

implies that, for Γ/γ � 1, the spectral separation of the systems can be many times larger

than the cavity linewidth without significantly degrading the fidelity.

Let us note that in Ref. [118] the state |↓〉 of one qubit is shelved in the excited state

|e〉. Doing so causes an additional unwanted phase evolution on the shelved state due cavity

Lamb and AC Stark shifts that cannot be reduced below the desired interaction rate without

violating the adiabatic criteria. As a consequence, there does not exist a regime where

the gate can be performed. We solved this issue by proposing to shelve the qubit into a
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Figure 4.6: (a) Numerically-simulated fidelity of the Raman-induced virtual photon exchange
phase gate Fgate as a function of detunings δ and ∆ for a fixed Ω = ∆/20 and g/κ = 10−1.
The analytic bounds on the regime of high fidelity are marked with dashed black lines.
The cross-section along ∆ = κ is identical to the fidelity curve plotted in figure 4.4; but in
the Raman scheme, δ has the same function as the cavity detuning in the simple exchange
scheme. The maximum fidelity occurs along the ridge 2δ = κ

√
C (solid black horizontal

line). (b) Cross-section along the 2δ = κ
√
C line. The fidelity oscillates rapidly for larger

values of Ω/∆ (gray solid curve) as the driving laser begins to induce coherence between the
ground and excited states and the adiabatic evolution breaks down. The red and gray lines
are numerically computed while the black dashed line shows the analytic solution detailed
in the appendix. Other parameters are δε = 0, ∆A = ∆B, Γ = 0, and C = 8000.
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Figure 4.7: Cooperativity-limited fidelity Fmax for phase gates based on photon scattering
and virtual photon exchange. The simple photon exchange (orange line) and Raman photon
exchange (dashed green line) have the same Fmax values. The straight gray lines represent
the Fmax scaling in the limit of large C. These first-order approximations underestimate the
maximum fidelity when the cooperativity is low, but still give a good estimate when the
fidelity is larger than 0.8.

metastable ground state that is uncoupled to the cavity, and then we demonstrated that a

large high-fidelity regime exists.

4.4 Results and Discussion

4.4.1 Scheme comparison

The maximum fidelity scaling with cavity cooperativity is very different for the scattering

scheme compared to the virtual photon exchange schemes (see Fig. 4.7). In the photon

scattering scheme the detection of the output photon heralds the gate and makes its fidelity

independent of all sources of photon loss. Therefore, this scheme has the highest maxi-

mum fidelity with a scaling of 1 − 5/4C. However, as a result of heralding, this scheme

is probabilistic. On the other hand, the maximum fidelity of the virtual photon exchange

68



schemes scales like 1− π/
√
C, but these schemes realize deterministic gates that do not rely

on single-photon generation and detection.

For each scheme, an increase in qubit decoherence will reduce the maximum attainable

fidelity. To partially mitigate this effect, it is possible to reduce the total gate time. However,

reducing the gate time below the optimal value will also reduce the fidelity. These two op-

posing effects create an intermediate optimal gate time that maximizes fidelity as a function

of the effective decoherence rate of the qubits. This decoherence-limited maximum fidelity

and corresponding optimal gate time have noticeably different trends for each scheme (see

Fig. 4.8). In the following, we discuss other pros and cons for each scheme in more detail.

Photon scattering.— This scheme requires two nearly-identical quantum systems that

must both have transitions resonant with the cavity. Having individual spectral control may

require spatial resolution of the systems, which is a disadvantage for nanoscale devices. An

advantage for this scheme is that the systems are not optically excited when performing the

gate. Hence, this scheme could be of interest in systems with lower cavity cooperativity and

some optical pure dephasing. Quantum dot devices are particularly suited to this scheme

for the latter reasons, but also because a similar device could be used to efficiently generate

the required single photons, providing a cohesive platform. RE ions may also be promising

candidates for this scheme. Single RE emitters have been observed [22], and when coupled

to a high quality factor cavity the system could provide a cavity-cooperativity large enough

to achieve fast controlled phase-flip gates with a high fidelity.

The probability of heralding will depend on the efficiency of available indistinguishable

single-photon sources and detectors. On-demand sources with high photon indistinguisha-

bility and single-photon purity have been demonstrated [136, 137, 138]. In addition, highly

efficient on-demand sources should become increasingly available with advances in deter-

ministic fabrication [139]. The best commercially available sources provide an efficiency of

around 10%−30% in practice, but these values are likely to improve in the near future [140].

Single-photon detector efficiency is also improving [104, 141]; superconducting single-photon
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nanowire detectors with efficiencies exceeding 90% are becoming widely available. The over-

all success probability could be improved significantly if the photon source, detector, and

cavity are all integrated on-chip [142, 143]. It is also possible to extend the scheme to perform

non-local gates between multiple qubit-cavity systems (i.e., remote cavities). This ability can

help with scalable quantum computing by naturally providing a connection between multiple

qubits.

Simple virtual photon exchange.— As with the scattering scheme, this scheme also re-

quires the ability to tune the systems’ optical transitions into resonance. This can be ac-

complished, for example, by using an AC Stark effect provided that systems are spatially

resolved or by using a large electric or magnetic field gradient if they are not spatially sep-

arated. However, after tuning the systems, spatial resolution is still required to excite only

one system to the excited state without affecting the other qubit. To avoid this requirement,

it might be possible to excite one system before tuning them into resonance. As a result,

the time it takes to tune the systems into resonance should be much faster than the phase

evolution time of the system yet slow enough to remain adiabatic. Otherwise, the phase

evolves while tuning the systems, which may limit the gate fidelity.

This scheme benefits from the exchange of virtual photons; therefore, the cavity induced

relaxation can be avoided. However, a limiting factor of the scheme is still the excited

state lifetime of the systems. To perform the gate, it is necessary for the excited system to

remain excited for a time that is long enough compared to the gate time. Otherwise, the

system decays before the phase-flip gate takes place. This effect is the primary cause of the

reduced cooperativity-limited fidelity of 1 − π/
√
C compared to the scattering scheme. On

the other hand, the simple exchange scheme can be very fast, reducing the impact of qubit

dephasing. This scheme is particularly suited to systems with little optical pure dephasing

and small phonon sidebands, such as the group-IV defects in diamond [144] and rare-earth

ions [145, 28].

It is also possible to perform this scheme using a Λ system. However, in the 4-level
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(a)

(b)

Figure 4.8: (a) Maximum fidelity Fmax as a function of effective qubit decoherence rate Γ for
the scattering scheme (red curve), simple virtual photon exchange scheme (orange curve),
and the Raman virtual photon exchange scheme (green curve) using a system in the bad-
cavity regime g/κ = 10−1 with a cooperativity of C = 8000. (b) Gate time corresponding to
the maximum fidelity in panel (a).
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system that we have presented, tuning opposite transitions into resonance can prevent the

requirement for the spatial resolution in systems with different polarization for opposite

transitions, provided that both transitions can still be coupled to the same cavity mode.

Raman virtual photon exchange.— The main advantage of this scheme is the ability to

adjust the frequency and intensity of driving fields A and B to allow for a difference between

the optical transition frequencies of the systems. As a downside, this method requires an

additional metastable state to shelve one qubit. In addition, for a large κ, the optimal

detuning δ must be quite large. This could be a major limitation for some systems with

multiple close optical transitions, such as rare earth ions.

With the correct parameters, the Raman scheme can be performed while maintaining the

spectral resolution of the system optical transitions. This is a huge advantage for solid-state

microcavity systems where emitters are often quite different and their close proximity may

not allow for spatial addressing. The main trade-off for this advantage is an increase in total

gate time compared to the simple virtual photon exchange, making it more susceptible to

decoherence of the metastable state.

The target qubit can either be shelved in a metastable state in the ground state or in

a second uncoupled excited state. However, it is preferable to shelve the qubit in a ground

state as the decoherence rate of the ground states are usually less than the excited states. A

spin-triplet ground-state system with a relatively long spin-coherence time and good optical

properties, such as in a neutrally-charged silicon-vacancy center in diamond [146], would

provide the ideal structure for this scheme.

In systems where shelving is not feasible, one could establish a Raman coupling directly

between the two quantum systems [147], rather than a Raman coupling for each of the qubits

individually, as explained in our protocol. Such a scheme would require a weak external laser

field (Ω < g) and spatial-separated nearly-identical quantum systems.
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Figure 4.9: Energy level structure of 171Yb:YVO in the presence of an external magnetic
field along the c-axis of the crystal. Here, |0〉 ≡ |ms = 1/2〉 and |1〉 ≡ |ms = −1/2〉 are
electron spin states and |⇑〉 ≡ |mI = 1/2〉 and |⇓〉 ≡ |mI = −1/2〉 are nuclear spin states.
We use the |0 ⇓〉, |0 ⇑〉 and |1 ⇑〉 hyperfine states as the qubit states |↑〉 and |↓〉 and the
shelving state |s〉 respectively.

4.4.2 Comparison of all three gate schemes for 171Yb:YVO

We consider 171Yb ions doped into a yttrium orthovanadate (YVO) crystal as an example

system to compare the three different gates. The energy level structure of this ion in the

presence of an external magnetic field is shown in Fig. 4.9. Note that, the figure only shows

the lowest excited state level. Here, we refer to the two lowest ground state hyperfine levels

as the qubit states |↓〉 and |↑〉.

For an ensemble of 171Yb ions in YVO, the excited state decay rate is γ = 2π × 596

Hz [148]. In addition, the spin coherence time of T2 = 6.6 ms has been measured (for

B = 440 mT ) [148]. For a single Yb coupled to a YVO photonic crystal cavity, it has been

shown that the spin coherence time can be further increased to 30 ms using a Carr-Purcell-

Meiboom-Gill (CPMG) decoupling sequence [149].

In the following, we estimate the maximum gate fidelity and the corresponding gate time

for each scheme when assuming g/κ = 10−1 and C = 50 000.
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Photon scattering.— Considering Γ = 1/(2T2), where T2 = 6.6 ms, T = 1/γ, δp = 30γ

and δεA = δεB = 0, the fidelity of the photon reflection scheme is Fmax = 0.98 and the gate

time is T = 267 µs.

Simple virtual photon exchange.— As discussed previously in Sec. 4.4, it is also possible

to perform the simple virtual photon exchange scheme using a Λ type system. Here we

consider a three level system and, to perform the gate we bring the |↑〉 − |e〉 transitions of

the two ions into resonance with each other (instead of tuning opposite transitions). In this

case, considering δeg = 0.2 GHz [148], Γ = 1/(2T2) + γ?/2 (here γ? = 9 KHz is calculated by

the relation γ? = 1/T2,O − γ/2 where T2,O = 91 µs is the optical coherence time for B = 500

mT [148]), and ∆ε = 0 we get Fmax = 0.952 and T = 7.5 µs.

Raman virtual photon exchange.— For this scheme, we consider the |1 ⇑〉 hyperfine

ground state as the shelving level as shown in Fig. 4.9. Assuming Γ = 1/(2T2), δε = 0,

∆A = ∆B and Ω = 0.1∆, the optimal fidelity and the gate time are Fmax = 0.93 and

T = 750 µs, respectively.

Increasing the cavity cooperativity will increase the fidelity and decrease the gate time of

the simple and Raman virtual photon exchange schemes further. On the other hand, to im-

prove the fidelity and the gate time of the photon scattering scheme, a photon with a smaller

FWHM duration is required. Although the properties and level structure of 171Yb:YVO al-

lows performing all three schemes, the most suitable scheme for this system should be selected

according to the gate requirements and experimental restrictions. As an example, if the op-

tical transition frequencies of Yb ions are unequal, one should perform the gate using the

Raman scheme. The simple virtual exchange scheme, on the other hand, is the best option

to perform a fast gate. And finally, the photon scattering scheme can lead to a probabilistic

but high fidelity gate.
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4.5 Conclusion

Using the cavity-assisted interactions, we proposed and compared three schemes to perform

controllable phase-flip gates between two qubits. The first scheme works better for systems

with an integrated design and when performing a high fidelity gate is more important than

a deterministic gate. If one looks for a deterministic gate, however, either the simple or

Raman virtual photon exchange schemes should be considered. In cases where the quantum

systems are not resonant, the Raman exchange is the best scheme. On the other hand, the

simple exchange can be suitable for systems with more severe qubit dephasing but little pure

dephasing of the optical transition.

Looking forward, our promising results on the photon scattering gate may provide further

motivation for integrating sources and cavities on chip. Moreover, the fidelity of the simple

and Raman virtual photon exchange schemes could be improved using the quantum Zeno

effect [150]. In this technique, by observing possible photons emitted by the cavity at frequent

time intervals using an efficient single-photon detector, the system can be forced to follow

the adiabatic evolution [151]. Detecting a leaked photon also indicates a failed gate and

improves fidelity.

Developing quantum information processing nodes using cavity-mediated gates is an im-

portant step towards the implementation of quantum networks. By outlining the benefits

and limitations of different approaches to this goal, we provided a framework to identify and

tailor two-qubit gate schemes for a given system. This will accelerate the development of

platforms that could form the basis for a future quantum internet.
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4.6 APPENDIX

APPROACH

4.6.1 Fidelity

For each scheme, we define two initially independent quantum systems that each include

qubit states denoted |↑〉 and |↓〉. The total two-qubit space is spanned by the four cannonical

product space states |↑↑〉, |↑↓〉, |↓↑〉, and |↓↓〉. In our analysis, we define the gate fidelity

Fgate to be the fidelity after applying the gate operations to the initial product state |ψ(0)〉 =

(1/2)(|↑〉+ |↓〉)A ⊗ (|↑〉+ |↓〉)B:

Fgate =
√
〈ψ(T )| ρ̂(T ) |ψ(T )〉, (A1)

where ρ(T ) (or |φ(T )〉 〈φ(T )| in the case of a pure state) is the imperfect final state and

|ψ(T )〉 is the expected ideal pure state after applying the gate operation with duration time

T . For example, if the gate operation takes |↓↓〉 −→ − |↓↓〉 relative to the remaining three

product states, the ideal state is |ψ(T )〉 = (1/2)(|↑↑〉 + |↑↓〉 + |↓↑〉 − |↓↓〉). This choice of

initial state serves to represent an average gate fidelity because it takes into account the

effect of the gate on each product state amplitude in addition to the relative phases between

them. It also represents the fidelity expected when using the gate to generate maximally

entangled states. However, certain initial states may result in higher or lower fidelity than

this definition predicts. For example, the initial state |↑〉A ⊗ (|↑〉 + |↓〉)B/
√

2 for the above

example could have above-average fidelity since it will not experience infidelity due to the

imperfect phase-flip operation on |↓↓〉. On the other hand, |↓〉A ⊗ (|↑〉 + |↓〉)B/
√

2 could

experience below-average fidelity due to the absence of contribution from the less-stringent

evolution on |↑↑〉 and |↑↓〉.
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4.6.2 Decoherence

To simplify the analysis and to focus on the intrinsic high-performance limitations for each

scheme, we assume that decoherence processes other than cavity dissipation and spontaneous

emission occur on a timescale much longer than the gate time. These additional processes

include qubit decoherence and possibly pure dephasing of the optical transition. To capture

these small effects, we describe the effect of any of these additional processes by a single

effective decoherence rate Γ. The exact form of Γ may be different depending on the scheme

and on the dominant source of additional decoherence for a system operating under a given

scheme. For example, regardless of the scheme, the effective qubit decoherence rate Γ must

be at least limited by the qubit relaxation rate γ↑↓ and pure dephasing rate γ?↑↓. Consider

the following decoherence master equation:

ρ̇ = γ↑↓D(σ̂)ρ(t) + 2γ?↑↓D(σ̂†σ̂)ρ(t), (A2)

where D(σ̂)ρ̂ = σ̂ρ̂σ̂† − {σ̂†σ̂, ρ̂}/2 for σ̂ |↑〉 = |↓〉. If we wish to maintain the coherence of

an initial state |ψ(0)〉 = (|↑〉+ |↓〉)/
√

2 = |ψ(T )〉, the fidelity of the final state ρ̂(T ) will be

√
〈ψ(T )| ρ̂(T ) |ψ(T )〉 ' 1− ΓT, (A3)

when expanding to first order in γ↑↓T � 1 and γ?↑↓T � 1 where Γ = γ↑↓/8 + γ?↑↓/4. In most

real applications, the effective decoherence rate Γ will be dominated by the largest source of

additional decoherence for that particular system or scheme-system combination.

4.6.3 Non-Hermitian dynamics

In the virtual photon exchange schemes, we take advantage of non-Hermitian Hamiltonians

to include cavity dissipation and spontaneous emission as opposed to solving the full master

equation. This allows us to capture the effects of finite cavity cooperativity while still
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allowing for simple and accurate analytically tractable solutions.

Dynamics from non-Hermitian Hamiltonians cannot capture an increase in population of

the ground state due to a decay event. To illustrate this, consider the Master equation

ρ̇ = −i[Ĥ, ρ̂] + γD(σ̂)ρ̂+ κD(â)ρ̂, (A4)

where we take ~ = 1. This can be rewritten as [152]:

ρ̇ = −i
[
Ĥ, ρ̂

]
− 1

2
{γσ̂†σ̂ + κâ†â, ρ̂}+ γσ̂ρ̂σ̂† + κâρ̂â†

= −i
(
Ĥeffρ̂− ρ̂Ĥ†eff

)
+ γσ̂ρ̂σ̂† + κâρ̂â†,

(A5)

where

Ĥeff = Ĥ − i

2

(
γσ̂†σ̂ + κâ†â

)
(A6)

is the effective non-Hermitian Hamiltonian that describes the amplitude decay of σ̂ and â.

The solution |φ(t)〉 under the effective Hamiltonian is the unnormalized pure state tra-

jectory for a successful gate and this trajectory occurs with probability p = 〈φ(t)|φ(t)〉.

The terms γσ̂ρ̂σ̂† and κâρ̂â† in the master equation cause a recycling of population into

the ground state after a decay event. Thus the total master equation solution is given by

ρ̂(t) = |φ(t)〉〈φ(t)|+ (1− p)ρ̂γκ(t) where ρ̂γκ(t) is the state of the system at time t given that

at least one emission event occurred. The final fidelity after completing the gate of duration

T is then

Fgate =
√
pF 2

0 + (1− p)F 2
γκ (A7)

where F0 = | 〈φ(T )|ψ(T )〉 |/√p is the fidelity after a successful gate, and the potentially

non-zero fidelity after a failed gate is Fγκ =
√
〈ψ(T )| ρ̂γκ(T ) |ψ(T )〉.

By only solving the effective non-Hermitian Hamiltonian part of the master equation, we

make the approximation that Fgate '
√
pF0. This approximation is accurate when p ' 1 and

hence when
√
pF0 ' 1. The precision of this approximation depends on F0 and Fγκ for a
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given implementation. Since Fγκ < F0 for the schemes we study, this approximation is also

valid to explore the cooperativity scaling of the fidelity limits. We comment on the accuracy

of this approximation for the specific cases of the virtual photon exchange schemes in the

following appendix section.

FIDELITY CALCULATIONS

4.6.1 Photon scattering

In this scheme, the probability that an incident photon excites either qubit is low. Therefore,

the quantum Langevin equations for the photon (quantum system) excitation amplitude(s)

a(t) (sk(t), k ∈ {A,B}) can be written as [100, 153, 154]

ȧ(t) = −κ
2
a(t) + gAsA(t) + gBsB(t)−

√
κain(t),

ṡA(t) = −gAa(t) +
(
−γ

2
− i∆A

)
sA(t),

ṡB(t) = −gBa(t) +
(
−γ

2
− i∆B

)
sB(t),

(B1)

where ain(t) is the input photon field, gk is the cavity coupling rate for the kth quantum

system, and ∆k is the detuning between the |↓〉 → |e〉 transition of the kth quantum system

and the bare cavity mode. Using the input-output relation aout =
√
κa + ain, the ratio of

output and input field for a plane wave input is

aout(ω)

ain(ω)
= 1− κ

κ/2 + g2
A/rA + g2

B/rB − iω
, (B2)

where rk = γ/2 + i(∆k − ω) and ω is the plane wave frequency detuning from the cavity

resonance. This expression is valid in both the strong-coupling and bad-cavity regimes [100].

Using the above general expression for the photon amplitude of plane wave |ω〉, we can write

the amplitude sij(ω) (where i, j ∈ {↑, ↓}) expected for each initial qubit product state |↑↑〉,

|↑↓〉, |↓↑〉, and |↓↓〉 so that |ij〉 |ω〉 −→ sij(ω) |ij〉 |ω〉. This can be done by setting the ∆k

79



zero for |↑〉k and non-zero but large for |↓〉k. Under the assumptions that gA = gB = g and

∆A, ∆B � κ (when nonzero) we have

s↑↑(ω) =
aout(ω)

ain(ω)

∣∣∣∣
∆A=0,∆B=0

= 1− 2κ(γ − 2iω)

2κγC + (κ− 2iω)(γ − 2iω)
,

s↑↓(ω) = lim
∆B→∞

aout(ω)

ain(ω)

∣∣∣∣
∆A=0

= 1− 2κ(γ − 2iω)

κγC + (κ− 2iω)(γ − 2iω)
,

s↓↑(ω) = lim
∆A→∞

aout(ω)

ain(ω)

∣∣∣∣
∆B=0

= 1− 2κ(γ − 2iω)

κγC + (κ− 2iω)(γ − 2iω)
,

s↓↓(ω) = lim
∆B→∞,∆A→∞

aout(ω)

ain(ω)
= −1− 4iω

κ− 2iω
.

(B3)

where C = 4g2/κγ. Although we do not present it here, the above set of equations could

include finite quantum system detunings for systems A and B by evaluating the ratio aout/ain

for ∆A = δεA and ∆B = δεB instead of ∆A = 0 and ∆B = 0, where appropriate. To illustrate

how these amplitudes indicate a controlled phase gate, consider the ideal case where we have

a perfect plane wave exactly resonant with the cavity so that ω = 0. Then the amplitudes

reduce to

s↑↑(0) = 1− 2

2C + 1
,

s↑↓(0) = 1− 2

C + 1
,

s↓↑(0) = 1− 2

C + 1
,

s↓↓(0) = −1.

(B4)

From this it is clear that when C � 1 these ratios converge to 1, 1, 1 and -1, respectively.

In reality, some deviation from the ideal conditions are expected. In particular, we

consider a finite Gaussian bandwidth photon with a standard deviation σp and a possible

small cavity resonance error of δp. Even though the final spin state is pure for a plane wave,

the spin-frequency entanglement captured by the frequency-dependent amplitudes sij(ω)

causes some reflection-induced spin dephasing. To correct for a finite bandwidth photon, we
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consider an initial photon state |p〉 =
∫
dωf(ω) |ω〉 where

|f(ω)|2 =
1

σp
√

2π
e−(ω−δp)2/2σ2

p . (B5)

For an initial spin state (1/2)(|↑〉 + |↓〉)A ⊗ (|↑〉 + |↓〉)B, the joint spin-photon state after

reflection is

|φ(T )〉sp =
1

2

∫
dω
∑
ij

sij(ω)f(ω) |ij〉 |ω〉 . (B6)

where we take the total gate time T to be twice the FWHM of the photon duration: T =

8π
√

2 ln 22/σp. The reduced spin density matrix ρ̂ can then be obtained by tracing out the

state of the photon ρ̂(T ) = Trp

(
|φ(T )〉〈φ(T )|sp

)
. This gives

ρ̂(T ) =
1

4

∫
dω
∑
ij

∑
kl

sij(ω)s∗kl(ω)|f(ω)|2 |ij〉 〈kl| . (B7)

After a single photon reflects off the cavity, the final state of the two-qubit system can be

compared with the ideal state |ψ(T )〉 = (1/2)(|↑↑〉+ |↑↓〉+ |↓↑〉− |↓↓〉) to give the total gate

fidelity Fgate from equation (A1). By following this procedure using (B7) to take into account

small imperfections due to nonzero δp, σp, and δεk , we derived the total gate fidelity Fgate as

presented in equation (1) of the main text. This was done analytically by first expanding

the amplitudes sij in terms of small ω/Cγ and then integrating over the Gaussian photon

profile.

We also note that, in the limit that σp and δp are small, the amplitudes from equation

(B4) immediately give the cooperativity-limited maximum fidelity of

Fmax = 1− 1

C + 1
− 1

4C + 2
' 1− 5

4C
. (B8)
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4.6.2 Simple virtual photon exchange

For this scheme, we begin with two four-level systems coupled to a single cavity mode. The

general Hamiltonian that governs the evolution is Ĥ = ĤA + ĤB + ĤC + ĤI . The quantum

system Ĥk is given by

Ĥk = ωkσ̂
†
↑k σ̂↑k + (ωk − ωe)σ̂†↓k σ̂↓k − ωgσ̂

†
↑↓k σ̂↑↓k , (B9)

where ωk is the frequency separation between |↑〉k and |e2〉k, ωe is the separation between |e1〉k

and |e2〉k, and ωg is the separation between |↑〉k and |↓〉k. Also, σ̂↓k |e1〉k = |↓〉k, σ̂↑k |e2〉 =

|↑〉k, and σ̂↑↓k |↓〉k = |↑〉k (see figure 3 of the main text). The cavity homogeneous evolution

is ĤC = ωC â
†â for cavity frequency ωC , cavity photon anihilation (creation) operator â (â†),

and the interaction part is given by

ĤI =
∑
j∈↑,↓

∑
k∈A,B

gjk σ̂
†
jk
â+ h.c., (B10)

where g↓k is the cavity coupling rate of the |↓〉 → |e1〉 transition to the cavity mode and g↑k

is the cavity coupling rate of the |↑〉 → |e2〉 transition to the cavity mode. The dissipation

is governed by the Lindblad master equation

ρ̇ = −i[Ĥ, ρ̂] + κD(â)ρ̂+
∑
k,j

γjkD(σ̂jk)ρ̂ (B11)

where D(Â)ρ̂ = Âρ̂Â† − {Â†Â, ρ̂}/2, κ is the decay rate of the cavity photon, γjk are the

decay rates of the |e1〉k → |↓〉k and |e2〉k → |↑〉k transitions. In the following, we assume

γjk = γ for all j and k. The corresponding effective non-Hermitian Hamiltonian is then

Ĥeff = Ĥ − i

2

[
κâ†â+ γ

∑
k,j

σ̂†jk σ̂jk

]
(B12)
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Note that the effective Hamiltonian for dissipation due to γ does not discriminate between

events that emit into |↑〉 or |↓〉 because the recycling term is neglected. That is, γ here

represents the total decay rate of the excited states.

The total cavity-qubit system can be broken into four subsystems defined by the four

basis states of the electronic ground states: {|↑↑〉 , |↓↑〉 , |↑↓〉 , |↓↓〉}. To perform a control

phase gate using a virtual photon interaction, quantum system A is excited at ωA so that

|↑〉A → |e2〉A. This implies that |↑↓〉 → |e2 ↓〉 and |↑↑〉 → |e2 ↑〉. Hence we are concerned

with the relative evolution within the two subsystems governed by H↑↓ and H↑↑. In our

analysis, we assume that infidelity due to the fast excitation process |↑〉A → |e2〉A is much

smaller than the infidelity due to the slower adiabatic virtual photon exchange process; we

focus only on the phase rotation component of the protocol.

In the single-excited ↑↓ subspace with the basis {|e2 ↓ 0〉 , |↑↓ 1〉 , |↑ e10〉}, H↑↓ can be

written as

Ĥ↑↓ =


0 g↑A 0

g↑A ∆A g↓B

0 g↓B ∆A −∆B − δeg

 , (B13)

where ∆k = ωC − ωk and δeg = ωe − ωg. In the single-excited ↑↑ subspace with the basis

{|e2 ↑ 0〉 , |↑↑ 1〉 , |↑ e20〉}, H↑↑ can be written as

Ĥ↑↑ =


0 g↑A 0

g↑A ∆A g↑B

0 g↑B ∆A −∆B

 . (B14)

The last index of each combined-system state indicates the photon number in the cavity

mode.

The evolution of the remaining subsystems is H↓↑ = H↓↓ = 0 for the unexcited states

|↓↑〉 and |↓↓〉. Note that since only two of the four basis states are evolving in this scheme;

we are concerned with only the relative phase between |↑↓〉 and |↑↑〉. This is because any

83



global phase for |↑↓〉 and |↑↑〉 can be eliminated by moving qubit A into the correct rotating

frame. Knowing this, we can simplify the total gate fidelity to Fgate = (Fπ + 1)/2 where

Fπ = | 〈φ(T )| (|↑↑〉 − |↑↓〉)|/
√

2 is the fidelity of the relative π-phase gained between state

|↑↑〉 and |↑↓〉 for the initial state |ψ(0)〉 = (|↑↑〉+ |↑↓〉)/
√

2.

In the regime where ∆k are much larger than the cavity coupling rates, the Hamiltonian

H↑↑ performs a π-phase rotation on |e2 ↑ 0〉 if ∆A−∆B ' 0. Alternatively, if ∆A−∆B ' δeg,

H↑↓ performs the π-phase on |e2 ↓ 0〉. These two scenarios are equivalent and so, without

loss of generality, we focus only on the case where the opposite spin transitions are resonant

∆A −∆B ' δeg.

Since the cavity coupling rates may not be equal, it may be necessary to tune ∆B to offset

the different Stark shifts induced on each qubit by the cavity. By adiabatically eliminating

the amplitude of state |↑↓ 1〉, the optimal tuning of the unexcited qubit is found to be

∆B = ∆ +
g2
↑A − g

2
↓B

∆
− δeg, (B15)

where we write ∆A = ∆ for simplicity. The corresponding excitation time required to achieve

a π phase is given by

T = π
∆

g↑Ag↓B
. (B16)

High phase gate fidelity for virtual photon exchange is dependent on satisfying four main

conditions: (1) the cavity detuning ∆ must exceed the decay rate κ of the cavity, (2) the

gate time T must not exceed the lifetime of the system excited state 1/γ, and (3) the

system should not be far into the strong-coupling regime g/κ ≤ 1. Finally, (4) high fidelity

operation depends critically on achieving the one-photon resonance condition. To capture

how sensitive the fidelity is to errors in matching the resonance condition in equation (B15),

we assume that ∆B deviates from the ideal condition by some small value ∆ε. That is,

∆ε = ∆B −∆− (g2
↑A − g

2
↓B)/∆ + δeg.
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The effective non-Hermitian Hamiltonians corresponding to Ĥ↑↓ and Ĥ↑↑ are

Ĥ↑↓=Ĥ↑↓ −
i

2
(γ |e2 ↓0〉〈e2 ↓0|+γ |↑e10〉〈↑e10|+κ |↑↓1〉〈↑↓1|)

Ĥ↑↑=Ĥ↑↑ −
i

2
(γ |e2 ↑0〉〈e2 ↑0|+γ |↑e10〉〈↑e10|+κ |↑↑1〉〈↑↑1|) .

(B17)

By performing adiabatic elimination on the amplitude of |↑↓1〉 and |↑↑1〉 where we set

d〈φ(t)| ↑↓1〉/dt = d〈φ(t)| ↑↑1〉/dt = 0, we can compute Fπ. Although by choosing ∆B

correctly, the unequal cavity coupling rates can be compensated, to minimize the gate time

T ∝ (g↑Ag↓B)−1 it is optimal to have g↑A ' g↓B = g. In this case, we have

Fπ =
1

2

∣∣∣〈e2 ↑ 0|e−iT Ĥ↑↑|e2 ↑ 0〉 − 〈e2 ↓ 0|e−iT Ĥ↑↓ |e2 ↓ 0〉
∣∣∣

=
1

2
e−2π∆/Cκ−πκ/2∆

∣∣∣ei4πg2/∆δeg+cosh
[ πκ

2∆

]
e−iπ∆ε∆/g2

∣∣∣ . (B18)

In the case where δeg � g2/∆� ∆ε, this can be written as

Fπ = e−2π∆/Cκ−πκ/2∆ cosh2
[ πκ

4∆

]
+O

(
∆2
ε , δ
−2
eg

)
. (B19)

Then the total gate fidelity is given by Fgate = (Fπ + 1)/2. This expression is maximized

for the choice 2∆ ' κ
√
C when g < κ (see Figure 4 in the main manuscript). Then in the

regime where C � 1, the maximum gate fidelity in the ideal regime can be expanded to the

lowest order non-vanishing terms to acquire the result presented in equation (2) of the main

text.

If a photon is emitted during the gate and system A collapses to the ground state |↑〉A

prematurely, then the final pulse used to return system A coherently to the ground state will

instead re-excite |↑〉A. Since system A is in an excited state after a failure, the fidelity Fγκ

vanishes and so the non-Hermitian approximation is exact in this case.
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4.6.3 Raman virtual photon exchange

The analysis of the Raman scheme follows similar to the simple virtual photon exchange

scheme. However, with the addition of the Raman coupling there are two nested adiabatic

processes occurring. To simplify the analysis, we will assume that any infidelity caused by

pulses 1 and 2 used to shelve |↓〉B are negligible compared to infidelity caused by the much

slower Raman interaction.

For this scheme, we begin with two four-level systems coupled to a single cavity mode

(see figure 5 of the main text). The general Hamiltonian that governs the evolution is

Ĥ = ĤA + ĤB + ĤC + ĤI . The quantum system Ĥk is given by

Ĥk = ωkσ̂
†
↑k σ̂↑k + ωsk σ̂

†
sk
σ̂sk − ωgk σ̂

†
↑↓k σ̂↑↓k , (B20)

where ωk is the frequency separation between the |↑〉k and |e〉k states, ωsk is the separation

of the shelving state |s〉k and |↑〉k, and ωgk is the separation of the |↑〉k and |↓〉k states. Also,

σ̂↑k |e〉k = |↑〉k, σ̂sk |s〉k = |↓〉k, and σ̂↑↓k |↓〉k = |↑〉k (see figure 5 of the main text). The cavity

homogeneous evolution is ĤC = ωC â
†â for cavity frequency ωC , cavity photon anihilation

(creation) operator â (â†), and the interaction part is given by

ĤI =
∑
k∈A,B

gkσ̂
†
↑k σ̂↑↓k â+ Ωkσ̂

†
↑ke

itωLk + h.c., (B21)

where gk is the cavity coupling rate of the |↑〉 → |e〉 transition to the cavity mode and ωLk is

the control laser frequency coupling |↓〉k and |e〉k via the operator σ̂†↑k σ̂↑↓k |↓〉k = σ̂†↑k |↑〉k =

|e〉k with Rabi frequency Ωk. The dissipation is governed by the Lindblad master equation

ρ̇ = −i[Ĥ, ρ̂] + κD(â)ρ̂+
∑
k

γkD(σ̂↑k)ρ̂+
∑
k

γskD(σ̂sk)ρ̂, (B22)

where D(Â)ρ̂ = Âρ̂Â†−{Â†Â, ρ̂}/2, κ is the decay rate of the cavity photon, γk is the decay

rate of |e〉k, and γsk as the decay rate of the shelving state |s〉k. The corresponding effective
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non-Hermitian Hamiltonian is then

Ĥeff = Ĥ − i

2

[
κâ†â+ γ

∑
k

σ̂†↑k σ̂↑k + γs
∑
k

σ̂†sk σ̂sk

]
(B23)

where we have assumed γk = γ and γsk = γs for both quantum systems A and B. Recall

again that the effective Hamiltonian does not discriminate which ground state recycles the

population. In effect, γs represents the total decay rate out of |s〉 into any other state.

As with the virtual photon exchange, we can first break the system into four subsystems

associated with the four basis states of the two-qubit space: {|↑↑〉 , |↓↑〉 , |↑↓〉 , |↓↓〉}. After

shelving |↑〉B to state |s〉B, these states become {|↑s〉 , |↓s〉 , |↑↓〉 , |↓↓〉}. Then the driving

fields ΩA and ΩB couple |↓↑〉 and |↑↓〉. Consequently, the fields also induce a phase on |↑ s〉

due to the AC Stark and cavity Lamb shifts. Since |s〉B is decoupled from the cavity and

far-detuned from the driving fields, we only consider the dynamics in the subspaces affecting

|↑↓〉 and |↑s〉 dictated by H↑↓ and H↑↑. From the Hamiltonian, we can write H↑↓ in the basis

{|↑↓0〉 , |e↓0〉 , |↓↓1〉 , |↓e 0〉 , |↓↑0〉} as

H↑↓ =



0 ΩA 0 0 0

ΩA ∆A gA 0 0

0 gA −δA gB 0

0 0 gB ∆B + (δB − δA) ΩB

0 0 0 ΩB δB − δA


, (B24)

and H↑↑ in the basis {|↑s 0〉 , |e s 0〉 , |↓s 1〉} as

H↑↑ =


0 ΩA 0

ΩA ∆A gA

0 gA −δA

 , (B25)

where ∆k = ωk−ωLk and δk = ωLk +ωgk−ωC . The last index of each state indicates the pho-
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ton number in the cavity mode. To obtain these time-independent subsystem Hamiltonians,

we have moved into a rotating frame Ĥ → e−itR̂Ĥ(t)eitR̂ − R̂ defined by

R̂ = (ωC + δB)â†â+
∑
k

ωLk σ̂
†
↑k σ̂↑k +

∑
k

ωsk σ̂
†
sk
σ̂sk + ωgB σ̂

†
↑↓B σ̂↑↓B

+ (δA − δB − ωgA)σ̂†↑↓Aσ̂↑↓A .

(B26)

This rotating frame preserves the desired relative phase evolution between |↑↓〉 and |↑↑〉

because it is defined using local operators only.

The evolution in remaining subsystems can be neglected: H↓↑ = 0 and H↓↓ = 0 for the

states that are not coupled to the driving fields. Similar to the prevous scheme, the total gate

fidelity can then be simplified to Fgate = (Fπ + 1)/2 where Fπ = | 〈φ(T )| (|↑↑〉 − |↑↓〉)|/
√

2

for initial state |ψ(0)〉 = (|↑↑〉+ |↑↓〉)/
√

2.

At the two-photon resonance (δA = δB = δ), H↑↓ will perform a π-phase rotation on

|↑↓〉. However, unlike the the simple exchange scheme, the Raman exchange scheme can

operate when ∆A and ∆B are not restricted to a fixed relation, allowing for a gate to be

performed between two quantum systems that have unequal optical transitions. However,

a π phase can only be achieved when ΩB is selected to compensate for gA 6= gB and ∆A 6=

∆B. By adiabatically eliminating the excited state and cavity amplitudes where we set

d〈φ(t)|e↓0〉/dt = d〈φ(t)|↓↓1〉/dt = d〈φ(t)|↓e 0〉/dt = 0, the optimal Rabi frequency relation

is found to be

ΩB = ΩA

√
g2
A + δ∆A

g2
B + δ∆B

' ΩA

√
∆A

∆B

, (B27)

corresponding to the time required to achieve a π phase of

T = π
g2
A∆A + g2

B∆B + δ∆A∆B

gAgBΩAΩB

' π
δ∆A∆B

gAgBΩAΩB

, (B28)

assuming g2
k � δ∆k.
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The non-Hermitian parts are given by corresponding decay rates of each state amplitude

Ĥ↑↓ = Ĥ↑↓ −
i

2
(γ |e↓0〉 〈e↓0|+ κ |↓↓1〉 〈↓↓1|+ γ |↓e 0〉 〈↓e 0|)

Ĥ↑↑ = Ĥ↑↑ −
i

2
(γ |e s 0〉 〈e s 0|+ κ |↑s 1〉 〈↑s 1|)

(B29)

where we have assumed that γs � γ, κ. We analyze the fidelity in the case where gA = gB =

g, δA ' δB ' δ but δε = |δA−δB| � δ is nonzero, ∆A ' ∆B ' ∆ but ∆ε = |∆A−∆B| � ∆ is

nonzero, and also ΩA ' ΩB

√
∆B/∆A ' Ω. Under these conditions, and after adiabatically

eliminating the state amplitudes that are only virtually populated, the fidelity overlap is

found to be

Fπ = | 〈↑s 0| e−iH↑↑T |↑s 0〉 − 〈↑↓0| e−iH↑↓T |↑↓0〉 |

' e−2πδ/Cκ−πκ/2δ cosh2
[πκ

4δ

]
+O

(
∆2
ε , δ

2
ε , γs

)
,

(B30)

where we assume that C � 1. Notice that this solution mirrors that of the previous scheme

but now the two-photon detuning δ plays the same role that the cavity detuning ∆ did prior.

The maximum cooperativity-limited fidelity is then given when 2δ = κ
√
C. In the regime

where C � 1 and γs � γ, the maximum fidelity can be expressed as

Fmax = 1− π√
C
− π2

16

[
T 2
o δ

2
ε

4π2
+

∆2
ε

∆2
− 18

C

]
(B31)

at the optimal gate time of To = (∆/Ω)2(2π/γ
√
C).

The maximum fidelity given by equation (B31) relies on the satisfaction of adiabatic

criteria. Unlike the previous scheme where C � 1 and g ≤ κ was enough to ensure adiabatic

evolution in the ideal detuning regime, the Raman process places additional constraints on

the driving field parameters to achieve adiabatic evolution. Primarily, it is necessary for Ω�

∆. However, the magnitudes of ∆ and Ω are also limited by other system parameters. The

lower bound on ∆ for a given Ω/∆ ratio can be determined by considering the regime δ∆ < g2

where cavity Rabi oscillations cause infidelity. This limit can be solved by adiabatically

eliminating both the excited state amplitudes and the cavity mode amplitude. Likewise,
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the upper bound on ∆ for a given Ω/∆ ratio can be determined by considering the regime

δ∆ < Ω2 where Rabi oscillations induced by the driving field cause infidelity. These limits

can be analytically solved by adiabatically eliminating only the excited state amplitudes.

In the ideal regime where γs/γ � 2(Ω/∆)2, ∆A ' ∆B, and δε � 2πT−1
o , the total gate

fidelity is well-approximated by

Fgate '
1

2

(
cos2

[
πΩ

4∆

]
cos2

[
πΩ2

2δ∆

]
sin

[
π/2

1+g2/δ∆

]
Fπ+ 1

)
' Fmax −

π2

16

(
Ω2

2∆2
+

2Ω4

δ2∆2
+

g4

δ2∆2

) (B32)

where the additional −ΓTo scaling can be added to account for decoherence infidelity. These

extra constraints on the adiabatic evolution are independent of the cavity cooperativity

but they do place bounds on the regime where the fidelity is only limited by the cavity

cooperativity. In addition, they will place bounds on the gate time. Combining the results

from equations (B30) and (B32) provides a very accurate estimate of the fidelity given by

the non-Hermitian Hamiltonian, as shown by the black dashed line in figure 4.6 of the main

text.

The upper bound on ∆ will dictate the maximum possible spectral separation of the

optical transitions. In turn, for a fixed Ω/∆ ratio, ∆ is limited by the condition π∆ <

δ(∆/Ω)2 needed to maintain adiabatic evolution and the ratio Ω/∆ itself is limited from

below by decoherence due to the gate time scaling of T ∝ (∆/Ω)2. To solve for the minimum

∆/Ω and maximum ∆ corresponding to the maximum ∆ε, we optimize the expression

2πΓ∆2

γΩ2
√
C

+
π2Ω4

8δ2∆2
+
π2∆2

ε

16∆2
=

π√
C

(B33)

when 2δ = κ
√
C, where the first term is the infidelity ΓTo due to the effective decoherence

Γ, the second term captures the condition ∆ > Ω from equation (B32) to maintain adiabatic

evolution, and the third term captures the infidelity from equation (B31) due to spectral

separation of the optical transitions. From this expression, we find that the maximum
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spectral separation that will result in an infidelity less than the cooperativity-limited value

is

∆ε =
κγ

πΓ
√

8
, (B34)

which corresponds to Ω/∆ = 2
√

Γ/γ and 2∆ = ∆ε

√
π
√
C. This implies that ∆A/∆B '

1±
√

2/π
√
C, which validates the initial assumption that ∆ε � ∆. The corresponding gate

time for these conditions is T = π/(2Γ
√
C).

In the adiabatic regime, the emission of a photon will collapse the system into the mixed

state ρ̂γκ ' (1/2) |↓〉〈↓|A ⊗ (|↓〉〈↓| + |s〉〈s|)B. Hence the fidelity for a failure is Fγκ = 1/2.

This implies that the maximum error in the non-Hermitian solution Fgate given above is√
F 2

gate + (1− F 2
gate)/4− Fgate ∼ π/4

√
C. For example, where the non-Hermitian approxi-

mation gives 0.9 (0.99), the true fidelity from the full master equation is not more than 0.93

(0.993).
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Chapter 5

Paper 3: Protocols for long-distance

quantum communication with single

167Er ions

5.1 Preface

Quantum repeaters, essential components of a future global quantum network, will likely

require long-lived quantum memories to store the entanglement. These memories also need

to interface with photons in order to allow long-distance transmission of the quantum states.

167Er ions offer both nuclear spin coherence times in the one-second range and photon emis-

sion in the low-loss telecommunications window. Here we propose a quantum repeater ar-

chitecture based on single 167Er ions doped into photonic crystal cavities. We show that our

proposal offers excellent performance and relative ease of implementation.

In this work, I proposed the quantum repeater scheme, performed the repeater rate and

fidelity calculations and wrote the first draft of the manuscript.
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Protocols for long-distance quantum communication

with single 167Er ions

Quantum Science and Technology 5, 045015 (2020)

F. Kimiaee Asadi, S. Wein, and C. Simon

Institute for Quantum Science and Technology,and Department of Physics &

Astronomy, University of Calgary, 2500 University Drive NW, Calgary,

Alberta T2N 1N4, Canada

Abstract

We design a quantum repeater architecture using individual 167Er ions doped into Y2SiO5

crystal. This ion is a promising candidate for a repeater protocol because of its long hyperfine

coherence time in addition to its ability to emit photons within the telecommunication

wavelength range. To distribute entanglement over a long distance, we propose two different

swapping gates between nearby ions using the exchange of virtual cavity photons and the

electric dipole-dipole interaction. We analyze their expected performance, and discuss their

strengths and weaknesses. Then, we show that a post-selection approach can be implemented

to improve the gate fidelity of the virtual photon exchange scheme by monitoring cavity

emission. Finally, we use our results for the swapping gates to estimate the overall fidelity

and distribution rate for the protocol.

5.2 Introduction

Future quantum networks will require the ability of long-distance communication [5, 6, 111].

Although we have an existing global fiber optics network for classical communication, the

bottleneck for long-distance quantum communication is the unavoidable transmission loss
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through fibers. Classical communication overcomes this problem by amplifying signals, how-

ever, due to the no cloning theorem the use of amplifiers is prohibited in quantum com-

munication. Therefore, to circumvent this exponential decay of transmitted photons, the

use of a quantum repeater has been suggested [7, 19]. Quantum repeaters aim to estab-

lish entanglement between two distant locations. Most of the quantum repeater protocols

that have been proposed so far focus on atomic ensemble-based quantum memories and

linear optics for entanglement generation and distribution [18]. This is an attractive route

as it requires only a few relatively simple components. However, when using linear optics,

the success probability for entanglement swapping cannot exceed 1/2, resulting in relatively

low entanglement distribution rates. Using single-emitter-based quantum repeater proto-

cols, on the other hand, one can perform entanglement swapping with a higher success

probability[155, 45, 114, 156, 157, 158].

Several works have demonstrated the ability to individually address single rare-earth

(RE) ions [20, 23, 21, 22, 66]. RE ions in general have a smaller sensitivity to lattice phonons

and experience little spectral diffusion [61] compared to quantum dots and NV centers in

diamond. In addition, most other quantum systems, require the use of microwave (MW)

to optical transducers e.g., superconducting qubits [158] or the frequency down conversion

to telecommunication wavelength, for instance, in defects in diamond and quantum dots

[159, 160], to match the low-loss wavelength range of fibers (needless to say that, there are

still certain quantum dots such as InAs/InP quantum dot [161], and defects like T-center and

G-center defects in silicon [162, 163], which emit photons at telecom wavelengths). However,

the erbium (Er) RE ion has a unique feature, which is its ability to emit photons in the

conventional telecommunication wavelength window. Moreover, significant enhancements of

RE ion emission rates, including Er, have been demonstrated [66, 164, 165, 166, 81].

In 168Er with zero nuclear spin, the relevant coherence time is that of the electronic spin.

Therefore, until recently, one challenge for using an 168Er ion as a quantum memory was

its short spin coherence time. For a single 168Er ion doped in yttrium orthosilicate Y2SiO5
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crystal (168Er:YSO) in the presence of a strong magnetic field, a spin coherence lifetime

of a few milliseconds is expected in low temperatures, which is not quite long enough for

a repeater protocol. Therefore, in our previous work, we proposed a quantum repeater

architecture combining an individual 168Er ion and europium (151Eu) RE ion, which serve as

a spin-photon interface and long-term memory, respectively [114]. In this scheme to perform

a swapping gate using the electric dipole-dipole interaction, Er-Eu ions should be close-lying.

Hence, fabricating and identifying suitable Er-Eu ion pairs is a main challenge of this scheme.

Recently, a hyperfine coherence time of 1.3 s has been measured for an ensemble of

167Er:YSO using a strong external magnetic field [92]. Instead of applying a large magnetic

field, it is also possible to extend the coherence time using the zero first-order Zeeman

(ZEFOZ) technique. For the 167Er ion, transitions with ZEFOZ shift exist with and without

the external magnetic field [167]. The long hyperfine coherence time of 167Er suggests that

it could serve as both the spin-photon interface emitting telecom photons and the long-lived

quantum memory needed to implement a repeater protocol. These advantages, in addition

to the narrow optical transitions, have made 167Er:YSO a very promising material platform

for quantum communication.

In this paper, we propose and analyze a scheme to design quantum repeaters using single

167Er ions. We consider individual 167Er ions doped into a high quality factor YSO photonic

crystal cavity. The presence of the cavity improves the intrinsic low radiative decay rate of

the Er ion, increases the single-photon indistinguishability, and enhances the collection of

photons into the desired transmission channel. We first explain how to generate entanglement

between remote 167Er ions over elementary links. Entanglement swapping between two ions

within each cavity is then performed to extend the range of entanglement to successively

longer distances. Building on earlier work, we propose two different schemes to perform the

entanglement swapping step of the repeater protocol deterministically. In the first scheme the

controlled interaction between ions is achieved by the exchange of virtual cavity photons.

In the second scheme the interaction is mediated by the electric dipole-dipole interaction
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between the ions. We also propose a method to improve the fidelity of the first scheme at

the cost of some efficiency by monitoring cavity emission in order to post-select successful

gates. We then determine the fidelity of each swapping gate scheme and finally estimate the

end-to-end fidelity of the proposed single Er repeater protocol.

The paper is organized as follows: In Sec 5.3, we introduce our quantum repeater pro-

tocol. Sections 5.4 and 5.5 deal with the estimation of the fidelity and efficiency, and the

entanglement generation rate of the repeater protocol, respectively. The implementation

of the protocol as well as the advantages and disadvantages of each of the entanglement

swapping schemes are discussed in Sec.5.6. We conclude with future directions in Sec. 5.7

5.3 Proposal

Each node consists of an optical cavity fabricated in the YSO host crystal that is doped with

a pair of 167Er ions.

In the presence of a strong magnetic field along the D1 axis and temperature of 1.6 K

or less, the ground state electron spin freezes at the lower level. In our scheme, the mI = 7
2

and mI = 5
2

hyperfine states of the lowest spin state are used as qubit states |↑〉 and |↓〉,

respectively, as shown in Fig5.1.b. The oscillator strength for ∆mI = −1(+1) transitions

relative to the ∆mI = 0 is about 2.5% (3.1%) for transitions involving the mI = 7
2

hyperfine

state [92]. Therefore, with the use of a cavity, it is possible to utilize an L-type system,

where the excited state has a high probability to decay to the initial ground state. This

probability can be further increased by using a resonant cavity and therefore, we can ignore

the other weak transitions.

5.3.1 Entanglement Generation

To generate entanglement over an elementary link between Er ions in remote cavities, such

as Eri and Eri−1, we follow the same scheme as [73, 24]. Initially, the |↑〉–|e〉 transition of
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4 I13/2
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ms = −1/ 2

Figure 5.1: a. In each cavity there is a pair of 167Er ions (black circles). Black lines represent
entanglement between degenerate ions over elementary links. b. Energy level structure of
the ion. In each ion the |↑〉–|e〉 transition is coupled to the cavity.

each ion is coupled to its respective cavity. First, both ions are optically pumped into the

mI = 7
2

hyperfine ground state.

Using optical Raman pulses, each ion is then prepared in the superposition of |↑〉 and

|↓〉 states. Ions are then excited to the |e〉 state using a short laser pulse resonant with the

|↑〉–|e〉 transition. After sufficient time has passed to allow a possible photon to be emitted

through the cavity mode, optical Raman pulses are applied to flip the qubit state. This is

followed by another optical excitation to the |e〉 state to emit a possible photon. The second

round of excitation is key to overcoming infidelity caused by photon loss in the fiber in the

event that both ions emit a photon. The emitted photons are then collected and transmitted

to a beam splitter located half-way in between the ions. The detection of two consecutive

single photons will then leave remote ions in an entangled Bell state [168]

|ψ±〉Eri,Eri−1
=

1√
2

(|↑↓〉 ± |↑↓〉). (5.1)
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Here the sign + (-) depends on whether the same (different) detectors detect photons.

5.3.2 Entanglement swapping

After generating entanglement over elementary links, entanglement is swapped between

nearby ions within each cavity (e.g., Eri and Eri+1 in Fig. 5.1.a). This can be done by

performing a CNOT gate between the ions and then measuring the control (target) ion in

the X (Z) basis. Measurement in the Z basis is achieved by the optical excitation of ions

from the ground state |↑〉 to the excited state |e〉 while this transition is coupled to the

cavity. To perform the spin readout in X basis, we need to coherently rotate the ion (to

make |↓〉 → 1/
√

2(|↓〉 − |↑〉) and |↑〉 → 1/
√

2(|↑〉+ |↓〉)) followed by a measurement in the Z

basis. Depending on the result of measurements (i.e., |↑〉 or |↓〉), and the initial entangled

states over elementary links (i.e., |ψ±〉 given in Eq.5.1), the entangled state between the

outer nodes will be projected onto a Bell state.

In the following, we analyze two different approaches to achieve the required interaction

to perform a CNOT gate between ions. Performing a deterministic gate using the virtual

exchange of photons is discussed in the following. We also discuss how monitoring the cavity

emission can improve the fidelity of this scheme. Then, we explain another scheme to perform

a deterministic gate using the electric dipole-dipole interaction.

5.3.2.1 Virtual Photon Exchange

Since both Er ions of a single node are coupled to the same cavity, the interaction between

these two ions can be mediated by the exchange of virtual cavity photons [169, 129]. Using

this method, it is possible to perform a controlled phase-flip (CZ) gate between Er ions. A

CZ gate combined with two Hadamard gates can then be used to perform a CNOT gate;

HEri+1
⊗ CZEri,Eri+1

⊗HEri+1
.

To perform the CZ gate, the |↑〉–|e〉 transitions of the ions are brought into resonance

while both are dispersively coupled to a cavity mode (with the cavity detuning ∆). Then,
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Figure 5.2: To perform a CZ gate using the virtual photon exchange, we bring the |↑〉–|e〉
transition of the ions into resonance with each other while ions are dispersively coupled to
the cavity. Using an optical π pulse, we then excite one of the ions and let the exchange of
virtual cavity photons perform a π phase shift on the state.

we excite the first ion using an optical π pulse resonant with the |↑〉–|e〉 transition, as shown

in Fig.5.2. If the joint state of the ions was |↑↑〉, then after exciting the ion, the virtual

exchange of a cavity photon between degenerate states |↑ e〉 and |e ↑〉 adiabatically performs

a π phase shift on the state. Finally, another optical π pulse brings the excited qubit back

to the ground state after a delay time.

So long as the splitting between states |e ↓〉 and |↑ e′〉 (which is δeg = (we−wg)) is large

enough and the system has negligible spin-flip transitions coupled to the cavity, the other

joint states of ions will not be affected by the pulses 1 and 2 [169]. The unitary operator of

this phase-flip gate can be written as UCZ(Eri,Eri+1)
= − |↑↑〉〈↑↑|+|↑↓〉〈↑↓|+|↓↑〉〈↓↑|+|↓↓〉〈↓↓|.

After performing the CNOT gate, to complete the swapping process we measure Eri in

the X basis and Eri+1 in the Z basis.

The two main processes limiting the fidelity of the CZ gate are cavity mode dissipation

and spontaneous emission. If the cavity detuning is too small, the Purcell enhancement will

cause the ions to decay into the cavity mode before the completion of the phase flip. On

the other hand, if the detuning is too large, the dissipative interaction will be too slow to

complete the phase flip before spontaneous emission occurs. The former limitation can be
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relaxed if the cavity emission is efficiently collected and monitored during the gate. Doing

so allows for the rejection of gate attempts where cavity emission occurred, thus improving

fidelity at the cost of some efficiency. Adding such a post-selection scheme also allows for the

scheme to be performed with a smaller cavity detuning, which in turn, decreases the gate

time and makes the scheme more robust against other decoherence processes.

5.3.2.2 Electric dipole-dipole interaction

Optically exciting an Er ion changes its permanent electric dipole moment. As a result, the

electric field environment around the ion will change. This change in the local electric field

can impact other nearby ions by shifting their optical transition frequencies by [76]:

∆ν =
∆µEri∆µEri+1

4πεε0hr3

((
µ̂Eri ·µ̂Eri+1

)
− 3 (µ̂Eri ·r̂)

(
µ̂Eri+1

·r̂
))
, (5.2)

where Eri is the excited ion, Er1+i is its nearby ion, ∆µ is the change of the permanent

electric dipole moment, r is the distance between ions, ε0 is vacuum permittivity, h is the

Planck constant, and ε is the dielectric constant. Using this modification in the transition

frequency, one can perform a deterministic CNOT gate between nearby qubits. For both

ions, we consider that the transition |↑〉–|e′〉 is detuned from the cavity. First, we apply a

short optical π pulse resonant with the |↑〉–|e′〉 transition of the control ion (e.g., Eri), as

shown in Fig. 5.3. Then, using pulses 2–4, we swap population in the target ion. Finally,

pulse 5 brings the control ion back to its ground state.

This process can be interrupted by the electric dipole-dipole interaction if i) the control

ion is in the state |↑〉 and ii) the ions are sufficiently close to each other. In this case, if

the shift in the transition frequency ∆ν of the target ion is large compared to the transition

linewidth, pulses 2–4 do not affect the system [75, 170].

The overall result of this interaction is that the state of the target qubit is flipped if the

control qubit is in the state |↓〉. After performing the CNOT gate, we need to also measure
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Figure 5.3: Pulse sequence to perform a CNOT gate between close-lying Eri (control) and
Er1+i (target) ions. When Eri is in the state |↑〉, due to the electric dipole-dipole interaction
pulses 2-4 have no effect of the target ion. Please note that all pulses shown here are optical
π pulses. The double arrow for pulse 3 illustrates that the pulse can either take the state |↑〉
to |e〉 or |e〉 to |↑〉.

the control (target) ion in the X (Z) basis.

5.4 Fidelity and efficiency

Here we estimate the fidelity and efficiency for each step as well as the end-to-end fidelity

of the protocol. We also show numerically how the fidelity of the virtual photon exchange

swapping gate can be improved by monitoring the cavity emission. In this section, fidelity

is computed as F = 〈ψ| ρ̂ |ψ〉, where ρ̂ is the imperfect final state and |ψ〉 is the expected

pure state.

5.4.1 Entanglement generation

When spin decoherence is negligible on the time scale of the optical dynamics, and the system

operates in the bad-cavity regime, the fidelity of the Barrett-Kok entanglement generation
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scheme between two ions identical other than for emission wavelength is given by [168]:

Fentangle =
1

2

(
1 +

γ′2

Γ′2 + ∆2
w

)
, (5.3)

where γ′ = γrFp + γ is the Purcell-enhanced optical decay rate of the ion in the presence of

the cavity, γ = γr + γnr is the bare ion decay rate, γr (γnr) is the radiative (non-radiative)

component of the decay rate, Γ′ = γ′ + 2γ? is the FWHM of the Purcell-enhanced zero-

phonon line (ZPL), and ∆w is the difference between the optical transition frequencies of the

ions. We define γ? as the optical pure dephasing rate and Fp = R/γr as the Purcell factor,

where R = 4g2/(κ+Γ) is the effective transfer rate of population between the ion and cavity

[101], Γ = γ+2γ? is the FWHM of the ZPL before enhancement, g is the cavity-ion coupling

rate, and κ is the cavity decay rate. In the regime where κ � Γ, the Purcell factor can be

written as Fp = 4g2/(γrκ).

The entanglement generation fidelity is related to the mean wavepacket overlap M ′ of

Purcell-enhanced photons from each ionM ′ = Γ′γ′/(Γ′
2
+∆2

w) [168] by Fentangle = (1+M ′I ′)/2

where I ′ = γ′/Γ′ is the indistinguishability of the Purcell-enhanced photons from one ion.

Note that the fidelity is less than or equal to (1 + M ′)/2, which would be the expected

fidelity when accounting for interference visibility only [24]. This is because the optical

pure dephasing of the emitter degrades both the temporal coherence of the emitted photons

and the spin coherence of the ion state as a consequence of the spin-photon entanglement.

Knowing this, the quantity I ′ in Fentangle actually accounts for the degredation of the ion

spin coherence while M ′ ≤ I ′ quantifies the reduced interference visibility of photons from

separate ions. In general, to have high interference visibility, spectral diffusion of the optical

transition needs to be controlled. In our system, however, we expect the spectral diffusion

to be negligible (see Sec.5.6.1 for more information).

The presence of the cavity helps improve the single-photon indistinguishability as I ′ =

I(1 + ζFp)/(1 + IζFp) where I = γ/Γ is the single-photon indistinguishability in the absence
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Figure 5.4: Fidelity of the entanglement generation scheme with respect to the Purcell factor.
Here we assume ∆w = 0.

of the cavity and ζ = γr/γ. This in turn improves the mean wavepacket overlap and

consequently improves the entanglement generation fidelity (see Fig. 5.4).

We estimate γ? using the relation γ? = 1/T2 − γ/2 = 2π × 32 Hz, where T2 = 4 ms

is the optical coherence time (for B=7 T) [102], and γ = 2π × 14 Hz [25]. Considering

γr = 2π × 3 Hz [74], γnr = 2π × 11 Hz and ∆ω = 0 the entanglement generation fidelity

would be Fentangle =0.996 for Fp = 5000, as shown in Fig. 5.4.

The entanglement generation efficiency is given by pen = η2/2, where η = pηtηd, p =

ηcFpγr/γ
′ is the success probability of single-photon emission into a collection fibre mode

(see Sec. 5.6.3), ηc is the collection efficiency, ηt = e
− L0

2Latt is the transmission efficiency in

the fibre, Latt ≈ 22 km is the attenuation length (corresponding to a loss of 0.2 dB/km),

and ηd is the detection efficiency.

Before the first entanglement generation attempt and then again after every unsuccessful

attempt, the ions must be initialized in the ground state |↑〉. For an ion in a cavity with a

large Purcell enhancement, the initialization fidelity after applying a single pulse exciting all

ground states other than |↑〉 to |e〉 is given by Finit ≥ (γrFp +βγ)(1− e−Tinitγ
′
)/γ′ where Tinit

is the initialization time needed for the excited state to decay and β ≥ 0.9 is the branching
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ratio without a cavity [87]. For Fp = 5000 and Tinit = 8/γ′ = 85µs the fidelity can be as

high as Finit ≥ 0.9996. This small infidelity is negligible compared to Fentangle, however Tinit

can slightly reduce the repeater rate for small distances (see Sec. 5.5 for more information).

For this fidelity estimation, we ignore the ground state T1 thermalization time, which is on

the order of seconds [92] and is negligible compared to the Purcell-enhanced lifetime.

5.4.2 Virtual photon exchange

While performing the CNOT gate, there is always some infidelity due to the Hadamard gates

which do not depend on the scheme. Here we assume the the fidelity of the CNOT gate will

be dominated by the phase gate step. In the absence of excess dephasing and in the bad-

cavity regime where κ > g, the cooperativity-limited gate fidelity is Fmax = 1−2π/
√
C [169]

where C = 4g2/(κγ) � 1. This limit is reached when the ions are detuned from the cavity

by ∆ = κ
√
C/2, which implies that the gate time Tgate = π∆/g2 becomes T0 = 2π/(γ

√
C)

under the optimal conditions. Note that in this work we define fidelity to be consistent

with Ref. [168] and so it is the square of the fidelity as defined in Ref. [169]. Hence some

expressions in this section differ from that of Ref. [169] accordingly.

A slight detuning ∆w between ions within the cavity or incidental cavity coupling of

another transition detuned by δeg can both cause imperfections in the phase evolution of the

CZ gate. To lowest order for the infidelity contributions due to finite C, ∆w, and δeg the

gate fidelity maximum is given by [169]

Fmax = 1− 2π√
C
− 6π2

32

[(
T0∆w

2π

)2

+

(
2π

T0δeg

)2
]
. (5.4)

These imperfections reduce the maximum achievable fidelity but they do not change the

ideal ion-cavity detuning. On the other hand, some excess dephasing can both reduce the

maximum fidelity and favor shorter gate times, which in turn reduces the optimal ion-cavity

detuning.
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a.

b.

Figure 5.5: Cavity-mediated virtual photon exchange controlled phase-flip gate. a. Phase-
flip gate fidelity Fgate as a function of cavity detuning ∆ for no post-selection (blue curve,
pηd = 0) and perfect post-selection (green curve, pηd = 1) of gates where no emission was
observed from the cavity. The black dashed arrow shows the path that the fidelity peak
follows when increasing the cavity monitoring efficiency pηd from 0 to 1 in the direction
of the arrow. The thin gray lines show the case where δeg = κ/50 as opposed to δeg & κ
of the colored solid lines. b. The maximum fidelity for a given monitoring efficiency pηd
corresponding to the dashed arrow in panel a. plotted alongside the corresponding gate
efficiency pgate and gate time Tgate/T0 where T0 is the optimal gate time for the case of no
post-selection (pηd = 0). The cavity mediating the interaction is in the bad cavity regime
with g/κ = 10−1 and a cooperativity of C = 9 × 104. For this simulation we assumed an
optical pure dephasing rate of γ? = 2.3γ for both ions.
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Although the methods used in Ref. [169] cannot directly analytically account for the

excess optical pure dephasing of Er ions, in the regime where the gate time Tgate is small

compared to 1/γ?, the resulting infidelity is proportional to Tgateγ
?. Using the solution

for the detuning-dependent fidelity of Ref. [169], we find that the gate fidelity for when

Tgate∆w � 2π and Tgateδeg � 2π that includes pure dephasing is closely approximated by

Fgate =
1

4
(e−2π∆/Cκ−πκ/2∆ + 1)2 − 0.29γ?Tgate, (5.5)

where C = 4g2/(κγ) is the cavity cooperativity when neglecting pure dephasing and Tgate

can be written in terms of C as Tgate = 4π∆/(Cκγ). The coefficient 0.29 is an estimate

obtained by comparing the analytic approximation to the numeric solution from simulating

the master equation far in the bad-cavity regime.

Alternatively, optical pure dephasing can be seen to effectively reduce the cavity coop-

erativity. However, because pure dephasing does not affect the gate fidelity in the same

way as spontaneous emission, replacing C by the usual definition for the reduced cavity

cooperativity 4g2/(κΓ) is not accurate. Instead, we find that replacing C by the quantity

C? = Cγ/(γ + 0.61γ?) provides an accurate analytic approximation, where again the coef-

ficient 0.61 is estimated by comparison to the full numeric solution. The fact that 0.61 is

smaller than 2 suggests that pure dephasing has much less of a degrading effect than would

be naively expected. The maximum fidelity when accounting for pure dephasing then be-

comes Fmax = 1 − 2π/
√
C? and is achieved at the detuning ∆ = κ

√
C?/2 which implies an

optimal gate time of T0 = πκ
√
C?/(2g2) = 2π

√
C?/(Cγ).

For a given cavity cooperativity, the maximum fidelity for the virtual photon exchange

gate can be increased if successful attempts are post-selected when no cavity emission is

observed during the interaction. To estimate the amount of improvement, we numerically

simulated the state of the system given that a detector monitoring the cavity mode emission

did not measure a photon.
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We consider the Hamiltonian in [169]: Ĥ = ĤA + ĤB + ĤC + ĤI where Ĥk is the kth ion

Hamiltonian, ĤC is the cavity mode Hamiltonian and ĤI is the cavity-ion interaction. The

four-level ion Hamiltonian is

Ĥk = ωkσ̂
†
↑k σ̂↑k + (ωk + ωe)σ̂

†
↓k σ̂↓k + ωgσ̂

†
↑↓k σ̂↑↓k , (5.6)

where ωk is the frequency separation between |↑〉k and |e〉k, ωe is the separation between |e〉k

and |e′〉k, and ωg is the separation between |↑〉k and |↓〉k. Also, σ̂↓k |e′〉k = |↓〉k, σ̂↑k |e〉 = |↑〉k,

and σ̂↑↓k |↓〉k = |↑〉k (see figure 5.2). The cavity homogeneous evolution is ĤC = ωcâ
†â for

cavity frequency ωc, cavity photon creation (annihilation) operator â† (â), and the interaction

term is

ĤI =
∑
j∈↑,↓

∑
k∈A,B

gjk σ̂
†
jk
â+ h.c., (5.7)

where g↓k is the cavity coupling rate of the |↓〉–|e′〉 transition to the cavity mode and g↑k

is the cavity coupling rate of the |↑〉–|e〉 transition to the cavity mode. In addition to the

spontaneous emission rate γk and cavity linewidth κ, we explicitly include an optical pure

dephasing rate γ? in the total Lindblad master equation given by

ρ̇ = −i[Ĥ, ρ̂] + κD(â)ρ̂+
∑
k,j

γjkD(σ̂jk)ρ̂+ 2γ?kD(σ̂†↑k σ̂↑k + σ̂†↓k σ̂↓k)ρ̂ (5.8)

where D(Â)ρ̂ = Âρ̂Â†−{Â†Â, ρ̂}/2. This master equation defines the superoperator L where

ρ̇ = Lρ̂.

Using the method of conditional evolution [171, 172, 168] the unnormalized conditional

state ρ̂0(t) at time t given that no emission was observed from the cavity since time t0 is

ρ̂0(t) = e(t−t0)(L−pηdκS)ρ̂(t0) (5.9)

where Sρ̂ = âρ̂â† is the cavity photon collapse superoperator, p is the probability of receiving
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a photon emitted by the cavity and ηd is the detector efficiency. Then the probability that

no photon is emitted from the cavity during the gate duration t− t0 = Tgate = π∆/g2 is

pgate(Tgate) = Tr(ρ̂0(Tgate)), (5.10)

where we assume that g = gjk is the same for all transitions. In this case the final state after

a successful gate is

ρ̂gate =
1

pgate

ρ̂0(Tgate). (5.11)

Here assuming κ = 2π × 16 MHz, for a quality factor of 1.2 × 107 and C ' 9 × 104,

a cavity with a length of ∼ 5µm is required (for more information see Sec.5.6.1). In the

bad-cavity regime where g/κ = 10−1, perfect monitoring efficiency pηd = 1 improves the

maximum gate fidelity from 0.968 to 0.995 while also decreasing the optimal detuning from

about 100κ to 20κ, corresponding to a decrease in optimal gate time from Tgate = 160µs to

Tgate = 32µs (see figure 5.5). These improvements come at the cost of the scheme becoming

non-deterministic with an efficiency of 0.86.

5.4.3 Electric dipole-dipole interaction

The achievable fidelity for this CNOT gate is [114]:

Fgate ' 1− Tgate

80
(42γ + 25γ? + 25χ)− 43π2

128

(
δν

∆ν

)2

(5.12)

where Tgate = 5π/Ω = 5π
√

3/∆ν is the gate time, Ω is the Rabi frequency for optical

transitions (here we assumed Ω↑ = Ω↓ = Ω), ∆ν is the shift in the transition frequency, δν

is a potential mischaracterization from the true value of ∆ν, and χ is the spin decoherence

rate of the ion. Eq. 5.12 is valid to first order in γ, γ?, χ � Ω ∝ ∆ν and second-order

in δν/∆ν � 1. Considering χ = 2π × 0.12 Hz (for B=7 T) [92], γ = 2π × 14 Hz [25],

γ? = 2π×32 Hz, ∆ν = 250 KHz (corresponding to r = 5 nm) and δν/∆ν = 0.02 the fidelity
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Figure 5.6: Fidelity of the electric dipole-dipole interaction gate as a function of the distance
between ions. Here we assume δν/(∆ν) = 0.02.

and gate time are Fgate = 0.987 and Tgate = 108µs, respectively. Fig. 5.6 shows the gate

fidelity as a function of the separation between ions.

5.4.4 State readout

For state readout, we assume that the |↑〉–|e〉 transition is resonant with the cavity while

|↓〉–|e′〉 is not. By exciting |↑〉 with a sequence of π-pulses and monitoring emission as it

decays back to |↑〉, the intensity contrast can be used to distinguish |↑〉 from |↓〉 with high

fidelity [106, 165].

Let B (D) denote the measurement result indicating ↑ (↓). Then the fidelity is the

conditional probability P (↑ |B) (P (↓ |D)) of being in state ↑ (↓) given the measurement

outcome B (D). The total probability of success is preadout = P (B) + P (D) and we define

the total fidelity as the weighted average of the conditional fidelity Freadout = (P (B)P (↑

|B) + P (D)P (↓ |D))/preadout. If we assume that P (↑) = P (↓) = 1/2 and events B and

D are complementary resulting in a deterministic scheme where preadout = 1, then using

Bayes’ theorem: P (i|j) = P (i)P (j|i)/P (j) where i ∈ {↑, ↓} and j ∈ {B, D}, we have

Freadout = (P (B|↑) + P (D|↓))/2.
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Suppose that the detector has a probability of ξ � 1 to detect a photon when the ion is

in state |↓〉 during a single cycle; for example, due to noise from excitation or dark counts.

On the other hand, there is a chance pηd � ξ that a single cycle of |↑〉–|e〉 results in a

single-photon detection. A simple readout scheme is then to excite the ion a fixed number

of N times and define event B to be the detection of one or more photons and event D as

the complimentary (no photons). The state |↓〉 results in D if no detection occurs and so

P (D|↓) = (1− ξ)N ' 1−Nξ. On the other hand, the probability to see at least one photon

after N pulses is given by P (B|↑) = 1−(1−pηd)N . Hence Freadout = 1−Nξ/2−(1−pηd)N/2.

For a fixed number of N pulses with a repetition period of Tp, the fixed readout time is

Treadout = NTp when assuming that the measurement time after the last pulse is also Tp. To

optimize this readout time, it is possible to increase the repetition rate. However, doing so

risks coherently de-exciting the ion when Tp . 1/γ′, effectively reducing the probability of

emitting a photon. Considering that the probability for decay between pulses separated by

Tp is 1− e−Tpγ′ we find that the probability for emission between the kth and (k+ 1)th pulse

is ηp(k) = (1− (−1)ke−kTpγ
′
) tanh(Tpγ

′/2). Then the fidelity becomes Freadout ' 1−Nξ/2−

(1/2)
∏N

k=1[1 − pηdηp(k)]. Using a cavity with Fp = 5000, the ion lifetime is 1/γ′ ' 10.6µs.

Then for a readout time of Treadout = 150µs using N = 7 pulses with Tp = 21.4µs, the fidelity

can be as high as Freadout = 0.9998 for pηd = 0.9 and ξ = 10−5 (see Fig. 5.7).

5.4.5 End-to-end repeater fidelity

To estimate the fidelity of the final entangled state over the entire distance L, we multiply

the fidelities of all the individual steps for a repeater protocol as follows

Fend-to-end = (Finit)
2m × (Fentangle)

m × (Fswap)m−1 , (5.13)

where m is the number of elementary links of length L0. Note that Eq.5.13 is an estimation

of the end-to-end fidelity that is only accurate at high fidelity regime. However, it still

gives us a good approximation of the relative fidelity of the different cases. Here Fswap
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Figure 5.7: Readout fidelity Freadout as a function of pulse separation Tp for pηd = 0.9,
ξ = 10−5, and a Purcell factor of Fp = 5000 corresponding to 1/γ′ = 10.6µs. The points
show the valid discrete values associated with an integer number of total pulses N . The
curves connecting the points are given by the continuous extension of Freadout to help guide
the eye.

includes two spin read-out measurements; therefore, assuming dark counts are negligible,

Fswap = Fgate× (Freadout)
2 where Fgate is the fidelity of performing the swapping gate for each

scheme (i.e., Eqs. (5.4) and (5.12)). The fidelity of the entanglement generation needs to be

established over m elementary links of length L0. It has been shown that, even without the

use of error correction protocols, the coherence time of 1 s is more than enough to distribute

entanglement over the distance of L = 1000 km [173]. Hence, we neglect the effect of the

finite coherence time of the quantum memory due to the long hyperfine coherence time of

the 167Er ion [92].

Fig. 5.8 shows the end-to-end fidelity estimation of the repeater protocol for different

swapping schemes studied here as a function of the number of elementary links m for Fp =

4.5 × 105 and Fp = 5 × 103. As shown, the end-to-end fidelity of virtual photon exchange

scheme increases significantly by monitoring the cavity emission to post-select successful

gates. We have also shown the end-to-end fidelity of the scheme of Ref [114]. In this case the

Eq. (5.13) changes to Fend-to-end = (Finit)
3m+1 × (Fentangle)

m × (Fswap)m−1 × (Fmap)m/2 where
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Fswap = Fmap = (Fgate × Freadout)
2 as each of these steps require performing two CNOT gates

and two measurements (note that for the entanglement mapping, one needs to perform the

gate and measurement at each end of the link) [114]. To further increase the fidelity of the

repeater schemes, purification protocols could be used [174].
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Figure 5.8: Estimation of the end-to-end fidelity of the repeater scheme with respect to the
number of elementary links. Shown are the virtual photon exchange scheme post-selected
on no cavity emission for Fp = 4.5 × 105 (A), and Fp = 5 × 103 (E), the virtual photon
exchange scheme (without post-selection) for Fp = 4.5× 105 (C), and Fp = 5× 103 (F), the
electric dipole-dipole interaction scheme for Fp = 5 × 103 (B), and also the scheme of Ref
[114] for Fp = 5× 103 (D). Here we assumed pηd = 0.9, N = 7, Tp = 2/γ′, ξ = 10−5, ∆w = 0
and Tinit = 8/γ′. For europium (Eu) ions in ref [114], we also assumed γEu = 2π × 80 Hz,
γ?Eu = 2π × 19 Hz and χEu = 0 [74, 40].

5.5 Entanglement generation rate

The average time to distribute entanglement over two elementary links of length L0 is [18]

〈T 〉2L0
=

(
3

2

)
L0/c+ Tinit

penps
, (5.14)

where c = 2 × 108 m
s
, pen is the success probability of entanglement generation over an

elementary link (see Sec.5.4.1), and ps = pgate is the success probability of the entanglement

112



300 400 500 600 700 800 900
0.1

1

10

100

1000

A

CB

D

Figure 5.9: Comparison of the entanglement generation rate as a function of the distribution
distance for single rare-earth ion-based repeater protocols. Our protocol for the deterministic
entanglement swapping (pgate = 1) (A) is compared with the the protocol of the Ref.[114]
(B). Also shown is our protocol for the probabilistic swapping gate (pgate = 0.93) (C), and
finally the direct transmission in a fiber with a 1 GHz single-photon source (D). Here we
assumed m = 8 and Tinit = 8/γ′. For lines A and B we set Fp = 5 × 103 and for line C we
assumed Fp = 4.5× 105.

swapping. The entanglement generation time over the entire distance L = mL0, where m is

the number of links, is then given by [175]

〈T 〉L = f(m)
L0/c+ Tinit

pen pm−1
s

, (5.15)

where f(m) = 0.64 log2(m)+0.83 is a good approximation of the average number of attempts

to successfully generate entanglement (this factor reduces to 3/2 for the case of m = 2).

Here we assumed that the entanglement generation process could be performed on neigh-

boring links at the same time. On the other hand, if entanglement generation should be

established on neighboring links one by one (which is the case when spatial resolution of ions

is not possible), then Eq. (5.15) changes to

〈T 〉L = 2f(m/2)
L0/c+ Tinit

pen pm−1
s

, (5.16)
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Note that here the swapping time (which includes the times required to perform the gate

and read out the ions) is negligible compared to the time it takes to establish two neighboring

links. As an example, even for the extreme case of L = 300 km and m = 8, the time needed

to establish two neigboring links is 3.82 ms, which is quite large compare to the gate and

readout times discussed in Sec.5.4. This waiting time increases significantly by increasing

the length of the elementary links. For instance, when L = 500 km and m = 8, the waiting

time would be 19.83 ms.

In Fig.5.9, using Eq.(5.15) we have plotted the entanglement generation rates of our

proposed scheme as a function of distance for m = 8 and compared the result with the rates

achieved using the single Er-Eu scheme [114]. Line A shows the rate of our protocol for

deterministic gates with pgate = 1 (i.e., virtual photon exchange without cavity monitoring

or the electric dipole interaction), while B shows the rate for the protocol of Ref.[114]. Shown

is also the repeater rates for the virtual photon exchange scheme post-selected on no cavity

emission C. Here we put pgate = 0.93 which corresponds to the Fp = 4.5× 105 and pηd = 0.9,

as shown in Fig.5.5. Note that, in terms of the efficiency, a high Purcell factor is not required

for the other schemes. We have also plotted the rate expected using the direct transmission

of photons with a 1 GHz photon rate (D) [176].

In the scheme of Ref. [114], the process of measuring the communication ion (168Er),

after mapping its state to the memory ion (151Eu), introduced an additional source of inef-

ficiency to the system. In our proposed scheme, however, the single 167Er ions serve as both

communication and memory ions; thus, the scaling with distance is better. By increasing

the number of cycling transitions, the success probability of the measurement set improves,

and the difference in rates between the two schemes becomes less drastic. However, even in

this case, the implementation of the current proposed scheme is more experimentally feasible

than the Er-Eu scheme because it does not require fabricating and identifying a close-lying

pair of two species of ions.
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5.6 Implementation

5.6.1 Entanglement generation

To perform entanglement generation between Eri and Eri−1, for example, as illustrated in

Fig5.1.a, we need to selectively optically address one ion at a time. Therefore, we either need

to spatially address ions of the same cavity or put Eri+1 and Eri−2 ions out of resonance

with the cavities they are placed in. One option to achieve the latter is through applying an

electric field gradient to each cavity-ion system [62]. The Stark shift will then change the

optical transition frequency of the ion out of resonance with the cavity.

Then, we need to prepare each ion in the ground state |↑〉. Using frequency selection,

pumping of 95±3% of the population into the mI = 7
2

hyperfine state has been demonstrated

for an ensemble of Er ions [92]. For an individual Er in the presence of a high-Purcell-factor

cavity, a much higher percentage is expected.

The entanglement generation step also requires the excitation of the |↑〉–|e〉 transition for

the ion which is resonant with the cavity. In order to avoid exciting both ground states to

their respective excited states, the pulse spectral width should be much less than the differ-

ence between the ground and excited hyperfine level splittings. A cavity with a sufficiently

small linewidth can also improve the branching ratio by enhancing one of the two transitions.

For example, for the ground and excited states splitting difference of δeg ' 2π × 100 MHz

[92], a cavity with a linewidth of κ (FWHM) centered on one transition can enhance that

transition ∼ 1 + 4(δeg/κ)2 times more than the transition detuned by δeg.

For rare-earth ions doped YSO photonic crystals cavities, quality factor of 27, 000 has

been demonstrated [177]. Theoretical predictions, however, expect the quality factor as high

as 105, which could be improved even further by, for example, post-fabrication annealing or

using materials with higher refractive indexes [178, 177]. Besides, quality factor exceeding

1.1× 107 has been measured in silicon photonic crystal nanocavities [179].

For Er ions doped into YSO crystal, Böttger et al [180] showed that the spectral diffu-
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sion decreases with increasing external magnetic field and decreasing temperature, and is

undetectable at B = 3 T and T = 1.6 K even for a non-negligible Er concentration i.e.,

0.0015% (see Fig.2.c of the Ref [180]). The spectral diffusion should be even lower under our

conditions, where we only deal with individual Er ions at high fields and low temperatures.

Hence, in this paper, we assume that the spectral diffusion is negligible compared to the

Γ′ (i.e., Purcell enhanced ZPL that dictates the entanglement generation fidelity), and ∆

(i.e, ion-cavity detuning for swapping schemes). Note that, for the entanglement generation

scheme, the Purcell effect further reduces the impact of spectral diffusion

5.6.2 Entanglement swapping

In the following, we discuss pros and cons for each entanglement swapping scheme in more

detail.

Virtual photon exchange: Using this scheme, one can perform a deterministic gate be-

tween ions without the need of ions to be close-lying. During entanglement generation, the

|↑〉–|e〉 transition of an ion should be in resonance with the cavity. However, to perform the

entanglement swapping using the virtual photon exchange scheme, the ions need to be dis-

persively coupled to the cavity. Therefore, one needs to detune the |↑〉–|e〉 transitions away

from resonance with the cavity before performing the entanglement swapping. An applied

electric field amplitude E, could DC Stark shift the optical transition frequency of the ion by

∆ = ( ~∆µ · ~E)α/~ where α = (2 + ε)/3 is the Lorentz correction factor [95]. It is also possible

to detune the cavity rather than the ions by, for example, a piezoelectric effect [181].

It may be possible to avoid this detuning process between the entanglement generation

step and the swapping step by making the cavity resonant with one transition (e.g., |↑〉–

|e〉) for entanglement generation and then choosing to use an off-resonant transition for the

dissipative interaction required for entanglement swapping.

For the virtual exchange scheme, it is also necessary to tune the optical transitions of the

ions into resonance with each other. In the case that we are able to address ions individually
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in space, this can be done by using, for example, the AC Stark effect. On the other hand, if

individual addressing is not possible, we can use a large electric or magnetic field gradient

to tune the transitions. The precision required for this resonance is determined by the gate

time. Using equation (5.4) and the numerical values for fidelity and gate time given at the

end of section 5.4.2 for C = 9× 104, we estimate that the transitions should be resonant to

within 2π×0.8 kHz for the deterministic scheme and within 2π×1.6 kHz when using perfect

cavity monitoring. Although any amount of ion-ion detuning can cause infidelity, transitions

further separated than this value will cause infidelity greater than the infidelity caused only

by the finite cavity cooperativity. Note that detuning between transitions can actually be

many times larger than their linewidths. This is because the value of ion-ion detuning ∆w

required to overtake the cooperativity-limited infidelity of 2π/
√
C is proportional to γC1/4.

However, after tuning the ions, to excite only one of the Er ions to the excited state,

we still require the spatial resolution. For Er ions, which have long spontaneous emission

time compared to the gate time, it might be possible to obviate this requirement by exciting

one ion before bringing them in resonance. In this case, we should bring ions into resonance

much faster than the gate time to keep the process adiabatic.

Efficient post-selection can enhance the fidelity of the gate for a given cavity cooperativity

(or equivalently, reduce the cavity cooperativity requirement for a given fidelity). This

method is especially useful for RE ions, which typically couple to the cavity in the weak

coupling regime. This is because the adiabatic condition needed to achieve a virtual photon

interaction can be more easily violated for cavities near or within the strong coupling regime.

Hence, in that regime, any gains in fidelity made by reducing the emitter-cavity detuning

when post-selecting successful gates are offset by a decreased fidelity due to non-adiabatic

phase evolution.

Electric dipole-dipole interaction: To perform this gate, it is necessary to use ion tran-

sitions that are far detuned from the cavity. Otherwise, the excited state may decay due

to the off-resonant Purcell effect before the gate is complete. This is apparent from Eq.
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(5.12) where Fgate ∼ 1− Tgateγ/2 implies that γ → γ + Fpγr would very quickly degrade the

fidelity for a large Purcell factor Fp. If the cavity is resonant with |↑〉–|e〉 for entanglement

generation, then using the transition |↑〉–|e′〉 for the dipole-dipole interaction may place the

transition |↓〉–|e′〉 close to the cavity resonance. Hence the difference between the Zeeman

splitting of the ground and excited states δeg should be much larger than the cavity linewidth

κ. Since δeg ' 2π × 100 MHz, this implies it is necessary for the cavity quality factor to be

larger than about 107. For example, using Fp = 5000 and κ = 2π × 16 MHz corresponding

to Q = 1.2 × 107, the gate fidelity reduces to 0.951 due to an off-resonant Purcell factor of

32.

Instead of requiring a far detuned transition, one could also actively detune the ions away

from resonance with the cavity before performing the swapping gate using, for instance, the

same methods mentioned for the virtual photon exchange scheme.

The electric dipole-dipole interaction performs a deterministic gate that is very sensitive

to the distance between the ions and requires them to be very close together (see Fig.5.6).

Hence, to perform the pulse sequence explained in Fig. 5.3, it is still necessary to have either

spatial or spectral resolution of the ions.

The dipole moment difference for 168Er3+:Y2SiO5 is approximately 0.84×10−31Cm [114].

If we assume the same value for 167Er3+:Y2SiO5, then this gives an estimate for ∆ν of 30 and

0.03 MHz for rij = 1 and 10 nm, respectively. These values are quite large compared to the

magnetic dipole-dipole interaction between the ions. For 167Er with the magnetic moment

of −0.1618 µN [167], the magnetic dipole-dipole interaction is approximately 1.23 and 0.001

Hz for rij = 1 and 10 nm, respectively. As a result, the magnetic dipole-dipole interaction

will not interfere with the electric dipole-dipole interaction.

Performing the CNOT gate using the electric dipole-dipole interaction does not require

a cavity itself; however, to generate entanglement and to enhance the cycling transition (for

the spin readout), the |↑〉–|e〉 transition of the ions should be resonant with a cavity.

Unlike the virtual photon exchange scheme, the dipole-dipole scheme cannot take advan-
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tage of a high readout efficiency to improve fidelity by monitoring the cavity emission. This

is because, in this scheme, the cavity does not mediate the interaction and so it is already

necessary to minimize cavity emission by detuning it as far as possible. However, if a system

can be optimized for a high collection efficiency of spontaneous emission directly from the Er

ions without causing a Purcell enhancement, it may be possible to apply this same principle

to the dipole-dipole gate. This type of collection enhancement could be implement using, for

example, a combination of microfabricated solid-immersion lenses [24], reflective coatings on

one side of the substrate, and an objective with a large numerical aperture.

5.6.3 State readout

In all of the explained schemes, a spin readout of each ion is required. To do so, we excite the

|↑〉–|e〉 transition of the Er ion and attempt to detect an emitted photon. The probability of

emitting a photon into the cavity mode (emission quantum efficiency) is p = ηcγrFp/(γrFp +

γ). Hence, for example, for Fp = 5000 we expect p = 0.999ηc ' ηc. The overall collection

efficiency for a cavity photon by itself depends on some other inefficiencies such as the cavity

inefficiencies (e.g., fabrications imperfections, scattering loss and nonlinear absorption and

dispersion) and waveguide-fibre coupling [22, 66, 182]. Even for p = 1, the state measurement

is limited by the efficiency of the single-photon detectors. Using superconducting detectors,

the detection efficiency of more than 90% has been demonstrated [104, 105, 141]. As shown

in Sec. 5.4.4, to improve the detection probability, we can repeatedly excite the ion in a

cycling transition (through the |↑〉–|e〉 transition) such that many photons will be emitted

into the cavity and eventually at least one will be detected [106, 165, 100]. Recently, it has

been shown that a single 168Er ion doped Y2SiO5 crystal coupled to a silicon nanophotonic

cavity can scatter more than 1200 photons using a single cycling transition [165]. Thus the

probability that the cycle terminates during the small number of pulses needed to achieve a

high fidelity readout is negligible. This also implies that a high-fidelity readout is possible

even if the collection and detection efficiency is low by increasing the number of readout
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pulses. The consequence is that the readout time increases and, if comparable to the time

needed to establish entanglement over an elementary link, may impact the distribution rate.

5.7 conclusion and outlook

The 167Er RE ion provides all of the desired features to implement the required elements of

a quantum repeater. It has a nuclear spin coherence time within the one-second range, pro-

viding a natural long-lived quantum memory. It also has emission in the telecommunication

wavelength window for low-loss long-distance transmission. Our proposed quantum repeater

architecture utilizes a cavity-ion coupling to increase the spontaneous emission rate of the

ion, improving the collection efficiency and single-photon indistinguishability. We discussed

two different schemes to perform two qubit gates to achieve entanglement swapping within

a repeater node. One can select the best scheme depending on the cavity characteristics

and whether or not the ions are individually addressable in space or spectrum, or not at all.

We have also shown how to improve the fidelity of a cavity-based virtual photon exchange

entanglement swapping scheme by post-selecting successful gates on the absence of detected

cavity emission. This post-selection approach could also be useful for other systems and gate

schemes where cavity dissipation is the primary limitation for the fidelity.

We have shown that by using single 167Er ions, a higher entanglement distribution rate is

possible compared to a hybrid single 168Er - 151Eu repeater scheme [114]. This entanglement

distribution rate can even be further improved by multiplexing the protocol [114]. In terms

of experimental feasibility, it is also easier to deal with a single species of ions rather than a

doubly doped crystal.

Under certain conditions, a modified version of the Barrett-Kok scheme [183] can be used

to perform a nearly deterministic swapping gate between nearby ions of a cavity. This scheme

does not require any individual addressing of ions or having them be close-lying. Instead, it

needs ions to be in resonance with each other. In this modified scheme, the ions are detuned
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from the cavity and both are excited to the state |e〉 simultaneously. The detection of one

photon then projects one ion onto the state |↑〉, but does not reveal which ion decayed. This

generates an entangled state |e ↑〉+ |↑ e〉 between the ions. After the first photon detection,

if both ion qubits are immediately flipped, and we wait for a second photon detection, the

entangled state |ψ+〉 is generated between the ions. Therefore, one can use this modified

scheme to perform a CNOT gate between ions in the same cavity. Because the excited-state

lifetime of Er is so long, it should be possible to perform the feedback (spin flipping) fast

enough to perform a nearly deterministic gate.
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Chapter 6

Conclusion and outlook

Taking advantage of the laws of quantum physics, quantum communication is able to dis-

tribute quantum information over long distances, and maintain the security of data. Quan-

tum repeaters, as building blocks of quantum communication, have therefore attracted con-

siderable attention over the last two decades.

The main goal of this thesis was to contribute to the development of quantum commu-

nication by proposing new quantum repeater protocols. The specific focus was to develop

single-emitter-based quantum repeaters that outperform ensemble-based approaches yet are

experimentally feasible with the current technology. Therefore, with regards to the recent

experiments with single rare-earth ions doped into crystals, we designed two repeater proto-

cols. In the first scheme, we proposed a quantum repeater protocol based on single Erbium

and Europium rare-earth ions that promises the deterministic establishment of high-fidelity

entanglement over long distances at an improved rate over that of the direct transmission

of photons [114]. This scheme utilizes emission within the low-loss telecommunications win-

dow. It also benefits from the long nuclear spin coherence lifetime of the Eu ion that provides

the required time to perform entanglement swapping and distribute entanglement over long

distances. We proposed to perform logic gates between nearby ions using permanent electric

dipole-dipole interaction. Besides, we outlined a multiplexed version of the scheme that,
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using existing technology, promises to increase the entanglement distribution rate over a

single-mode version of our scheme.

In our second repeater scheme, we used a single species of rare-earth ions, i.e., 167Er

rather than a doubly doped crystal [145]. This scheme is more experimentally convenient

than the first scheme as it does not require fabricating and identifying a close-lying pair of

168Er-151Eu ions. We proposed two different schemes to perform the entanglement swapping.

In the first scheme, the interaction is mediated by the exchange of virtual cavity photons.

We have also shown that by monitoring and collecting the cavity emission, one can improve

the fidelity of the virtual photon exchange scheme at the cost of some efficiency. In the

second swapping scheme, the controlled interaction between ions is achieved by the electric

dipole-dipole interaction (the same as the first repeater protocol). We estimated the overall

fidelity and entanglement distribution rate of this repeater protocol and compared the result

with the hybrid single 168Er-151Eu repeater scheme.

The second direction of this thesis was to develop cavity assisted interactions between

quantum systems. The ability to perform two-qubit gates is an inevitable component of

future quantum networks. In this regard, we focused on schemes that do not require the

interaction between quantum systems and cavities to be in the strong coupling regime.

This is especially crucial for quantum emitters unlikely to reach the strong coupling regime,

such as rare-earth ions with small dipole moments. We proposed three different schemes to

perform two-qubit controlled phase-flip gates [169]. In the first scheme, we performed the

gate by scattering a single photon off of a cavity-qubit system. In the second scheme, we

used a dissipative cavity coupling and the exchange of virtual cavity photons to perform the

gate. For the third scheme, by virtual excitation of the cavity mode via a Raman coupling,

we performed the controlled phase-flip gate between qubits with unequal optical transition

frequencies. We calculated the fidelity of these gates and discussed the pros and cons of each

scheme in detail. The use of our proposed two-qubit gates is not restricted to rare-earth ions

doped into various crystals. Instead, a wider range of physical systems, including quantum
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dots and defects in diamond, could utilize our research results.

There are several directions for future studies in the area of quantum repeaters that

require further theoretical and experimental efforts. One direction is to improve the perfor-

mance of the current cavities. It is especially vital as better cavities could further enhance,

for example, the quantum efficiency, the single-photon indistinguishability and the sponta-

neous emission rate of quantum emitters. Another direction is to extend the storage time

of quantum memories as, in principle, the longer the storage time, the more transmission

distance one can achieve. In addition, most approaches to quantum memories require low

temperature. Hence, developing room temperature repeater schemes is of great interest.

Besides all of these, one of the remaining challenges for ground-based repeaters, is to build

a repeater that is actually better than the direct transition of photons.

Distances beyond 2000 km seem out of reach with fiber-based approaches, and this is

where satellites might be a part of the answer. Motivated by the recent demonstration of

different sorts of quantum communications with satellites, e.g., entanglement distribution

over 1200 km [184], quantum teleportation between the ground and the satellite [185] and

quantum key distribution between the satellite and the ground [186], many countries, includ-

ing Canada, are now planning to launch quantum communication satellites. In principle,

quantum repeaters, combined with quantum satellites, would allow for the distribution of

quantum information between any two locations on the earth’s surface [6]. Therefore it is

very natural to put further efforts into the realization of global entanglement distribution

using quantum repeaters and quantum satellites.
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William K Wootters. Teleporting an unknown quantum state via dual classical and

einstein-podolsky-rosen channels. Physical review letters, 70(13):1895, 1993.
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photons with high extraction efficiency and near-unity indistinguishability from a res-

onantly driven quantum dot in a micropillar. Physical review letters, 116(2):020401,

2016.

[139] Hélène Ollivier, Ilse Maillette de Buy Wenniger, Sarah Thomas, Stephen Wein,

Guillaume Coppola, Abdelmounaim Harouri, Paul Hilaire, Clément Millet, Aristide

Lemâıtre, Isabelle Sagnes, Olivier Krebs, Löıc Lanco, Juan Carlos Loredo, Carlos
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Figure A.1: Proof of copyright of paper 1. This paper is published in Quantum, an open-
access peer-reviewed journal for quantum science.
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Figure A.2: Proof of copyright of paper 2. This paper is published in Physical Review A, a
journal of the American Physical Society (APS).

Figure A.3: Proof of copyright of paper 3. This paper is published in Quantum science and
Technology, a journal of the Institute of Physics (IOPscience).

150



Figure A.4: Email from Christoph Simon granting me permission to publish the papers of
which he is a co-author.

Figure A.5: Email from Stephen Wein granting me permission to publish the papers of which
he is a co-author.
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Figure A.6: Email from Nikolai Lauk granting me permission to publish the paper of which
he is a co-author.

Figure A.7: Email from Neil Sinclair granting me permission to publish the paper of which
he is a co-author.
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Figure A.8: Email from Chris O’Brien granting me permission to publish the paper of which
he is a co-author.
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