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Abstract

The key to successful implementations of quantum technologies is quantum control, whose

aim is to steer quantum dynamics such that the desired outcome is achieved. Quantum

control techniques rely on models of the quantum dynamics to generate control policies that

attain the control targets. In a practical situation, the dynamic model may not match the

dynamic in the implementation, and this mismatch can lead to reduced performance or even

a failed control procedure.

Data-driven control has been proposed as an alternative to model-based control design.

In this approach, measurement outcomes from the system are used to generate a policy, which

enables robust control without the need for a noise model. The potential for data-driven

quantum control has been demonstrated in the problem of quantum-enhanced adaptive phase

estimation. However, the performance and robustness of data-driven policies have never been

compared with performance and robustness of model-based control techniques.

In this thesis, we aim to determine the advantages and disadvantages of model-based and

data-driven policy generation using a simulated quantum-enhanced adaptive phase estima-

tion as an example of a quantum control task. In the process, we explore the connection

between an adaptive quantum-enhanced metrological procedure to a decision-making pro-

cess, which is an alternative model of the dynamic during the control task. We also devise a

robust search algorithm based on an evolutionary algorithm that is ignorant of the properties

of the phase noise but is still able to deliver quantum-enhanced precision. We then compare

the performances of feedback control policies designed using Bayesian inference, which is

a model-based technique, to policies generated using this robust evolutionary algorithm on

their performance in both noisy and noiseless interferometers. We also assess the resources

used in generating and implementing a control policy and use the complexities of the time

and space costs as parts of selecting a practical control procedure.
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Chapter 1

Introduction

1.1 Motivation

Quantum technology exploits quantum resources to enhance the performance of applications

such as computation [6], communication [7], and metrology [8]. At the heart of accomplishing

these goals is quantum control, whose aim is to steer the quantum system to the desired

outcome given the time and resource constraints and the available controllable degrees of

freedom [9]. This outcome may be to steer an initial state to the desired final state, which

appears in applications such as control of molecular processes [10], or to achieve the desired

quantum channel, such as in quantum gate design [11] and adaptive quantum-enhanced

metrology [12]. In both cases, the control task can be formulated as approximating the

desired quantum dynamic.

The crucial element in achieving the control goal is the design of a controller or more

specifically a control policy [13], which is a set of rules used by the controller to compute the

time-dependent control signal sent to the actuators in a plant where the quantum process is

taking place [14]. The policy has been largely devised using a model of the quantum dynamics

and a technique in optimal control theory [15, 16]. Having a model of the quantum dynamics

provides insight into the working of the plant and ensures that the policies being generated
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are stable and robust. However, these promises hinge on the assumption that the model

matches the dynamics of the plant, an assumption that cannot be confirmed in practical

applications [17]. In fact, a mismatch is expected in an implementation of a control system

as some processes in the plant may be unknown [17]. In the case where the mismatch is

minor, the control performance decreases but may still be able to achieve the control goal.

Major issue arises when the mismatch leads to instability in the control procedure; i.e., when

the control output no longer responds to the signal from the controller [18].

A model of the plant dynamics may be devised to approximate the input and output

signal to and from the plant [19], but close approximation of a complex dynamic can lead

to a complicated model that is intractable for the control design process [20, 21]. This

consideration is particularly important for quantum information technology as quantum

supremacy lies in the ability to manipulate large number of particles coherently [22, 23].

Increasing the number of particles, the number of degrees of freedom, the accessible energy

levels, and noise and loss all adds to the complexity of the dynamic model.

Data-driven control is an approach in control theory that proposes forgoing the use of a

dynamic model and instead devising the control policies directly from data [18]. This idea

has been explored under different names since 1970s, such as, unfalsified control [24] and

learning control [25], each referring to a particular technique to deal with the unavailability

of dynamic models. Learning control formalizes the way to use an optimizer for automatic

design of a control policy by augmenting the traditional control loop with another loop

containing a supervisory controller that uses data to generate policies [25].

Although the underlying argument for data-driven control is to not rely on models,

techniques have been proposed that combine the use of data and models [26]. Model-free

methods can be viewed as one extreme of the spectrum where no dynamic model is used or

constructed by the supervisory controller. Only the knowledge of the controllable degrees

of freedom and the measurement that should be performed are available. Because model-

free methods have to interact with the plant numerous times in order to find a policy that
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successfully delivers the control target, a combination of model and measurement data has

been proposed in order to reduce the number of samples needed [18, 27]. The model-based

data-driven techniques has been used to attain a robust control procedure when the dynamic

of the plant is not fully known or is time-varying under unknown changes [26, 28].

Policy search is a data-driven technique that uses trial and error to generate a pol-

icy. In this technique, the policy is given a task-appropriate mathematical form, and the

performance is optimized by searching the space of the policy’s parameters [29, 30]. A policy-

search method is called model-free if the optimization procedure does not learn a model of

the dynamic before updating the policy parameters [30]. One way to devise a model-free

policy-search algorithm is by employing a black-box optimization algorithm [31], which sam-

ples the performance of the policy either by trying the policy on an experimental setup or a

simulation of the setup. Either case, the controller and supervisory controller are ignorant

of the origin of the data.

Evolutionary algorithms are black-box optimization algorithms whose procedures are

based on biological evolution [32]. An evolutionary algorithm is able to locate an area in

a search space where the globally optimal solution resides, but the heuristic nature of the

iterative search procedure means that the solution cannot be proven to be optimal. However,

the algorithm can be made to search until a policy that delivers the desired performance is

found, and this type of algorithms has been used successfully in policy search [29, 33].

1.2 Research problems

Evolutionary algorithms have been used to generate policies in quantum control prob-

lems, such as quantum-enhanced adaptive phase estimation [34, 35] and quantum gate de-

sign [36, 37, 38]. These computational works prove in principle that the data-driven approach

can converge on policies that deliver target performance in simulations. However, the per-

formances of these policies have not been compared to ones from a model-based control
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technique, and the robustness to the model mismatch has never been tested. As such, the

promised advantages of the data-driven control have never been shown in the context of

quantum control.

In this thesis, we aim to identify the advantages and disadvantages of using model-free

data-driven control using an example of quantum control, namely the quantum-enhanced

adaptive phase estimation. The phase estimation setup is simulated on high-performance

computers, controlled either by policies generated using a policy-search algorithm [34, 35]

or by a model-based feedback designed using Bayes’s theorem [39, 40]. Both methods are

ignorant of the noise models included in the simulation of the interferometric phase estima-

tion scheme, which is included to emulate the mismatch between the dynamic model used in

designing the control policy and the dynamic of the quantum plant. Using this simulation,

we test the robustness of these policies and assess the scaling in the computational resources

in designing and implementing the control procedure.

1.3 Adaptive quantum-enhanced metrology

The example of quantum channel control that we use in this work is the quantum-enhanced

adaptive phase estimation (QEAPE), which is a problem in quantum-enhanced metrology

(QEM). QEM aims to improve the precision of a measurement scheme by exploiting quantum

resources. In this field, the improvement is measured in terms of the power-law scaling of

the imprecision with the number of particles N . Classical techniques, such as using lasers,

leads to the lower bound that is known as the standard quantum limit (SQL). An optimal

use of the quantum resource results in the lower bound that scales faster than SQL known

as the Heisenberg limit (HL). The improvement in precision is of interest to high-precision

technologies, such as, the gravitational wave detection [41, 42, 43], atomic clocks [44, 45],

and magnetometry [22, 46], where the power tolerance is limited by the hardware and thus

must seek precision gain by other means.
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Adaptive quantum-enhanced metrology (AQEM) is an approach that attains quantum-

enhanced precision by approximating optimal measurement on the quantum state [12]. The

discrete-time version of this approach split the N -particle resource into bundles, each in-

teracting with the system containing an unknown parameter φ in sequence. After each

interaction, the bundle is measured and the measurement outcomes used to adjust a con-

trollable parameter Φ inside the system before the next bundle is injected. In principle, each

adjustment would lead to a closer estimate of φ than the last as additional information about

the unknown parameter is gained from the outcome. However, this assumption hinges upon

the feedback control performing a correct adjustment. Therefore, achieving the quantum-

enhanced precision in the adaptive approach is a matter of designing a successful feedback

procedure.

Phase estimation is widely studied in QEM as its mathematics underlies many appli-

cations in the field [47, 48], and hence is an estimation problem whose SQL and HL are

well-established and can be used as benchmarks for the adaptive scheme. For a passive in-

terferometric phase estimation, the SQL asymptotically scales as 1/
√
N and HL as 1/N [49],

which means in the optimal case the precision can be quadratically improved. In this work,

we consider the case of two-mode Mach-Zehnder interferometer (Fig. 1.1), where an unknown

phase shift φ ∈ [0, 2π) is in one arm and a controllable phase shifter Φ ∈ [0, 2π) in another.

The N entangled particles are split into packets of single particles and only one particle

enters the interferometer at any given time step.

There are at least two methods to design feedback control for QEAPE. One uses Bayesian

inference to update the prior of φ, and the control procedure selects the value of Φ that best

minimizes the imprecision calculated from the prior [40]. We refer to this method as the

Bayesian feedback throughout this thesis. The second is the policy-search method that uses

black-box optimization to find the policy’s parameters that successfully delivers quantum-

enhanced precision. Because the latter method does not use a model of the state evolution

to devise the policy, the method is considered model-free [50]. Therefore, comparing these
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Figure 1.1: An adaptive phase estimation scheme. An N -photon entangled state is separated
into single-particle bundles. A particle is injected into a Mach-Zehnder interferometer, rep-
resenting a two-mode interferometer. Contained in this interferometer is an unknown phase
shifter φ and a controllable phase shifter Φ, whose value at the mth measurement is Φm.
The path xm in which the photon exits is detected by single-photon detectors connected to
a processing unit (PU). The PU uses the information to adjust Φm → Φm+1 according to

policy %. After all the photons are measured, the estimate φ̃ is inferred from ΦM , allowing
for loss in photons which leads to 1 ≤ M ≤ N . Hence, the estimate is a function of the
history of measurement outcomes xM = (x1x2 · · ·xM). [Reproduced from Ref. [3], Fig. 1]

policies can provide some insight into the potential advantages and disadvantages of model-

based control and data-driven control for quantum technology.

1.4 Objectives and approaches

The research in this thesis is divided into three parts. The first part of the research aims

to understand the factors that contribute to the imprecision of an adaptive measurement

and explore the approaches to generate successful policies. By formulating the discrete-time

AQEM as a decision-making process and analyzing its characteristics, we are able to explain

the use of a policy-search algorithm and determine the methods to make the algorithm noise-

resistant and scalable up to a hundred particle in the second part of the work. Lastly, we

devise the criteria for comparing AQEM policies based on the ideal performance, robustness,

and the time and space complexity of the control implementation. We then use these criteria

to compare the Bayesian feedback to the policies from the policy-search algorithm and discuss
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the advantages and disadvantages of the two methods.

1.4.1 AQEM as a decision-making process

A decision-making process has been used to represent a discrete-time control problem as can

be used as an alternative to the first-principle model used in quantum control [51, 52]. In

this part of the research, we formulate a general discrete-time AQEM scheme as a decision-

making process and analyze the characteristic of a case study, namely the adaptive phase

estimation, to determine the possible policy generation methods.

We also use the decision-making model to derive the Cramér-Rao lower bound [53]

(CRLB) for the discrete-time adaptive measurement procedure. Previously, the impreci-

sion lower bound in QEM is defined using the quantum version of CRLB [8, 54, 55] that is

formulated for the collective, non-adaptive measurement. Although this provides a bound

for ideal adaptive measurement, it does not provide insight into how an input state and

a policy contributes to an adaptive measurement being able to achieve quantum-enhanced

precision. We explore the role of input state in determining imprecision scaling by using

an evolutionary algorithm to attain the minimum imprecision for both the entangled and

unentangled state.

1.4.2 Scalable noise-resistant policy-search algorithm

A problem with previous policy-search algorithms for adaptive phase estimation is that it fails

to generate policies that deliver power-law scaling at high N . A noise-resistant algorithm

based on particle swarm optimization (PSO) is able to generate successful policies up to

N = 45 [34], whereas the one based on differential evolution (DE) can do so to N = 93

but without noise [35]. The second objective is then to create a scalable, noise-resistant

algorithm that can deliver a successful policy even in a high-dimensional search space.

To improve the scalability of the algorithm, we introduce a criteria for accepting policies

based on its performance instead of constraining the number of generations. Doing so enables
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the optimization algorithm to run for as long as needed to produce a successful policy.

However, due to the limitation in CPU time, we demonstrate the algorithm up to N = 100

which already shows a consistent power-law relationship between the imprecision and N . To

make the algorithm noise-resistant, we average out the noise from the fitness values, which

measures the performance of the policy [34].

1.4.3 Comparing AQEM policies

In the last part of this research, we devise the criteria for comparing policies in quantum-

enhanced adaptive phase estimation focusing on qualities that are of interest in quantum

technology. Although performance criteria exist for control engineering, they are focused

on the time- and frequency-dependent characteristics of the error signal [56]. These criteria

may not be useful in quantum control as the quantum system may not be continuously

monitored to avoid the effect of measurements on state evolution. Using the AQEM as a

test problem, we propose criteria that are based on the performance in ideal condition, the

robustness against noise with unknown properties, and the resources used in generating and

implementing a control policy. We then compare the Bayesian feedback and DE-designed

policies in QEAPE to show the advantages and disadvantages of both methods.

The noiseless interferometer is the condition that the Bayesian feedback is designed for,

and so is the condition that the model matches the dynamics. The performance in this

condition is therefore the best either method could achieve. Hence we can use this as a

baseline to study how noise affects the model-based feedback control in contrast to policies

from the model-free policy search.

The robustness test is executed by introducing phase noise to the simulation of QEAPE

while the controller and the policy generating procedure are both ignorant of the properties of

this noise. The scheme is determined to be robust if the phase estimation is able to break the

SQL for four noise models, namely the normally-distributed noise [57], the random telegraph

noise [58], the skew-normal noise [59], and the log-normal noise [60], all of which have the
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periodicity of 2π. We also determine the level of noise, quantified by the variance of the

noise distribution, that leads to an imprecision scaling equal to or worse than SQL for each

of the noise models.

Lastly, we assess the resources used by the controller and policy-generating procedure

in order to compare the efficiency of both designing and implementing the control policy.

The policy generation is assessed based on the complexity of its time cost [61], which is

evaluated by the scaling in the number of operations with the number of particles N . To

determine which policy is superior, we compare the complexity in space and time cost for

policy implementation [62]. As we seek an efficient procedure that beats the SQL, we choose

a policy that requires the least resource to run, given that the target performance can be

reached.

1.5 Summary of results

In this section, we briefly describe the results from the three objectives set out in Sec. 1.4. For

the first objective, we formulate an AQEM scheme, more precisely the quantum-enhanced

adaptive phase estimation, into a partially observable Markov decision process. We also

determine that policy search, which updates the entire policy episodically, is suitable for

generating a successful policy when the quantum dynamic is not known or trusted. Using the

decision-making process, we are also able to derive a CRLB, although we cannot determine

the scaling of the imprecision as a function of N due to its dependence on the policy. We

utilize a DE algorithm to search for policies that minimize the imprecision for product

states, which leads to a SQL for adaptive phase estimation, and sine states, which leads to

an imprecision scaling that exceeds the SQL.

The DE algorithm is then made to be noise-resistant by averaging the performance of

a policy multiple times before using the mean value for optimization. The algorithm uses

two samples for each iteration of the DE algorithm and continues to add samples if the
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same policy is selected for the next iteration. Although this number of samples is low and

the averaging method leads to comparisons of mean values that have been computed from

different sample sizes, the result shows that the mean values are sufficiently different that the

DE algorithm is able to locate policies that break the SQL. Combining the noise-resistant DE

with accept-reject criteria at high N enables us to deliver imprecision following a power-law

relationship that surpasses the SQL up to 100 particles for low-level normally-distributed

phase noise.

In comparing the quantum-enhanced adaptive phase estimation schemes, we find that

both Bayesian-feedback and DE-designed policies are robust against unknown phase noise.

Specifically, the Bayesian method yields imprecision that approaches HL and outperforms

DE-designed policies for most noise models. This performance superiority is due to the

Bayesian method effectively memorizing the measurement history through the controller’s

complete knowledge of the quantum state. Storing the entire model yields better imprecision

scaling but incurs higher space and operational time costs compared to the DE-derived policy.

10



Chapter 2

Quantum Control and Evolutionary

Algorithms

In this chapter, we review the techniques for devising quantum control policies following the

approaches in control theory and engineering [9, 20]. These techniques begin with creating

a model the quantum dynamics and then deriving or computing a policy such that the

condition of optimality or robustness is met. These techniques have allowed manipulation

of molecular structures [10], cooling [63, 64], and quantum gate design [11, 36]. However, a

model can be expensive to construct, too complicated to be used efficiently in the designing

process, or untrustworthy as observations of a quantum system are limited [20]. These

problems are not confined to the field of quantum control as industrial plants can grow to be

large and complicated. Data-driven control aims to bypass the use of a model and instead

devise a control policy using the available data from the plant [18]. One technique that

matches this description is policy search [30], which, as the name suggests, searches for the

parameters of a pre-structured policy that can successfully deliver the control target. The

search of the parameters can be done using an evolutionary algorithm [65] that treats the

plant as a black-box and uses only the outputs to evaluate a policy’s performance.
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Figure 2.1: A block diagram of a control system. In a quantum control problem, the plant P
obeys quantum mechanics, while the controller C and all information channels obey classical
mechanics. The reference signal r sets the control goal for the controller, which produces
an input u to the plant. The measurement inside the plant sends out signal y, which in
closed-loop control is fed back to the controller to be used to determine the next input. In
open-loop control, this signal might be monitored but does not influence the control signal.

2.1 Quantum control

In this section, we give an overview of the techniques that have been used to design quan-

tum control procedures. We start with defining a control system and explain the types of

control performed on quantum systems, namely open-loop and closed-loop control. We then

describe the methods for creating dynamic models for each of these control procedures as the

quantum measurement has to be taken into account. We end with reviewing the techniques

for designing policies from these models.

2.1.1 Types of quantum control

In this subsection, we explain the components of a control system, as introduced in control

engineering, and the difference between open-loop and closed-loop control. Quantum control

can be viewed as a case when a part of the control system is governed by quantum mechanics.

This assumption leads to a fundamental difference in control design of open-loop and closed-

loop (or measurement-based) control on a quantum system due to quantum measurement.

Quantum control uses the same building blocks as a classical control system (Fig. 2.1) [66].

The quantum system is contained in a plant P, which also includes actuators for manipulating

the quantum dynamics and measurement devices to observe the quantum system. The

observation is sent out in the feedback signal y. The actuators receive an input signal u

from a controller C, which holds a policy %. The controller is also given a control goal r
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(also known as a reference signal) that determines the desired performance of the control

system. The controller and the communication channels in this quantum control scenario

are assumed to be classical, and we do not consider the fully-quantum control system [67, 68]

as we are interested in the use of classical controllers for the purpose of executing quantum

control tasks.

Whereas the distinction between open loop and closed loop is determined by whether

y is used by the controller in classical control engineering [69], the distinction in quantum

control also includes whether the quantum system is measured during the control task. This

difference between the quantum and classical case comes from the assumptions about classical

control system, namely that y is a deterministic function of u without added noise [70] and

that the measurements do not disturb the state of the plant [71]. These assumptions cannot

be satisfied by quantum measurements whose outcome is always probabilistic with incomplete

information about the quantum state [72, 73]. Therefore, the control design for a quantum

plant with feedback control has to account for the measurement and its effect on the state,

whereas the design for open-loop control can forgo this consideration until the end where

the measurement is used to ascertain the success of a control policy.

The choice between open-loop and closed-loop control is determined by the application.

Control of a chemical process, state transfer [20, 10], and quantum-gate design [11, 36]

employ open-loop quantum control as measurements disrupt the intended evolution. On the

other hand, cooling of a quantum system [74] and stabilization [75] use measurements to

monitor and steer the quantum system. In AQEM, the measurement and feedback afford us

the ability to approximate near-optimal measurement [76].

Knowing whether and how the measurement will be used is necessary for generating a

quantum control policy as the standard procedure utilizes a model of the plant [71]. The

procedure can be divided into two steps: creating a plant model and designing a control

policy based on the model. An accurate model of a quantum control system must also

specify the type of measurement as well as the type of control as this choice affects the
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modelling of the state evolution, which we review in the following subsection.

2.1.2 Devising quantum control procedures

In this subsection, we review the techniques for generating quantum control policies. The

design process assumes that the control engineer has at least a heuristic knowledge of the

controllable degree of freedoms and measurements necessary to monitor the control proce-

dure [19]. Provided that the control goal, the desired characteristics, and the performance

measure have been decided, the first step is to create a model of the plant and its dynamics,

which in this case follows the formalism of quantum mechanics. The model is then used

to derive or compute the control policy subjected to constraints and specifications of the

control problem.

Modeling of quantum systems

In control engineering, the model of the plant’s dynamics is derived either from the physical

laws (first-principle model) or by mathematically emulating the response of the plant [77].

The purpose of the model is to relate the input signal u to the output y, which can then be

used to predict the performance of a policy. The standard practice in quantum control is to

construct a first-principle model of the quantum system that describes the evolution of the

quantum state over time with u manipulating one or more coefficients of the Hamiltonian [78,

20, 71]. The choice of the mathematical description depends on whether the control is an

open loop or a closed loop and how the measurement is implemented.

Using a first-principle model has the advantage that the model can provide insight into the

mechanism behind the plant’s response, but without the correct coefficients or simulation

of noise and loss, the model may not be able to predict the observed data [17, 79]. The

mathematical models can be made to match the input and output data from the plant, but

the mathematical structure has to be chosen by the engineer and the coefficients estimated

from experimental data, which introduces uncertainties to the model [77]. As such, the
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model is never guaranteed to match the dynamics of the plant, and in some cases, a perfect

match is not desirable because models can become too complex to be used in devising the

policy [17].

Since the dynamics of the plant are known to be quantum mechanics, the models are based

on the existing descriptions of quantum evolution. For open-loop control, master equations

are used to describe the time-dependent state evolution. If the dynamic is assumed to be

devoid of decoherence and noise, a Schrödinger equation can be used [80, 78], but otherwise,

a Lindblad master equation is used when the dynamic is Markovian [81].

For closed-loop control, the quantum measurement causes the state to jump conditioned

upon a random outcome, and this randomness must be captured in the dynamic equation

in order to give accurate prediction [71]. When a continuous measurement is used, the

evolution of the state is described by a stochastic master equation or a stochastic Schrödinger

equation that includes a Wiener process, which is used to describe a stochastic process in Itô

calculus [82, 83, 84]. The formalism can also be applied in the Heisenberg picture where an

operator evolves following the Itô rule instead of the state [71], known as quantum filtering

as the operator evolves according to the measurement outcomes.

In some applications, the quantum system is measured at certain points in its evolution,

causing an instantaneous, discontinuous change to the state. The control task can then

be divided into time steps, each step including a continuous evolution and a measurement.

This state evolution can then be captured in a Schrödinger equation as a term governing

an evolution in time and a jump conditioned on the measurement [71]. The discontinuous

evolution can also be captured in another way by simulating each step of the measurement

using a measurement operator corresponding to a random measurement outcome [39, 40].

Devising a control policy

Once the quantum dynamics is modelled, a policy can be generated for the control task.

The first step in doing so is defining a performance measure and using the model to create
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an objective function [15, 20]. The policy is optimized either analytically or numerically

based on this function [85]. Here we give examples of the techniques without attempting to

be complete as new techniques can be invented to address new challenges and constraints

presented in a quantum control problem.

In open-loop quantum control, the control policies are often devised using quantum opti-

mal control theory [15]. In this approach, the objective function is a combination of expected

values of desired observables and constraints. The function is derived using the quantum

dynamics such that the input to the function is a parameterized control sequence in time

u(t) [20]. If the function is differentiable and simple enough to be solved analytically, then an

analytical optimization method is applied. If finding an analytical solution is not possible,

the time to complete the control task [0, τ ] is discretized into time steps and numerical op-

timization is used to find an optimal or a feasible solution. A popular iterative optimization

algorithm for this task is GRadient-Ascent Pulse Shaping (GRAPE), which is a gradient-

based iterative method that uses the dynamic model to arrive at a feasible solution [86].

Other numerical optimization methods can also be applied [38].

For closed-loop control, the techniques are divided based on whether the state evolution

is modelled using continuous- or discrete-time measurements. For a system that uses con-

tinuous measurement, an analytical approach to devising the policy is possible because a

stochastic dynamic equation is available [82, 84]. The feedback using discrete-time mea-

surement lends itself to a discretized numerical method, such as dynamic programming [83].

However, an analytical method is also possible based on Bayes’s theorem, such as the one

used in Berry and Wiseman’s design of an adaptive interferometric phase estimation [39, 40].

Using the step-wise model, the Bayes’s theorem is used to determine the prior of the unknown

parameter φ after each measurement, and this prior is used to compute the imprecision. In

this case, the imprecision is the objective of the control task, and the optimization is done

in a step-wise fashion to minimize imprecision.
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2.2 Data-driven control

In this section, we review the framework and approaches in data-driven control, an approach

to control engineering that uses the output signal y from a plant to generate a policy % [18].

The purpose of the data-driven approach is to circumvent the need for a first-principle model,

which may not match the plant’s dynamics. The automatic adjustment of % is performed by

an additional controller called supervisory controller SC, which can utilize a model that is

created using the input and output signals from the plant or does not use a model at all. We

also give examples of these techniques, including the policy search, which is the technique

we use in this thesis.

2.2.1 Motivation and framework

In this subsection, we explain the motivation and framework of data-driven control. Al-

though the first-principle models can give an insight into the physics of the plant, having

an inaccurate model can lead to a policy that fails to deliver the target performance or at

the worst fail to control the plant at all [18], and so data-driven control is proposed as an

alternative to the model-based control engineering by adjusting % based on its performance

when applied to the plant.

The main concern with model-based control design is when the assumptions about the

model do not match the plant’s dynamics, known as the model mismatch problem [17]. A

method to identify or quantify a mismatch does not exist, and the only way to discover the

problem is to see an unpredicted output from applying the policy to the plant. This problem

can stem from a structure or a parameter mismatch, which can be rectified by building

a better model based on the input-output data [18]. However, the process of building an

accurate model can take up more time and resources than is practical to invest.

If an accurate model can be practically obtained, the model-based approach should be

chosen, but there is another model-related issue that might prevent a model-based method
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Figure 2.2: A block diagram of a control system with a loop for devising control policy using
data from the plant P. In quantum control, the plant’s dynamics obeys quantum mechanics.
The supervisory controller SC devises policy % using the information from the plant z such
that the control goal r is satisfied and sends the policy to the controller C. The controller
produces an input u to the plant based on the measurement outcome y, which may or may
not be the same as z. If the control is open-loop, y does not influence the control signal.

from being successful. An accurate but complex model, especially with many nonlinear

terms may make devising a policy intractable [20, 21], which is why linearizing methods

exist although this again leads to model mismatch. This problem cannot be addressed

within the framework of model-based control [18].

Data-driven control is proposed as an alternative approach to dealing with systems that

cannot be efficiently modelled [87]. In this approach, the input-output data is used to

automatically improve the policy by a supervisory controller SC that is augmented to the

control loop (Fig. 2.2). The supervisory controller takes the control goal r and the output z

from the plant as its input. The output z can include the measurement outcome y, which is

used by the controller, but in general, y might not be the only output the SC requires for

generating %.

As the definition of data-driven control is broad, many techniques can be classified as

data-driven techniques, some of which are already used in quantum control. Adaptive feed-

back control, for example, is a technique that adjusts a policy for open-loop quantum control

based on its performance on a plant [20]. The mention of feedback in this approach refers

to the SC loop and not the y channel. Reinforcement learning is another approach that
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has been applied in quantum control to generate entangled state [88]. Reinforcement learn-

ing has been developed to solve decision-making problems where an agent decides on its

next action based on the current state of the control system [52, 89], and so can be used

to generate policies for discrete-time closed-loop control problems. When the state is only

partially observable and the set of possible actions is large, a direct policy search technique

is a scalable alternative to reinforcement learning [30]. This approach has been applied to

adaptive phase estimation [90, 34] and bias estimation in quantum walk [35]. In the next

subsection, we cover this policy search technique in more detail as we use the policy from

this method in the comparison of quantum control policies.

2.2.2 Direct policy search

One technique that fits into the idea of data-driven control is policy search, which adjusts

policy’s parameters by trial and error [30]. In this subsection, we give an overview of the

policy-search method, the control problems it solves, and the use of evolutionary algorithms

as the optimization method to arrive at a set of parameters that deliver the control target.

Overview of policy search

Here we explain policy search and the problems it has been applied to. Policy search has been

proposed as an alternative to reinforcement learning, and so the discussion of the control

problems solved by this method is based on the framework of reinforcement learning, which

we introduce briefly here by reviewing Markov decision process (MDP) and partially observ-

able Markov decision process (POMDP). However, the idea of optimizing a pre-structured

policy is not unique to solving MDP problems, we review the applications of policy search,

including those that are not formulated as a decision-making process.

In the policy-search approach, a policy is given a task-appropriate structure, i.e., a pa-

rameterized mathematical function [29, 30, 91]. The policy is then optimized based on its

performance when applied to the control plant. A policy-search method can either be model-
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based or model-free depending on whether the method constructs a dynamic model before

finding a successful policy or using the input-output data to directly construct a policy [30].

Here we do not attempt to review both techniques but focus on the model-free method,

which is used for this work.

The idea behind the policy search can be applied to diverse control scenarios, but the

term policy search is used mostly in the context of decision-making processes, specifically

when the decision is Markovian [92]. The mathematical representation of an MDP[52, 89]

consisted of

• a state set S, where state s describes the plant and the controller,

• an action set A, containing all possible actions u which the controller can take; it is

also possible to create a subset A(s) where s ∈ S are the actions an agent can take in

state s,

• transition probabilities P (sm+1|sm, um), where m denotes the time step from the start

of the task, and

• a reward R(sm+1, um, sm).

The trial-and-error approach to generating a policy is used when the MDP model is not

complete [52], and so the dynamics have to be extracted by interacting directly with the

plant.

Typically, the transition probabilities are missing when the MDP is incomplete, but

one or more parameters that describe the state s may also be missing. Assuming that a

measurement can be performed on the plant that yields an observable o related to s, the

task can be described using a POMDP [93],

• a state set S,

• an action set A,
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• transition probabilities P (sm+1|sm, um),

• a reward R(sm+1, um, sm),

• an observable setO where observable om is an outcome that is obtained with probability

P (sm+1, um, om).

The history of observations can be used by the controller to choose u or to infer a belief state

before determining the appropriate action [94].

Policy search is known to be advantageous when applied to a decision-making process that

presents certain characteristics, one of which is partial observability [95] and is claimed to be

an ‘asymptotically optimal method for episodic POMDP’ [96]. Another characteristic that

is considered is the size of the action space. When the set of actions the controller can make

is large or continuous, policy search provides a scalable approach for devising policies [97].

These observations do not mean that all problems that exhibit these characteristics are best

solved by policy-search methods, only that policy search is an attractive option that should

be considered alongside other possible methods [29].

Because of the performance in POMDP and the large action space, policy search is

widely applied in robotics, where the controllable parameters are often continuous in princi-

ple [30, 91] and sometimes in conjunction with reinforcement-learning methods [97]. How-

ever, a policy-search technique can also be found in other areas, such as in tuning PID

controllers [33], which is an example of a model-free controller that needs to be tuned for a

specific application. One group of algorithms that have been used to automatically tune the

parameters is the evolutionary algorithms, which we review below.

Evolutionary algorithms for policy search

Evolutionary algorithms are global optimization algorithms that use the heuristic of bi-

ological evolution to maximize the performance (fitness) of a solution [65]. Because the

optimization does not depend on the dynamic model, evolutionary algorithms are versatile
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and can be easily applied in many fields, including control engineering [33]. Here we explain

the idea behind evolutionary algorithms, the outline that all evolutionary algorithm share,

and their applications in control engineering, especially in policy search.

The heuristics in evolutionary algorithms follow Darwin’s theory of evolution by natural

selection [98]; i.e., individuals with traits that help them thrive in an environment have a

good chance of surviving and passing on these traits to their offspring. An individual’s chance

of survival is determined by its fitness with the fittest individual having the most chance

of surviving and passing on its genetic material. After many generations, the favourable

traits become dominant in the population as they are selected through competition between

individuals.

The procedure of an evolutionary algorithm is analogous to this natural selection pro-

cess [65]. An individual becomes a solution candidate, initialized randomly in the solution

space to provide the diversity needed to generate a successful solution. The fitness of a

candidate is determined using a fitness function, which outputs a real number indicating

the performance of the candidate in solving the problem. One or more offspring is then

generated for each candidate by combining the existing candidates. The fitness of each off-

spring is calculated, and a portion of the offspring and the parent population are selected

for the next generation according to a selection rule. The size of the offspring population,

the combination rule, and the selection rule are unique to the variant of the evolutionary

algorithm. These rules along with the algorithm’s parameters determine the algorithm’s

ability to explore the solution space and converge on a globally optimal solution although

the convergence is not guaranteed [32].

Many evolutionary algorithms treat the fitness functions as a black box, i.e., the opti-

mization does not use an explicit description of the fitness function only the output from

the function, and thus evolutionary algorithms can be applied in various areas of control

engineering [33]. Most relevant to this work is the use of evolutionary algorithms to optimize

the parameters of model-free controllers, such as PID and PI controllers. The algorithms
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have also been used to update the structure of the controller itself.

Being a black-box optimization also has drawbacks, especially when employed to search

for policy’s parameters. A black-box optimization ignores the contribution of individual

actions to the success of a policy but evaluates the policy as a whole, which leads to a

large number of trials needed to find a successful solution [89]. This observation, although

true, does not mean evolutionary algorithms are always at a disadvantage to action-based

optimization [95], and therefore need to be tested on a case by case basis. One case that

policy-based optimization is the only possible method is when no information is available to

evaluate the effectiveness of individual actions and only a delayed reward is available (also

known as credit assignment problem [52]).
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Chapter 3

Quantum-Enhanced Metrology

In this chapter, we review a field that quantum control has been applied to, i.e., quantum-

enhanced metrology (QEM). Closed-loop quantum control systems have been employed in

adaptive metrological schemes such that quantum-enhanced precision is achieved. We be-

gin by describing the setup of QEM and explain the imprecision lower bounds obtained

from using the classical and quantum resource, namely the standard quantum limit (SQL)

and the Heisenberg limit (HL). We then turn to adaptive quantum-enhanced metrology

(AQEM), which aims to achieve the goal of QEM using a sequence of adaptive measure-

ments. One example of the AQEM scheme is the adaptive interferometric phase estimation,

whose policy has been derived using a model-based Bayesian inference [39] and the data-

driven policy-search approach [90]. We aim to compare these approaches when they are

applied to interferometers including a phase-noise model that is not accounted for in the

control design.

3.1 Quantum-enhanced metrological setup

The field of QEM aims to study high-precision estimation of an unknown parameter φ or

parameters φ by exploiting quantum resources [48]; i.e., particles that are in a non-classical

collective state. In this section, we explain the framework of a QEM setup, in particular of
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an indirect-measurement setup where a probe is used to interact with a system I(φ) and φ

is estimated from the change in the state of the probe. We review the types of input states

that the probe is prepared in before describing the procedures that exploit this resource to

achieve a quantum-enhanced precision.

3.1.1 Quantum resources

The use of a quantum resource to improve measurement precision was first considered for

gravitational wave detection [41, 42, 43] and soon found other applications, such as in atomic

clocks [45] and magnetometry [46, 99]. The appeal of QEM is in its ability to improve the

precision without having to increase the power of the probe, which is a limiting factor for

high-power measurement setups similar to the gravitational wave detector. The constraint on

the power tolerated by the hardware also applies to low-energy applications, such as in quan-

tum information technology where the hardware is designed to perform at the few-photons

level. In this subsection, we give a brief overview of the quantum resources considered for

both the high-power and low-power applications.

The necessary resource that enables quantum-enhanced precision is a probe that has

been prepared in a non-classical state [100], either as a squeezed state [101] or an entangled

state [102]. A squeezed state describes a quantum state whose uncertainty falls below the

ground state for one observable, e.g. the position, and rises in another non-commuting vari-

able, e.g. the momentum [103]. An entangled state describes a quantum system where there

are correlations between subsystems, and so the state of the system cannot be described

as a product of its parts. Although the terminology divides the resource in such a man-

ner, squeezing and entanglement are connected [104], both are ways of describing quantum

correlation that cannot be reproduced by classical correlation.

In QEM, the use of a squeezed state appears when the input state consists of a high

number of particles, such as in the case of gravitational wave detection [42, 43] or atomic

clocks [45], as these applications utilize probes that consist of millions of particles. Cur-
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rent technology allows the generation of a squeezed state for a number of particles as

high as 106 [105], whereas entangling the same number of particles is currently impossi-

ble [106, 107]. The quantum-enhanced precision is attained by exploiting the squeezed

variable, enabling a measurement with reduced imprecision.

In this thesis, we employ a QEM scheme that utilizes N d-level entangled particles

prepared in a collective state

ρ ∈ S
(
H ⊗N

d

)
, (3.1)

which is in the space of positive-definite, trace-class, self-adjoint linear operators acting on

a tensor product of N copies of a d-dimensional Hilbert space Hd [108]. How an entangled

state can lead to enhanced precision is less straightforward than the case of the squeezed

state. Because of the connection between entanglement and squeezing, the enhancement

can be explained as a reduction of an uncertainty [22]. Another perspective attributes the

advantage to the cumulative effect of φ on the entangled state, giving the same effect as

interacting a single-particle probe N times with the system [109]. This perspective can

explain certain estimation schemes such as two-mode phase estimation using a N00N state.

For both the squeezed state and the entangled state, the input state ρ has to be optimized

to achieve minimal imprecision as the imprecision depends in part to the strength of the

interaction between ρ and the system, described by a quantum channel I(φ) [110]. To put it

another way, in order to infer φ, the difference between the output state coming from φ and

φ + dφ must be as different from each other as possible. As I(φ) is in most cases assumed

to be fixed, the optimization of the interaction depends on using the optimal input state

for the particular channel. If there is a mismatch between the quantum channel used the

find the optimal input state and the physical system, the performance of the QEM scheme

can be greatly diminished. An example of this is the N00N state, which is known to be

susceptible loss [111]. In this work, we use a known optimal state for interferometric phase

estimation with a loss-resistant property and do not attempt to find an optimal state for

when the phase noise is included as we attempt to test the robustness of the scheme when
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Figure 3.1: A diagram of a measurement procedure using quantum resource.

the noise model is not known during the control design.

3.1.2 Quantum measurement procedure

In this subsection, we explain the QEM procedure (Fig. 3.1), which can be divided into three

parts: the preparation of the input state, the interaction between the input state and the

system, and the measurement of the output state [8]. The last two steps are determined by

the measurement strategy used. We focus mainly on the collective measurement strategy in

this subsection as it is the approach used in the calculation of the imprecision lower bound.

A collective strategy is only one of many ways the quantum resource can be used in

QEM, two others being a sequential and an adaptive strategy. The collective strategy has

all the particles in the probe collectively interacting with the system and then measured.

The sequential strategy is where the probe interacts with the system multiple times before

a measurement is performed [112]. Although this strategy achieves high-precision by accu-

mulating the effect of φ rather than using the collective behaviour of a quantum state, this

strategy can be extended by entangling the probe with ancilla qudits, which can then be

used with a quantum error correction algorithm to mitigate the effect of noise and loss [113].

The adaptive strategy incorporates a feedback control to a sequential strategy, and in some

cases only a part of the input state is interacting with the system at any given time step.

Once the output state, or part of the output state, is measured, the feedback loop changes

the controllable parameter Φ according to the outcome [100, 76].

For the rest of this subsubsection, we focus on the mathematical formalism of the collec-

tive measurement strategy used in conjunction with an N particle entangled state. All the N
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d-level particles interact with the system represented by a quantum channel (completely-

positive trace-preserving map) I(φ). This map acts on any ρ, with a single unknown param-

eter φ in the channel [114], and can be represented using Kraus operators {K0,K1, . . .Kµ}

acting on H ⊗N
d such that

I(φ)ρ =

µ∑

i

Ki(φ)ρK†i (φ) (3.2)

and
µ∑
i=0

Ki(φ)K†i (φ) = 1. The size of the set of Kraus operators is bounded by the dimension

of the Hamiltonian, i.e., µ ≤ dim H ⊗N
d [115]. In the special case of an isolated system, the

channel is represented by a unitary transformation [47]

I(φ)ρ = U(φ)ρU †(φ) (3.3)

for a unitary operator U .

After the particles exit the system, they are measured, and this measurement is described

as a positive-operator-valued measure [116, 117], which is a positive semidefinite operator

Xx : H ⊗N
d →H ⊗N

d ,
∑

x

Xx = 1, (3.4)

assuming the measurement outcomes {x} are in a finite set. This outcome is random with

probability

P (x|φ) = tr (XxI(φ)ρ) . (3.5)

The measurement Xx is repeated multiple times to sample the distribution (Eq. 3.5) suffi-

ciently well, and φ is then inferred from these samples.

3.2 Quantum imprecision

In this section, we explain the imprecision of an estimate of φ obtained from a QEM scheme,

which is determined by the procedure for inferring φ and from the distribution of the mea-
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surement outcomes. We begin by reviewing quantum parameter estimation, which calculates

the estimate φ̃ from the measurement outcomes. This procedure can increase the impreci-

sion ∆φ̃, and so the lower bound of the imprecision is computed from the distribution of the

outcomes rather than the estimate. This lower bound is formally known as the Cramér-Rao

lower bound (CRLB), which in the quantum version depends on the quantum channel and

the input state. The choice of the classical and quantum resource leads to the imprecision

limits, the SQL and the HL, that are used as benchmarks for QEM procedures.

3.2.1 Quantum parameter estimation

Parameter estimation is a study of how to use the measurement outcomes xM = x1x2 · · ·xM
to infer an unknown parameter φ. The quantum version of parameter estimation uses xM

that are generated by a quantum mechanical process, which may negate certain assumptions

about the probability distribution of the outcomes, such as the assumption that the outcomes

are sampled from an independent and identical distribution (i.i.d.). In this subsection, we

explain the connection between the distribution of the outcomes and the distribution of the

estimate without imposing such a condition.

The estimate φ̃ is obtained from an estimator [118],

φ̃ := Φ̂ (xM) , (3.6)

which we assume here to be a deterministic function. Because xM is a finite string of random

variables, φ̃ is also random. From multiple instances of estimating φ, the probability P
(
φ̃|φ
)

can be reconstructed (Fig. 3.2). Assuming the distribution to be unimodal, the width of

P
(
φ̃|φ
)

determines the imprecision ∆φ̃, and the difference between the peak ¯̃φ and φ is the

bias.

For a deterministic estimator, the distribution of the estimate can be written in terms of
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Figure 3.2: An example of a distribution of the estimate φ̃. The value φ0 indicates the value

to be estimated which in the text is φ, whereas ¯̃φ is the peak of the distribution, which is

also the mean of the estimate for a normally-distributed φ̃. In some estimation scheme, ¯̃φ

may be reported as the final estimate. The bias is b(φ̃) = ¯̃φ− φ0 and ∆φ̃ is the imprecision
of φ̃.

the distribution of the data,

P (φ̃|φ) =
∑

xM∈Φ̂−1(φ̃)

P (xM |φ). (3.7)

Each xm is obtained independently from a measurement of an N -particle quantum state.

Thus the distribution of xM can be written as

P (xM |φ) =
M∏

m=0

P (xm|φ). (3.8)

The key to attaining quantum-enhanced precision is by manipulating Eq. 3.8 through the

selection of an appropriate quantum state and measurements. For M = 1, the imprecision

scales as

∆φ̃ ∈ O
(
N−℘

)
. (3.9)

This power-law relationship can be shown by calculating the quantum CRLB, which takes

into account that the distribution Eq. 3.5 is computed from particles that obey quantum
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mechanics. We review this procedure below.

3.2.2 Quantum Cramér-Rao lower bound

The Cramér-Rao lower bound defines the lower limit in the imprecision that can be obtained

from a set of measurement outcomes using the Fisher information, which shows the average

change in the distribution P (xM |φ) (Eq. 3.8) in the locality of φ [119]. The quantum version

of Fisher information can be derived using the quantum version of P (xM |φ), and from that

the optimal POVM can be calculated. However, the optimal POVM is not guaranteed to be

practical.

Specifically, Cramér-Rao lower bound is defined for the variance of the estimate and is

different for an unbiased and a biased estimator. For unbiased estimator the inequality is

(
∆φ̃
)2

≥ 1

F (φ)
, (3.10)

where F (φ) is the Fisher information:

F (φ) :=
∑

∀xM

P (xM |φ)

(
∂P (xM |φ)

∂φ

)2

. (3.11)

The biased estimator contains a correction,

(
∆φ̃
)2

≥
1 + ∂b(φ)

∂φ

F (φ)
, (3.12)

where the bias is b(φ) =
¯̃
φ− φ. This correction is to account for the difference between the

variance of a biased and an unbiased estimator, and not a fundamental change in Fisher

information as the quantity only depends on the distribution of the outcomes. Intuitively,

Fisher information measures how easily the xM generated at φ can be differentiated from

the xM generated at φ+ dφ. The more easily the data can be differentiated, the higher the

Fisher information and the smaller the imprecision.
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The Cramér-Rao lower bound is also extended to quantum parameter estimation. In the

case where the collective QEM scheme is used, the quantum Fisher information is derived

for an instance of the phase estimation using a Hermitian operator Lφ known as symmetric

logarithmic derivative [54], which is defined to be

∂ρφ
∂φ

=
Lφρφ + ρφLφ

2
. (3.13)

This definition is substituted into the Fisher information calculation, which leads to [55]

FQ(φ) =
∑

∀x

Re(tr(XxX
†
xρφLφ))2

tr(XxX
†
xρφ)

≤
∑

∀x

∣∣∣∣∣∣
tr(XxX

†
xρφLφ)√

tr(XxX
†
xρφ)

∣∣∣∣∣∣

2

≤ tr

((∑

∀x

XxX
†
x

)
LφρφLφ

)

≤ tr(LφρφLφ). (3.14)

Hence, quantum Fisher information is independent of the measurement but instead depends

on the input state and the quantum channel.

In practice, the quantum CRLB can only be achieved if an optimal measurement is

performed. The POVM of this measurement can be calculated from the quantum Fisher

information by finding the eigenstates of the Hermitian Lφ, which may not be feasible to be

implemented. The implication, therefore, is that a certain QEM scheme may not achieve the

lower bound due to the limitation in collective measurements that can be performed. The

idea behind adaptive measurement is to approximate the optimal collective measurement

by a sequence of measurements [12]. Hence, the lower-bound of the adaptive procedure is

assumed to be the same as the one calculated from the collective measurements, which we

review in the following subsection.
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3.2.3 Imprecision limits

Using the quantum CRLB, the SQL and HL can be derived for a QEM scheme by considering

the use of a classical and a quantum resource respectively. The derived lower bound is a

function of N , which asymptotically takes the form of a power-law relationship (Eq. 3.9).

The SQL asymptotically approaches the power-law scaling of ℘ = 1/2, whereas HL exceeds

this number and is used to claim optimality of a QEM scheme. In this subsection, we

discuss how these bounds originated and in particular we give the SQL and the HL of the

interferometric phase estimation.

Standard quantum limit

The SQL is the imprecision lower bound when a classical resource is used, which means that

the input state (Eq. 3.1) is separable, i.e., unentangled [120]. The simplest case of such a

separable state is a tensor product of N independent particles [48],

ρ = ρ⊗N1 . (3.15)

Interacting this state with the quantum channel leads to the output state

(I(φ)ρ1)⊗N . (3.16)

Measuring the output state leads to a distribution in Eq. 3.8 where

P (xm) = tr (XxmI(φ)ρ1) , (3.17)

is independent and identical for m ∈ {1, 2, . . . ,M}.

Due to Fisher information’s additive property under the i.i.d. condition,

F (N)(φ) =
N∑

n=1

F (1)
n (φ) = NF (1)(φ). (3.18)
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Therefore,

(∆φ̃)2 ≥ 1

NF (1)(φ)
, (3.19)

for an unbiased estimator. Asymptotically, the standard quantum limit is

∆φ̃ ∝ O

(
1√
N

)
(3.20)

irrespective of the quantum channel.

Heisenberg Limit

If quantum resources are employed, e.g., squeezed state [101] or entangled state [102], the

SQL can be surpassed [43, 22]. Since this lower bound is computed from quantum CRLB [54],

which depends on the input state and the quantum channel [55], the HL is specific to the

QEM scheme [121] unlike the SQL. In the case of interferometric phase estimation, the HL

is known to be [49]

∆φ̃ ∝ O

(
1

N

)
, (3.21)

although this limit can only be attained through the use of optimal measurement. Because

the optimal measurement as defined by the POVM’s may not be physically implementable,

adaptive phase estimation schemes have been proposed to approximate this lower bound [76].

3.3 Adaptive quantum-enhanced metrology

AQEM is proposed as an approach to approximate an optimal measurement for quantum-

enhanced metrology [12]. AQEM employs a closed-loop control to adapt the measurement,

which can either be continuous-time measurements [122, 123, 124, 125], such as homodyne

detection, or discrete-time measurements [39, 76, 90], such as single-photon detectors. In this

work, we focus on the discrete-time construction of an AQEM procedure whose evolution is

described by jumps in the quantum state. Here we lay down the general procedure, which we
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later turn into a decision-making process in order to obtain a successful policy (Chapter 4).

3.3.1 Adaptive measurement procedure

In a discrete-time adaptive procedure, the N -entangled particles are split into bundles, and

the outcome of a measurement on one of the bundles is used to adjust the measurement for

when the next one arrives [76]. In this setup, the measurement and the parameter estimation

are not two separate stages but interweaved with a guess of the estimate being made after

each measurement. As such, the feedback procedure is also the estimator, and hence the

precision and accuracy are determined by the feedback policy.

Instead of a collective measurement, we can consider measuring subsets of particles,

which we call bundles, and, at the extreme limit, which is of interest here, the individual-

measurement case of measuring a single particle at a time. Mathematically, we split the

particles into M bundles of L particles where N = ML [2] so the Hilbert space can be

expressed as 
H ⊗L

d︸ ︷︷ ︸
bundle



⊗M

. (3.22)

In this case, both I(φ) and Xx act on H ⊗L
d . For localized measurements on each bundle,

the POVM is
M⊗

m=1

X(m)
xm , X(m)

xm : H ⊗L
d →H ⊗L

d (3.23)

with outcomes from this tensor-product POVM being concatenations of M length L strings

of d-dimensional digits,

xM = x1x2 · · ·xM ∈ N⊗M
dL

, (3.24)

where

xm ∈ NdL := {0, 1, 2, . . . , dL − 1} (3.25)

is measured from the mth bundle.

In one extreme case, each bundle contains only one particle, which leads to M = N and
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L = 1. The string of outcomes becomes

xN = x1x2 · · ·xN ∈ N⊗Nd . (3.26)

The POVM is
N⊗

m=1

X(m)
xm , X(m)

xm : Hd →Hd, (3.27)

which is a tensor product of N qudit POVMs.

If the particles are two-level particles, the state (Eq. 3.1) is simplified to

ρ ∈ S
(
H ⊗N

2

)
, (3.28)

and the POVM simplifies from Eq. 3.27 to

N⊗

m=1

X(m)
xm , X(m)

xm : H2 →H2. (3.29)

The outcome (Eq. 3.26) is simplified to

xN ∈ {0, 1}⊗N , (3.30)

which is an N -bit string.

3.3.2 Feedback control and inference

AQEM employs quantum feedback control to create adaptive measurements [84], but the

control signal may not be attached directly to the measurement device. Rather, the signal is

connected to a controllable component in front of a measurement device, and the combination

of the component and the device emulates a POVM. However, the controllable component

can instead be modifying a quantum channel while the measurement device remains static

through the procedure, and the probability of xm would still be the same as having an

36



adaptive measurement.

In this thesis, we assume that the signal is connected to a controllable parameter Φ inside

a quantum channel. Hence, the channel acting on the mth bundle is I (φ; Φm). Measurement

of the mth bundle leads to an update of the control parameter to Φm+1 for the next bundle.

The control-parameter update is determined by a policy

% : Φm 7→ Φm+1 (3.31)

according to xm = x1x2 · · ·xm of outcomes. The estimate is

φ̃ := ΦM+1, (3.32)

and therefore an AQEM procedure can be used for single-shot measurement, i.e., inferring φ

from one instance of the measurement procedure.

Inferring φ̃ from ΦM+1 is a choice that we implement in our procedure and is not the

only or the best option for an estimator. An adaptive measurement procedure that uses the

Bayesian inference, for example, infers φ̃ from the prior of φ, which is updated based on the

measurement outcomes and is independent of ΦM+1 [12]. Whereas calculating a prior uses

a model of the quantum dynamics, ΦM+1 is a known parameter and thus inferring φ̃ using

Eq. 3.32 can be done without a need for a model.

3.4 Adaptive phase estimation

Phase estimation underlies many QEM applications [43, 47, 48] and thus is widely used for

devising quantum-enhanced techniques, including several AQEM schemes [76, 90, 123]. Here

we explain quantum-enhanced adaptive phase estimation (QEAPE), which we numerically

simulate to determine its imprecision. The QEAPE scheme is controlled by Bayesian feed-

back [39, 40] or DE-designed policies [34, 35, 3], which we compare in terms of robustness
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and resource consumption for control.

3.4.1 Quantum-enhanced adaptive phase estimation

One method of estimating phase is to use an interferometer, which infers phase shifts from

the interference between two or more modes [126]. In particular, we use QEAPE based on a

Mach-Zehnder interferometer, which has two modes and therefore we are looking at the case

of d = 2 representing the modes. The mathematics of Mach-Zehnder interferometry applies

to other forms of SU(2) interferometry, such as Ramsey, Sagnac and Michelson interferome-

try [48, 47, 127]. In this subsection, we present the input state, adaptive channel, detection,

feedback, inference and imprecision.

Input state

For non-adaptive quantum interferometry with collective measurement, the unitary interfero-

metric transformation is in the Lie group SU(2) with irrep (Casimir-invariant label) j = N/2.

For adaptive quantum interferometry or individual measurements, the interferometric uni-

tary transformation is SU(2N) for N particles and two paths. However, the two descriptions

converge if the input state is permutationally symmetric; technically, Schur-Weyl duality

dictates that the applicable transformation is SU(2) with irrep j = N/2 [128].

Notationally, modes are labelled by

εm ∈ {0, 1}, (3.33)

which conveys which of the two paths, such as input or output port or intra-interferometric

path, pertains. Thus, the state |εm〉 refers to the mth photon being in path εm. The multi-

photon basis is the tensor-product state

|εN〉 =
N⊗

m=1

|εm〉 . (3.34)
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For ham ε the Hamming weight, i.e., sum of bits, of ε, the permutationally-symmetric basis

is

|n,Na − n〉 =

(
Na

n

)−1/2 ∑

ham εNa

|εNa〉 (3.35)

for Na the total number of particles in mode a.

The sine state serves as a loss-tolerant symmetric state that minimizes phase-estimation

imprecision [129, 124, 125], and is expressed as [39, 40]

|ψ〉N =

(
N

2
+ 1

)−1/2 N∑

n,k=0

sin

(
k + 1

N + 2
π

)
eiπ(k−n)/2

× dN/2n−N/2,k−N/2

(π
2

)
|n,N − n〉 , (3.36)

for djm,m′ (β) the Wigner-d function [130]. This state also has the advantage of being robust

against photon loss [128], which is a desirable property for practical QEM and so is used in

the QEAPE procedures.

Adaptive Channel

The particles in the sine state (Eq. 3.36) are divided into single-particle bundles (L =

1 case), each of which passes through the Mach-Zehnder interferometer. For a noiseless

interferometry, the quantum channel for one photon is

U1(φ; Φm) = exp(i(φ− Φm)σ̂y), φ,Φm ∈ [0, 2π) (3.37)

for σ̂y a Pauli matrix [131]. Therefore, the channel is

U(φ; Φm) = U1(φ; Φm)⊗ · · · ⊗ 1(N) (3.38)

acting on the state space (Eq. 3.28).

In a physical implementation of an interferometer, mechanical disturbances, air-pressure
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changes and the thermal fluctuations induce optical-path fluctuations. These effects ran-

domize the phase difference

φ− Φm (3.39)

according to prior distribution p(φ). The quantum channel is thus [34]

I(φ; Φm) : S
(
H ⊗(N−m)

2

)
→ S

(
H ⊗(N−m)

2

)
:

ρm 7→
2π∫

φ=0

dφ p(φ)U †(φ; Φm)ρmU(φ; Φm), (3.40)

where ρm is the state after the (m− 1)th photon is measured.

Detection, feedback, and inference

After the mth photon passes through the interferometer, the photon is detected by one of

the single-photon detectors positioned outside the output ports. The information of the exit

port is xm ∈ {0, 1}, which is given to a controller. The controller then uses this information

to compute Φm from % before the next photon arrives. The procedure of simulating the

injection of the next photon from the sine state (Eq. 3.36) followed by the action of the

channel (Eq. 3.38) and then measurement at the output ports is repeated until all photons

are consumed, and the estimate is inferred from ΦN+1, assuming no loss of photons.

Imprecision

Imprecision of the estimate (Eq. 3.9) is related to the Holevo variance [124]

(
∆φ̃
)2

= VH := S−2 − 1 (3.41)
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by the sharpness function

S =
1

K

∣∣∣∣∣
K∑

k=1

exp
[
i(φ

(k)
0 − φ̃(k))

]∣∣∣∣∣ , (3.42)

which estimates the width of a distribution P (φ̃|φ) over a periodic variable. As this distribu-

tion is determined by P (xN |φ) (Eq. 3.7), the ideal method of calculating S is to determine

the probability of every xN given a policy %. However, due to the exponentially number

of xN with respect to N , we instead numerically compute the sharpness by simulating the

adaptive phase estimation for K = 10N2 samples of φ0, which is the unknown (noiseless)

interferometric phase shift taken uniformly from [0, 2π) [90]. We will discuss the how this

sampling method is done in detail in Chapter 4 once we establish the discrete-time QEAPE

as a decision-making process.

In principle, the sharpness has a definite value for a particular P (φ̃|φ). However, as

we estimate the sharpness by sampling, the resulting S from Eq. 3.42 is a random variable

sampled from a distribution Psharp(S) with a mean

S̄ =
∑

SPsharp(S). (3.43)

The distribution Psharp(S) is also affected by phase noise as this additional undertainty

increases the width of P (φ̃|φ). As such, we use the mean sharpness (Eq. 3.43), which average

out the increased sampling noise, as the fitness for the policy-search algorithm, as we will

explain in Chapter 5.

3.4.2 Policy design

In this subsection, we explain how the policy % (Eq. 3.31) is obtained. Specifically, we

consider two approaches. First we consider the Bayesian approach, based on Bayes theo-

rem [132], which applies if the controller has complete knowledge about the quantum system
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and updates this knowledge based on measurement outcomes [133]. The second approach is

to execute a direct policy search for an optimal or feasible % [30], which has the advantage

over the Bayesian approach that a trusted model is not required.

Bayesian Feedback

Early examples of AQEM employ the Bayesian approach [133, 39, 40], which involves a

fully trusted complete model and then performs computationally intensive decision making

as measurement data arrive, leading to updates of the prior. For each particle exiting

the interferometer, the probability for the particle being detected in output port given by

outcome xm is computed by assuming a perfectly known input state and known quantum

dynamics such as unitary interferometric evolution (Eq. 3.38). The prior for φ0 is then

updated using Bayes’s theorem. The width of this prior is quantified by
√
VH (Eq. 3.41)

at each measurement step; the optimal Φm that minimizes VH for the next particle is then

computed from this trusted model. Although the Bayesian method approaches the HL [40],

% might not be robust to input-state variability or to system noise, which is a problem for

designing controllers [77, 79].

Policy search using differential evolution

Policy search provides an attractive alternative to the Bayesian approach when a trusted

model is lacking or if the computational overhead associated with the Bayesian approach is

excessive. In this approach, the policy is given a task-appropriate structure and the perfor-

mance is optimized by searching the space of the policy’s parameters [29, 30]. A policy-search

method is called model-free if the optimization process does not include learning a model of

the dynamic but directly updates the policy parameters [30], which can be achieved by em-

ploying a black-box optimization algorithm [31] using only policy performance. Evolutionary

algorithms form a class of black-box optimization algorithms whose policy update procedure

is inspired by models of biological evolution [32]. We use DE to search for a feasible policy
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for QEAPE. Once the policy is found, no further training is necessary.

For the task of QEAPE, we assume a logarithmic-search heuristic Markovian update

rule [90]

Φm+1 = Φm − (−1)xm∆m, (3.44)

with phase-adjustment vector

∆ := (∆1,∆2, . . . ,∆N) , (3.45)

where ∆m ∈ [0, 2π). This update rule (Eq. 3.44) corresponds to the controller turning the

“phase knob” up or down by a fixed amount ∆m after the mth photon, subject only to the

previous outcome and ignoring the full measurement history. The action that the controller

performs is therefore

um = (−1)xm∆m (3.46)

in this particular feedback procedure.

During the training stage where we optimize ∆, an individual in DE is initially assigned

a random set of parameters ∆ ∈ [0, 2π)N . The performance of the policy is evaluated using

the mean sharpness (Eq. 3.43) [34], as the interferometer is assumed to contain noise and

this performance measure averages out noise. In practice, due to the high cost of sampling

Psharp(S) (Eq. 3.43), few runs are performed to obtain S̄. A DE algorithm then uses this

performance as the fitness to search iteratively for ∆ such that S̄ is maximized [3].

The use of DE incurs a time cost for generating %, quantified by a loop analysis of the

algorithm assuming N photons are used in the phase estimation. The algorithm is assumed

to run on a single processor, which leads to a serial evaluation of ∆ for every iteration of

DE. The scaling of time cost with respect to N determines the complexity, which has been

shown to be polynomial [35], and so the degree of the polynomial convey the complexity for

generating %.

Previous policy-search algorithms that are designed for adaptive phase estimation have
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upper bounds in the number of particles that a successful policy can still be found. The

algorithm that is designed for normal-distribution noise is able to deliver ℘ > 1/2 up to N =

45 [34], whereas the algorithm that utilizes differential evolution is capable of generating

successful policies up to N = 98 but is not noise-resistant [35]. We address this issue by

devising a scalable, noise-resistant policy-search algorithm in Chapter 5.
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Chapter 4

AQEM as a Decision-Making Process

In this chapter, we present an alternative model of a discrete-time AQEM, i.e., a decision-

making process, which enables us to connect AQEM problems to known techniques in policy

generation, such as reinforcement learning and policy search. This representation also enables

us to formulate a method for calculating the CRLB given a policy, which makes it difficult

to calculate explicitly. Here we use adaptive phase estimation from Sec. 3.4 as an example

for discrete-time quantum feedback control. We formulate this problem as a decision-making

process and analyze its characteristics to show that policy search is a suitable approach for

generating a successful policy. We then simulate the QEAPE schemes without phase noise

that use either an N -particle product state, which is an example of a quantum state without

a correlation between particles, or a sine state, which is an N -particles entangled state,

in estimating an unknown phase shift. We use the imprecisions from these simulations to

demonstrate the role of entanglement in reducing QEAPE’s imprecision.

4.1 A generalized AQEM

In this section, we describe an adaptive measurement scheme that divides N particles into

bundles of equal size, expanding on the explanation given in Sec. 3.3. We then conceive this

scheme as a decision-making process, allowing us to represent the procedure as a decision
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Figure 4.1: (a) A diagram of AQEM procedure. The input state ρ1 is divided into M bundles
of L particles, each being injected into the process one after another. After the detection of
the mth bundle, the processing unit (PU) uses the history of the measurement outcomes up
to that point, xm = x1x2 . . . xm, in order to determine the control parameter Φm+1, taking
the process I (φ,Φm) 7→ I (φ,Φm+1) before the (m + 1)th bundle passes through. This
process is repeated until all bundles are measured and ΦM+1 is reported as the estimate.
(b) An example of a decision tree representing an adaptive measurement using M bundles.
Each measurement (a node) produces one of the dL = 4 possible outcomes represented by a
branch. The number of leaves grows exponentially with depth M . Here we only expand one
of the subtrees at the depth M − 1 and M . [Reproduced from Ref. [2], Fig. 1]

tree. We then discuss the characteristics of this decision-making process and approaches

to generating a policy. The formalism leads to an imprecision and a lower bound that are

dependent on the policy.

4.1.1 Adaptive measurement procedure

In this subsection, we describe a scheme for single-shot quantum-enhanced adaptive mea-

surement (Fig. 4.1a). The aim of the procedure is to estimate an unknown parameter φ

governing a process I. We consider the case where N d-level particles are used as a resource

and are divided equally into M bundles of L particles. Each bundle is subjected to the

process I(φ,Φ), where Φ is a controllable parameter. After the mth bundle is measured, re-

sulting in an outcome xm = {1, . . . , dL}, the value of Φm is adjusted according to the feedback

policy % and the history of outcomes leading up to the mth measurement, xm = x1x2 . . . xm.

Here we do not restrict the feedback to be Markovian [52]. The estimate φ̃ is inferred from

ΦM+1(xM) once all the bundles are measured, barring any loss of particles.

The N particles are injected into the measurement scheme as bundles of L particles as
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a strategy to increase the information obtained from the measurement [134]. The bundles

can be entangled, and so the state is ρ1, acting on state space S
(
H ⊗N

d

)
. The particles can

be temporally or spatially separated and, hence, can be labelled. In particular, we restrict

the input state to those which are symmetric under particle reordering. A permutationally

symmetric state is advantageous for an adaptive scheme because the effect of the loss of

particle on the imprecision is reduced. In this work, however, we do not include loss.

The mth bundle is injected into a process I(φ,Φm), which is a quantum channel, i.e.,

a completely-positive trace-preserving map [114]. In this formalism, the unitary channel

becomes a special case for when no noise or loss is present [47]. The map is represented by

a set of Kraus operators {Ki(φ,Φm)}, acting on the subspace H ⊗L
d , such that the condition

∑

i

Ki(φ,Φm)K†i (φ,Φm) = 1 (4.1)

is satisfied.

Upon its exit, the bundle is measured, and the outcome xm ∈ {0, 1, 2, . . . , dL − 1} is ob-

tained. The measurement on one of the bundles is a projection-valued measure (PVM) [117,

116] X(xm) = |xm〉 〈xm|, where the outcome xm is obtained with a probability

P (xm|φ,Φm, ρm) = tr
(
X(xm)Ki(φ,Φm)ρmK†i (φ,Φm)X(xm)

)
, (4.2)

omitting the tensor product
∏

m′ 6=m
⊗1(m′) on the operators.

We create a shorthand for the mth measurement by combining the quantum channel

operator and the measurement operator into

Cxm(φ,Φm) = X(xm)K(φ,Φm). (4.3)
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The unnormalized state after this step is

ρm+1 = Cxm(φ,Φm)ρmC
†
xm(φ,Φm). (4.4)

As the measurement procedure starts from the input state ρ1, ρm is determined by the previ-

ous measurement outcomes, and so we rewrite the notation P (xm|φ,Φm, ρm) as P (xm|φ,Φm)

to indicate the probability of obtaining xm given the previous outcomes being x1 . . . xm−1.

The most general feedback procedure uses the entire history xm along with the policy

% to determine the adjustment Φm 7→ Φm+1. Therefore, the controllable parameter is a

function Φm+1(xm). We initialize Φ1 ≡ 0 at the beginning of the procedure. The estimate φ̃

is only inferred after all the particles have been measured from the controllable parameter,

φ̃ ≡ ΦM+1 (xM), and therefore ΦM+1 is an estimator that is an injective function but not

necessarily bijective. This function takes a string of discrete random variables as input and

hence the range of ΦM+1 is also discrete. The estimate φ̃ is then a discrete approximation

of a continuous parameter φ ∈ [0, 2π).

4.1.2 Adaptive measurement as a decision-making process

In this subsection, we describe the adaptive measurement procedure in Sec. 4.1.1 as a

decision-making process, which is one way of modelling the discrete-time closed-loop control

system. For one instance of phase estimation, the procedure can be represented as a decision

tree, whose number of leaves reflects the number of possible scenarios and therefore the size

of the policy so that every scenario is taken into account. However, this number scales up

exponentially, which makes non-Markovian policy computationally expensive to devise.

How the policy determines the imprecision has been explained from two perspectives. An

adaptive measurement scheme is thought to achieve the minimum imprecision by approxi-

mating the theoretical optimal measurement [76]. In this view, an optimal policy steers the

AQEM scheme to approximate this measurement within some error bound. Another expla-
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nation of the working of AQEM is to consider the procedure as a Bayesian measurement,

where the prior for φ is updated according to the outcomes [135]. In this case, a successful

policy can be said to maximize the amount of information about φ as represented by the

prior. The Bayesian model is useful as it provides a framework to generate successful policies

by minimizing the width of the prior after each measurement[40].

An AQEM procedure can also be delineated as a decision-making process, where the

function Φm+1(xm) makes the decision of what the value of Φm+1 should be based on the

outcomes. If the outcome xm is the only information used, the feedback is Markovian [136,

52], but we do not restrict our formalism to this case. Considering the adaptive measurement

scheme as a decision-making process allows us to visualize the procedure as a decision tree,

where each branch represents a single-shot procedure obtaining a unique string xM occurring

with probability P (xM |φ, %). This decision tree can also represent a policy, making it possible

to calculate an important property of a policy, namely the size, which contributes to the

difficulty in devising the optimal adaptive procedure.

For an AQEM scheme that utilizes M bundles of L d-level particles, there are M mea-

surements in a single-shot procedure, each with dL possible outcomes. This process can

be represented by a decision tree of depth M with dL branches stemming from each node

(Fig. 4.1b). Each branch, from root to leaf, corresponds to an adaptive measurement pro-

ducing a unique string of outcomes xM . Given the estimator ΦM+1, this leads to an estimate

φ̃, which is not necessarily unique.

Assuming the feedback is a deterministic procedure, the probability of obtaining a se-

quence of xM is determined by the quantum measurement. Because each outcome is gener-

ated with a probability P (xm|φ, %), the probability of obtaining xM is then

P (xM |φ, %) =
M∏

m=1

P (xm|φ,Φm). (4.5)

This probability is also the probability for a single-shot adaptive measurement to deliver an
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estimate φ̃ = ΦM+1(xM).

A decision tree can also represent a policy, providing the rule for mapping Φm 7→ Φm+1

according to where on the decision tree the scheme currently resides. Hence, the size of

the decision tree; i.e., the number of branches, gives the maximum size of the policy. For a

measurement procedure using M bundles of L d-level particles, the number of branches is

M∑

m=1

(dL)m = dL
(dN − 1)

dL − 1
. (4.6)

That is, the maximum size of a non-Markovian policy scales exponentially with N , making

a non-Markovian strategy difficult to devise.

4.1.3 Imprecision of an adaptive scheme

In this subsection, we discuss the imprecision determined from the decision tree. Whereas

there are many ways of quantifying the imprecision of a measurement scheme [137, 121], all

of them can be said to quantify the width of a distribution of the estimate P (φ̃|φ, %). Using

the estimator ΦM+1(xM), we can relate the distribution of the estimate to the distribution

of the outcomes P (xM |φ, %). Minimization of the imprecision is then achieved by optimizing

the probabilities associated with the branches of the decision tree.

The imprecision of a single-shot adaptive measurement can be ascertained from multiple

estimations of the same value of φ (Fig. 4.2). The data set{φ̃} forms a distribution that

peaks at ¯̃φ, assuming the distribution is Gaussian. For an unbiased scheme, ¯̃φ = φ, but for

small M this is not the case because the estimates have discrete values. The bias of a scheme

can be quantified by the difference φ− ¯̃φ.

We define the imprecision to be the spread of the distribution around ¯̃φ regardless of

whether the estimate is biased or unbiased. Because of the deterministic relationship between

xM and φ̃, we can relate the probability distribution of the outcomes to the probability
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Figure 4.2: Distribution of sampled values of phase estimate φ̃. The actual phase shift φ,

the mean φ̃ and the points φ̃±∆φ̃ one standard deviation ∆φ̃ above and below the mean φ̃
are shown on the abscissa. [Reproduced from Ref. [2], Fig. 2]

distribution of the estimate

P (φ̃|φ, %) =
∑

xM∈Φ−1
M+1(φ̃)

P (xM |φ, %) , (4.7)

where Φ−1
M+1 is the inverse function of ΦM+1. By substituting Eq. 4.5 in Eq. 4.7, we obtain

a distribution that explicitly depends on the policy.

From Eq. 4.7, we have shown that in AQEM minimizing the imprecision is done by

optimizing the distribution P (xM |φ, %). This task is difficult because there are dN possible

values of xM . Furthermore, each string is obtained through a unique state trajectory, and

taking all of the possible trajectories into account in order to compute P (φ̃|φ, %) is resource

consuming. As a result, generating a feasible policy is a primary challenge for devising an

AQEM scheme. By analyzing the characteristics of the decision-making process, we can

make connections between an AQEM scheme to possible methods of generating successful

policies.
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4.1.4 Generating policies for AQEM

In this section, we discuss the characteristics of a decision-making process derived from an

AQEM procedure and the approaches for generating a policy based on these characteristics.

We base this discussion on the framework of MDP and POMDP (Sec. 2.2.2). The Marko-

vianity here refers to the outcome of the decision being determined only by the current

state and action and not the history of states and actions [52, 89]. Markovian policy, on

the other hand, refers to a process that uses only the current state or observable to make a

decision [138].

To determine whether an AQEM scheme is Markovian, we first assume that the input

state and the quantum dynamics can be known accurately and precisely, and therefore, the

state, action, transition probabilities can be calculated. The state sm at time step m is

determined by φ,Φm, and ρm, and the actions that the controller can choose are {um},

which takes Φm 7→ Φm+1. If the quantum channel is completely known, then knowing sm

would allow us to calculate the transition probabilities to sm+1 from Eq. 4.2 without having

to know what the prior states and actions are. Hence, the dynamics of an AQEM procedure

can be described by an MDP.

The controller, however, does not have access to this MDP model as the value of φ is

unknown in an AQEM task, rendering both the states and transition probabilities incalcu-

lable. Instead, the controller observes the measurement outcome xm, which puts an AQEM

problem into the category of POMDP rather than MDP. Solving a POMDP is possible if

the model of the state evolution is available. One such example is to update a prior of φ,

which is assumed to be uniformly probable at the beginning, based on xm using Bayesian

inference [40].

If a trusted dynamic model is unavailable, the alternative is to interact with the POMDP

in order to gather information about its dynamic [52]. Within this group of techniques, we

can divide the methods into ones that evaluate the actions after each time step and ones

that evaluate the entire policy after one or more episode of the AQEM task. Reinforcement
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learning is an approach in the first category [89] that utilizes step-wise rewards to generate

a policy. If step-wise rewards are not available, then policy-based techniques that use a

long-term reward are used, and one such technique is direct policy search (2.2.2). When

combined with a heuristic optimization algorithm, a policy-search algorithm does not need

to construct a model of the POMDP, and the information from the interactions are used

only for policy generation.

4.1.5 Cramér-Rao lower bound for AQEM

Whether a quantum metrology scheme attains a quantum-enhanced precision depends on

its optimal performance, i.e., the minimum imprecision of the scheme. The lower bound

is defined in parameter estimation by the CRLB (Sec. 3.2.2), which gives the minimum

variance in terms of Fisher information [139]. In this section, we discuss the lower bound for

the imprecision of an AQEM scheme using the distribution derived from our decision-making

model. In particular, we consider the case where the bundles of particles are not entangled,

and the lower bound is simplified. Because the distribution depends on the policy, the lower

bound can only be computed when an optimal policy is given.

In the classical picture, the lower bound to imprecision ∆φ̃ arises from imperfection in the

measurement device. Therefore, in principle, the precision of a classical measurement scheme

can be improved indefinitely. When the quantum nature of the measurement scheme is taken

into account, the uncertainty principle prevents an improvement to the lower bound beyond

that allowed by quantum mechanics. To describe the lower bounds for an AQEM scheme,

we consider a measurement where there is no imperfection in the measurement scheme and

the imprecision is an effect of the quantum-mechanical nature of the input state.

The Cramér-Rao lower bound, which is defined as the lower bound for the variance,

(∆φ̃)2 =

2π∫

0

dφ̃P (φ̃|φ) (φ− φ̃)2 , (4.8)
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is derived most generally for multiple-parameter estimation [53, 140]. Here we consider

the case where a single parameter is measured, and the estimate is unbiased. Under these

conditions, the CRLB becomes

∆φ̃ ≥ 1√
F (φ, %)

, (4.9)

where F (φ, %) is the Fisher information

F (M)(φ, %) :=
∑

{xM}

P (xM |φ, %)

(
∂ logP (xM |φ, %)

∂φ

)2

. (4.10)

The Fisher information shows the degree for which the outcomes {xM} generated from φ is

differentiable from the outcomes generated by φ+ dφ. The information increases as the two

sets of outcomes become distinct from one another.

When all the bundles are entangled, the Fisher information cannot be simplified from

Eq. 4.10, although the probability for xM is a product of the probabilities for xm. That is

because the distribution depends on the history of the outcomes through the back-action on

the state. If the bundles are independent of one another, the back-action does not affect the

subsequent measurements. In this case, the Fisher information can be simplified to

F (M)(φ, %) =
M∑

m=1

F (1)(φ,Φm). (4.11)

If F (1)(φ,Φm) are identical for all m ∈ {1, . . . ,M}, the information become F (M)(φ, %) =

MF (1)(φ,Φ1), and the SQL is derived if MF (1)(φ,Φm) ∝ N . However, this condition is not

satisfied in the presence of a feedback control, which changes the distribution of P (xm|φ,Φm)

in subsequent measurements. A statement about the lower bound can only be made when

the optimal policy is known. Hence we turn to adaptive phase estimation as the toy problem

To this end, we turn to adaptive phase estimation as an example of AQEM procedure.
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4.2 Adaptive phase estimation as a POMDP

In this section, we cast a QEAPE (Sec. 3.4) into a decision-making process and discuss

possible approaches for generating successful policies based on the problem’s characteristics.

In QEAPE, the N -particle state is split into N bundles of two-state particles, and hence the

procedure can be represented as a binary decision tree with the estimates φ̃ as the leaves of

the tree. Due to the randomness of the measurement outcomes, the policy does not control

the trajectory that the procedure takes during an instance of estimating φ, but rather the

probabilities of the trajectories. As the string xm alone cannot be used to estimate the

trajectory probability or determine how close Φm is to φ, we decide that a policy-generation

technique that uses policy-based evaluation rather than action-based evaluation is the most

appropriate method for this problem.

4.2.1 QEAPE as a binary decision tree

Here we explain in the properties of the binary decision tree and how the task of QEAPE can

be understood in this representation. As the full state description of the decision tree would

require knowing φ, the tree represents a POMDP with each branch representing a sequence

of observables xN and the action that the controller choose is the tweak to the controllable

phase shifter Φm, which for the policy-search feedback is um = (−1)xm∆m for ∆m ∈ [0, 2π)

(Eq. 3.44). In this picture, the task of the feedback control in QEAPE is to manipulate

the quantum dynamics such that the path leading to φ̃ ≈ φ is maximally probable, and the

spread of the classification error, i.e., the imprecision, is minimized.

An instance of estimating an unknown φ can be viewed as a random walk from the root

of the decision tree to the leaf with the path chosen determined by the probabilistic nature of

the quantum measurements (Fig. 4.3). For any given %, there are 2N−1 paths, corresponding

to every possible sequences of xN . If the measurement outcome is not probabilistic, then

an optimal policy should lead to a unique trajectory xM that results in φ̃ ≈ φ for any
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Figure 4.3: An example of a binary decision tree representing a QEAPE using three particles
and a logarithmic-search feedback (Eq. 3.44). The red line represents one instance of running
the QEAPE scheme, which is randomly simulated based on the quantum dynamics. The
initial controllable phase shifter Φ0 is set to zero and is adjusted by ∆m or −∆m depending
on xm ∈ {0, 1}. Once the particles are used up, the value of Φ3, which in this example is
Φ3 = Φ011 is used to infer the estimate φ̃.

φ. However, the quantum nature of the measurement means that even when an optimal

policy is used, the trajectory generated by the procedure may not necessarily lead to a close

approximation of φ. In fact, the trajectory would be random each time, governed by the

probability of the particular sequence occurring (Eq. 4.5), and this probability is determined

both by φ and %. As such, the role of the policy is better stated as maximizing the probability

of φ̃ ≈ φ for φ ∈ [0, 2π). The imprecision captures the spread of the probability distribution

P (φ̃|φ) (Eq. 4.7), which we measure using the Holevo variance (Eq. 3.41) from many sampled

trajectories of the same policy.

In this work, we assume that a trusted model of the quantum dynamics is not available

due to an addition of phase noise, which we simulate by turning φ into a random number

in [0, 2π) that is sampled from a unimodal distribution with the peak at φ0. Under this

constraint, a trial-and-error approach to policy generation is needed as we would need a

method of determining the probabilities of the paths with incomplete information. However,

the trail-and-error has a drawback as the number of paths scales exponentially with N , and
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this number of paths is only for one set of policy parameters, for example a particular ∆ ∈

[0, 2π)N (Eq. 3.45) whose space contains an infinite number of possible policy vectors. As

such, determining the probabilities for each and every combination of xN and % is impractical.

We therefore estimate the spread of the error, formally quantified by the Holevo variance

(Eq. 3.41), by having the simulation sample a subset of paths. We do not explicitly specify

which path the QEAPE follows but instead leave the path to be randomly chosen based on

the quantum dynamics.

4.2.2 Optimizing the QEAPE

Now that we have casted a QEAPE scheme into a POMDP, we explore the possible ap-

proaches to minimize the imprecision. We discuss whether an action-based evaluation or

a policy-based evaluation is suitable given the limited information we can infer from xm.

As determining the preferred actions for this task is not possible without a model of the

quantum dynamics, we choose the approach of policy-based evaluation and uses a black-box

optimization algorithm to find a successful policy.

As mentioned in the previous subsection, QEAPE aims to maximize the chance of φ̃ ≈ φ

and minimize the imprecision ∆φ̃, which can be intuitively computed using many trials of

the same policy %. In other word, the most intuitive approach to evaluating a QEAPE

policy is to evaluate the entire policy multiple times. The question is whether we can isolate

the actions that leads to achieving minimal imprecision [52]. Action-based evaluation is

attractive in the case where the search space is large as the approach exploits a possible

structure in the control task to effectively reduce the size of the space that the optimization

algorithm focuses on [89]. Action-based evaluation can therefore lead to a faster search using

a smaller training set than a policy-based evaluation method [95].

To determine the type of techniques that is suitable for the problem, we turn our attention

to the information contained in xm and whether this information can be used to assign credits

that reflect the contribution from each action to minimizing the imprecision. As we use a
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measure of imprecision to assign long-term reward to the policy and this imprecision is tied

to the probabilities of the outcomes, we consider whether the probabilities P (x = 1) and

P (x = 0) can be estimated from xm. If there is no phase difference, i.e. φ − Φ = 0,

then the particles would be detected at the output with a 50:50 chance. A difference in

the phases can lead to the change in P (xm); however, observing xm alone is insufficient to

determine the probabilities because the probabilities would change for each xm due to the

adaptive procedure and the backaction on the quantum state, which is unique for each xm.

Therefore, evaluating the actions is not possible with the available information, and we need

to wait until the end of the task to determine the quality of %.

One approach that is available for learning an entire policy is the direct policy search [30].

In this approach, the policy is parameterized and an optimization algorithm is used to

search for the parameters. However, this approach can be impractical if the policy space is

large because the optimization algorithm may require an impractically long time to find a

successful solution. For this reason, we do not use a non-Markovian policy, as the size of

the policy of would scale exponentially with N (Eq. 4.6). Instead, we adopt the Markovian

feedback based on logarithmic-search heuristic in Eq. 3.44, which leads to the estimate being

φ̃ =
N∑

m=1

(−1)xm∆m. (4.12)

The number of parameters in this policy scales linearly with the size of the search space with

N .

For each value of N , we search for a vector of policy parameters ∆ = (∆1,∆2, . . . ,∆N)

(Eq. 3.45) that minimizes the imprecision using a DE algorithm, which is a black-box heuris-

tic optimization algorithm [141]. This type of algorithm uses only the fitness function and

in this case the sharpness function (Eq. 3.42) to search for a successful policy. The fitness is

computed from multiple trials of the same policy, which enables us to optimize independently

from the AQEM dynamics [142]. As such, the simulation of an AQEM scheme used in this
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work can be replaced with an experimental setup where the dynamics include noise and loss

is not fully described. Once ∆ is optimized, the policy can be used to estimate an unknown

φ ∈ [0, 2π) without further training as long as the dynamic of the experimental setup, e.g.,

the noise model or other system parameters, does not change.

4.3 Differential evolution

In this section, we describe a version of DE that appear in the original paper [143], which

we build upon to devise the noise-resistant policy-search algorithm in Chapter 5 and list

the known advantages and disadvantages [144]. We include the review here to aid reader’s

understanding of the results in Sec. 4.4, which are obtained from the algorithm in Chapter 5

without including phase noise.

Differential evolution is a global optimization algorithm that iteratively searches for a

feasible solution in a continuous search space [143]. The search process evolves a population

of solution candidates using a heuristic inspired by biological evolution. What distinguishes

DE from other evolutionary algorithms are the rules for generating and selecting candidates

for the subsequent generation of solution candidates [145, 32].

The optimization process begins with initializing a population of candidate solutions. A

candidate solution at generation G is represented by a vector

Vı(G) =
(
Vı(G)(j), Vı(G)(2), . . . , Vı(G)(N)

)
, (4.13)

each component corresponding to a parameter in the solution. A population of Np of these

candidates are initialized randomly in the search space of dimension N , and each of the

candidates is evaluated for its fitness using a fitness function S(Vı(G)), which is related to

the quality of the solution.

The algorithm then enters the iterative optimization procedure. For each of the candi-

59



dates, an offspring,

Dı(G) =
(
Dı(G)(1), Dı(G)(2), . . . , Dı(G)(N)

)
, (4.14)

is then created by combining the parent with randomly selected members of the population.

The rule for creating the offspring is

Dı(G)(j) =





Vı,1(G)(j) + F · (Vı,2(G)(j) − Vı,3(G)(j)) if rand ≤ Cr

Vı(G)(j) otherwise,

(4.15)

where F is a scaling parameter and Cr the crossover rate. The vectors Vı,1(G),Vı,2(G),Vı,3(G)

are randomly selected from the population. The fitness of the offspring is then computed

and compared to that of the parent. The one with the highest fitness value is selected for

the next generation.

The iterative steps are repeated until the termination condition is reached, either by

reaching a predetermined number of generations or the fitness of a candidate reaches a

threshold, then the candidate with the highest fitness is selected as the solution. The solution

delivered by DE is not guaranteed to be optimal, although the convergence of the candidate

solutions to a global solution enables a feasible solution to be generated [143, 144]. The

convergence, and thus the quality of the final solution, depends on the parameters of the

algorithms, which are Cr, F , Np, and the total number of generations. These parameters are

adjusted through trial and error such that a successful solution is obtained within reasonable

computational time.

Differential evolution is of interest to us because of two reasons. The first reason is

that the optimization only uses the fitness and not its derivative. By ignoring the internal

working of the plant, DE can be applied to quantum control problems where the dynamic

is intractable or not fully known. Moreover, DE has been found to deliver feasible solutions

for high-dimensional search problems, even being able to find a solution in 100-dimension
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search space for certain test problems [146].

One concern of using DE is when the fitness function is noisy [147]. Noise in the opti-

mization problem negatively affects any evolutionary algorithm [148]; however, DE has been

shown to be more strongly affected in comparison to other population-based heuristic algo-

rithms. Therefore, DE has to be tested in a noisy problem and modification made to make

the algorithm noise resistant [149]. We address this issue in Sec. 5.2. For the next section,

we turn to the result of applying the algorithm to QEAPE without including phase noise.

4.4 Results and discussion

In this section, we demonstrate the ability of a policy-search algorithm based on DE (Chap-

ter 5) in finding a successful policy for QEAPE without phase noise. We show that the

quantum-enhanced imprecision is a result of the quantum correlation between particles that

exists in an entangled state and not simply a result of a clever control that DE is able to

find. These results are used later as benchmarks for when phase noise is included.

We apply the policy-search algorithm to simulations of QEAPE that utilize the logarithmic-

search update rule (Eq. 3.44). In addition to using N -particle sine states (Eq. 3.36), we also

simulate QEAPE schemes that uses an N -particle product states,

|ψ〉N = |1, 0〉⊗N , (4.16)

as the input states in order to compare the power-law scaling of the imprecisions (Eq. 3.9).

We set the DE parameters to F = 0.1, Cr = 0.6 and Np = 50. The total number of

generations before the algorithm accepts a policy is 100.

The QEAPE utilizes N = {4, 5, . . . , 100}, and the linear regression of the log-log plot is

computed to obtain the power-law scaling (Fig. 4.4). The scaling observed from the non-

entangled state is VH ∝ N−1.071, which closely adheres to the SQL. A slight improvement

can be attributed to the limit of N = 100, which is far from N → ∞ assumed for SQL.
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Figure 4.4: Logarithm of Holevo variances generated using a non-entangled state (blue �)
and an entangled state (green N). [Reproduced from Ref. [2], Fig. 3]

We find that using the sine state leads to a scaling VH ∝ N−1.421, which exceeds the SQL.

Hence, entanglement between the particles is a crucial part that leads to AQEM being able

to attain quantum-enhanced precision.

4.5 Conclusion

In this chapter, we formalize the description of an AQEM scheme that divides its resource

equally over M measurements and model the procedure as a decision-making process. Using

this framework, we are able to derive the imprecision and the CRLB that take into account

the feedback procedure. We also analyze the characteristics of the decision-making process

based on MDP and POMDP framework and decide on the appropriate technique for de-

vising control policies. We use a policy-search algorithm to find policies that minimize the

imprecision and attain power-law scaling up to N = 100 to an adaptive interferometric phase

estimation scheme and is able to show that the quantum-enhanced precision is attained when

entanglement is involved. Otherwise, the optimal scaling approaches the SQL.

The results we have obtained are used as benchmarks in the next part of the thesis where

phase noise is included in the simulation of the interferometer. Phase noise emulates the
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imperfections that are present in a physical interferometer, which increases the noise in the

objective function and makes it difficult for the search algorithm to find a successful policy.

In the next chapter, we present how the policy-search algorithm is devised to be resistant to

phase noise.
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Chapter 5

Scalable and Noise-Resistant

Policy-Search Algorithm

In this chapter, we describe the policy-search algorithm devised to be noise-resistant and

capable of delivering successful policies for a high number of particles. We show that the

algorithm can deliver policies for QEAPE that surpasses the SQL for up to 100 particles with

low-level normal noise and loss. In principle, the algorithm can deliver successful policies

up to any number of particles as long as the CPU time is available. However, for the

purpose of demonstrating the algorithm’s efficacy, we do not push beyond N = 100 where

the rounding error in the numerical interferes with the simulation. Furthermore, we explain

the implementation of the algorithm on a high-performance computing cluster, where we use

parallelized resources to reduce the runtime.

5.1 Introduction

The policy-search algorithms that have previously been designed for adaptive phase estima-

tion fail to deliver successful policies consistently beyond 90 particles without noise [35] and

45 particles with noise [34]. Beyond these points, the imprecision shows a stagnation, which

is a result of the optimization algorithm not given sufficient computational resource to find
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a successful policy. Therefore, a new search algorithm needs to be devised for QEAPE.

As the representation of the policy, the fitness function, and the training set are decided

based on the task of QEAPE, the focus is on designing the optimization algorithm for the

problem. Previous works show that the optimization landscape based on the sharpness

function is nonconvex [90], and therefore a global optimization strategy is selected. An

optimization algorithm searches for a solution in a search space defined by the parameters of

the policy, and since the size of the policy grows with the number of particles, the algorithm

must be able to generate successful policies for high-dimensional search space. A global

optimization algorithm that has been shown to be able to deliver successful policy for a

search space as high as 100 is differential evolution (DE) [143, 144].

However, using DE alone is not sufficient to deliver successful policies consistently for

more than 93 particles within a reasonable time. Another heuristic is used to reduce the

time cost by identifying the neighbourhood where the solution that breaks SQL exists in

high-dimensional problems. The centre of the neighbourhood is identified by constructing

an N -dimensional vector where the first N − 1 dimensions in the search space come from

the optimized policy of the (N − 1)-dimensional problem. The N th position is chosen to

the be same as the (N − 1)th dimension, and the search algorithm then randomly tries out

the policies, as defined by DE, around this point. This heuristic has allowed the number of

iterations required to find a successful policy to go down to 100 iterations where otherwise

the number of iterations would have scaled with N [34].

Although DE has an advantage in terms of high-dimensional problems, DE has a known

disadvantage when the optimization problem is noisy [149]. To obtain successful policies

for the noisy, high-dimensional phase estimation problem, we create a variant of DE that is

robust against phase noise by using the mean sharpness instead of the sharpness function.

And to push up to 100 particles, we include accept-reject criterion that switch from accepting

policies after 100 iterations to accepting policies only after VH falls within an acceptable

distance away from a projected imprecision in the logarithmic plot (Appendix A).
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5.2 Noise-resistant global optimization heuristics

Differential evolution is able to find feasible solutions in high-dimensional search spaces for

a set of test problems [146] and for adaptive phase estimation [35]. However, when DE is

employed for the problem of noisy phase estimation for N up to 100, we observe that DE

does not perform as well as PSO and, in fact, fails to deliver better than SQL scaling. To

devise a noise-resistant global optimization algorithm for our scheme, we use the mean value

S̄ instead of S to determine the performance of a policy. This strategy is one of the many

strategies proposed in the literature to create noise-resistant DE and other evolutionary

algorithms [149, 150] and is found to work best for our problem.

The principle behind the use of the mean fitness value is as follows: if noise is added to the

fitness function, the process of averaging recovers the true fitness value. The optimization

using this value is, therefore, a close approximation to the noiseless optimization. The major

drawback of this approach is that computing the fitness function multiple times makes the

procedure computationally expensive. Therefore, determining the smallest sample size of

{S} necessary to recover S is crucial. To this end, we employ the heuristic applied to PSO

in the previous work [34]. The method updates S̄ by computing one new sample of S every

iteration until a better offspring is generated.

The sample size for computing S is then determined by the probability for DE to generate

an offspring that is better than the parent. This probability decreases as the candidates

converge on the optimal value. As a result, the sample size grows automatically as the

optimization progresses. The computational resources are allocated towards candidates that

are close to optimal, which is a favourable strategy as the differences between fitness values

are dominated by noise in this case. Large sample size enables accurate estimations of the

candidates’ fitness values.

In the case of adaptive phase estimation, the phase noise does not add an additive noise

in S. Rather, the phase noise increases the imprecision and in turn increases S. As such, the

mean value computed from J samples does not converge on the fitness value of the noiseless
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case but rather making the estimate of S more precise.s For an approximate of low noise,

computing the mean sharpness is approximately the same as computing S using JK number

of samples.

5.3 Improving scalability

In this section, we explain the accept-reject criteria and how this technique leads to DE

delivering successful policies up to N = 100. Although DE can generate successful policies

for N > 45, which is the limitation observed when PSO is used [35], the variances also

display stagnation when N > 90. To generate policies from a search space that scales up to

100 dimensions, we implement a set of heuristics and criteria to the noise-resistant DE to

ensure that only successful policies are accepted.

The stagnation is a manifestation of the algorithm not being able to converge to a suc-

cessful solution in the time limit imposed. Previously the algorithm accepted a policy after

a fixed number of iterations regardless of whether the population converges. However, as

the dimension of the search space increases, so does the time for the population to con-

verge. Eventually, the algorithm fails to deliver a policy that passes the test. We change

the criterion for accepting a policy from a fixed number of iterations to only if VH is within

a distance corresponding to a confidence interval of 0.98 from the inverse power-law line.

Thus, we guarantee that the policy from our algorithm always delivers a power-law scaling

better than SQL.

The acceptable error δy for N > 93 is calculated from the statistics of VH (Eq. 3.41). The

Holevo variance VH are collected from N = {4, 5, . . . , 93}, in which we accept the policies

after a fixed number of iterations. A linear equation is determined from {yi} = {log VH(N)}
and {xi} = {logN}, and is used to predict the next data point y′. The acceptable error

from this predicted value is calculated using the previously stored data and the best value

67



of VH at iteration G from a statistical formula, namely [151, 152]

δy = t∗v−2

√∑v
i=1(y′i − yi)2

v − 2

(
1

v
+

(x′ − x̄)2
∑v

i=1(xi − x̄)2

)
, (5.1)

where v is the number of data points, x′ = logN for which the error is calculated, and x̄ is

the average of {xi}. The value t∗v−2 is the quantile of the Student’s t distribution, which is

a unimodal symmetric distribution, for v − 2 data points, We approximate using a normal

distribution, as a Student’s t distribution becomes a normal distribution for large v. The

policy is accepted if |log VH(N)− y′| ≤ δy, or the optimization continues.

The noise-resistant DE variant, including the accept-reject criteria, works as follows.

Algorithm 1 Noise-resistant DE

Step 1 Initialize the population of size Np randomly.
Step 2 Evaluate the fitness function for each candidate twice, and store the mean fitness
value and the sample size.
Step 3 Generate a donor Di(G) for each of candidate Vi(G), where G is the iterative
time step, from three other candidates {Vi,1(G),Vi,2(G),Vi,3(G)} chosen randomly. For
element j of the donor Di(G)(j),

Di(G)(j) =

{
V

(j)
i,1 (G) + F · (V (j)

i,2 (G)− V (j)
i,3 (G)) if r ≤ Cr,

Vi(G)(j) else,
(5.2)

where F is the mutation rate, Cr ∈ [0, 1] is the crossover rate, and r ∈ [0, 1] is a random
number.
Step 4 Evaluate the mean fitness value for each of the new candidates from two samples.

Step 5 Compare new and the old candidate using the mean fitness value

Vi(G+ 1) =

{
Di(G) if S̄(Di(G)) > S̄(Vi(G)),
Vi(G) else,

(5.3)

Step 6 Evaluate the fitness function once, and update the mean fitness value and the
sample size.
Step 7 Repeat step 3 to 6 until the criterion to terminate the algorithm is met.
Step 8 Compute the fitness value of the entire population for 10 times before selecting
the candidate with the highest mean fitness value as the solution.
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5.4 Selecting loss-tolerant policies

In the process of developing and testing the policy-search algorithm, we discover that DE

generates two types of policies, only one of which is tolerant to photon loss. Therefore, we

implement a criterion to automatically select a loss-tolerant policy based on the sampled bias

of the estimates. Because θ(k) = φ̃(k)−φ(k)
0 is a periodic variable, we uses the mean direction

θ̄ [154] as the measure of the bias and selects only the policies that deliver θ̄ ≈ 0, which have

been observed to be loss-tolerant. Otherwise, the policy is rejected and the optimization is

restarted from the beginning.

Once photon loss η > 0.05 is included in the simulation of the QEAPE, we observe two

responses from DE-designed policies. In one case, the policies are able to deliver imprecision

scalings that exceed SQL, whereas in the other case, the imprecisions fail to decrease with N .

In examining these policies, we discover that DE-designed policies can be classified by the

trend of ∆m with m. The loss-tolerant policies are the ones whose lim
m→N

∆m = 0 asymptot-

ically from 2π or lim
m→N

∆m = 2π asymptotically from 0, the latter being equivalent to the

phase adjustment vector (Eq. 3.45) having negative elements in [0, 2π). In both of these

cases, the control parameter Φm is adjusted in an increasingly smaller increment as the mea-

surement progresses, and the distribution of φ̃ governed by these policies is unimodal. The

policies that are sensitive to photon loss, on the other hand, are the ones whose lim
m→N

∆m = π

with ∆m oscillating around π. As such, the distribution of φ̃ is bimodal with the distance

between two modes being π. We aim to reject the loss-sensitive policies to ensure that the

QEAPE procedure designed using our policy-search algorithm to be able to tolerate photon

loss.

A property that can be used to differentiate between loss-tolerant and loss-sensitive poli-

cies is the bias of φ̃, which has been observed in the visualization of φ̃ distribution. Because

the phase shifts are wrapped in the domain [0, 2π), the bias of φ̃ is measured using mean
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direction [154], which is a mean of a circular random variable,

θ̄ = arctan

(
K∑

k=1

sin
(
θ(k)
)
,

K∑

k=1

cos
(
θ(k)
)
)
. (5.4)

Loss-tolerant policies have been observed to deliver unbiased estimates, i.e., θ̄ ≈ 0. Loss-

sensitive policies, however, deliver estimates with bias of either 0 or π depending on whether

N is odd or even.

We devise the criterion to select loss-tolerant policies by computing the bias for N = 4

and N = 5. If θ̄ falls within 0 ± √VH for both N , the algorithm accepts the policy and

continues to search for a policy for N = 6 and beyond. If not, the policy-search algorithm

resets N to N = 4 and restarts the optimization process. Because the level of error we

tolerate for θ̄ depends on VH, which increases with the level of phase noise, the criterion fails

to eliminate loss-sensitive policies in a highly noisy environment.

In general, the most precise estimator is not necessarily the same as an unbiased one,

and DE being able to find one that can deliver both is a consequence of the generalized-

logarithm-search structure as the sharpness, which we use as the fitness, is independent of

bias. We do not anticipate this observation to hold true for other policy structures or that

the estimator’s bias is fundamentally connected to the policy’s ability to tolerate photon

loss.

5.5 Implementing algorithm on a high-performance com-

puting cluster

The computational complexity of the algorithm is polynomial [35], but it has a high degree,

and therefore it is important to identify the performance critical parts of the implementation.

Two strategies have been used to decrease runtime of the algorithm. Firstly, we distribute

the solution candidates on a high-performance computing cluster so that the process of com-
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puting the fitness values is parallelized. Secondly, we identify that over 90% of the execution

time is spent on generating random numbers one by one, and so we explore strategies for

distributing the random number generation. Once generated, the numbers are stored in

tables that each candidate can access independently.

In order to distribute the candidates over the cluster, we utilize a Message Passing Inter-

face (MPI) library [153], which enables us to parallelize the calculation of the fitness function

onto multiple CPUs in the same cluster. The advantage is that the MPI library specifies

the communication between the CPUs and the memories during compilation of the code,

and so the same code can be implemented on any type of clusters that support MPI. To

minimize the runtime, we implement the code such that there is one candidate per CPUs

as the time used to communicate between CPUs is then insignificant compared to the time

used to compute the fitness function.

A large part of time cost of the fitness comes from random number generation, which

is primarily used in estimating the Holevo variance as the computation involves simulations

of the adaptive measurement procedure. Generating random numbers as they are needed

is not efficient on contemporary hardware. The operations can be vectorized to use the

single-instruction multiple-data architectures of the central and the graphics processing units.

Abstracting the random number generation routines and introducing a buffer, we are able

to vectorize the respective operations. We study two approaches: one relies on the CPU,

using the Intel Vector Statistical Library (VSL), the other on graphics processing units.

Eventually, the VSL-based vectorized solution proves to be more scalable. In both cases, the

random numbers are stored in tables to be used by candidates.

5.6 Results and discussions

By applying the method of adding noise-resistance to DE, we are able the obtain policies

that deliver the scaling of VH ∝ N−1.421 when the width of the normal distribution is 0.2
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Figure 5.1: The logarithm of Holevo variance from adaptive interferometric-phase estimation.
The interferometer includes small phase noise of width σ and loss rate η. Three algorithms
are used to generate the feedback policy DE, PSO, and stochastic hill-climbing. This image
is a rescaled version of Figure 1 in Ref. [1]. [Reproduced from Ref. [3], Fig. 3]

rad, and the probability of losing a photon is 0.2 are included. This result shows a scaling

exceeding N−1 expected from SQL, which is given for the ideal interferometer as a benchmark

in Fig. 5.1. The SQL data is generated using a non-entangled N -particle state (Eq. 4.16).

The HL shown in Fig. 5.1 is an extrapolation using the intercept from the SQL data and is

included for the purpose of providing a possible benchmark for the scheme.

Although both the SQL and the HL are reported in the literature for the mean-squared

error ∆φ̃ [8], we use the same benchmark for Holevo variance VH. This follows from the

approximation of VH at low error
∣∣∣φk − φ̃k

∣∣∣ � 1. Under this condition, the Sharpness in

Eq. (3.42) is approximated by a series expansion, and through this approximation, VH is

found to be the mean-squared error.

The accept-reject criterion applied to N > 93 enables the scheme to show the attain the

power-law up to N = 100 (Figure 5.1). The limitation at 100 photons is due to the compu-

tational time and the rounding error in the generation of the large multiparticle entangled

state. The time required to find a policy under the accept-reject criteria from 94 to 100

photons are between 1.5 to 3 hours per data point.
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Policies that are found using stochastic hill climbing break down at 20 photons even

for ideal phase estimation. The noise-resistant PSO shows the breakdown at 45 photons,

consistent with the previous result [35]. We did not apply the accept-reject criteria to PSO

as the computational time would have exceeded the time used by DE at the same number

of N and hence not considered worth the investment.

5.7 Conclusion

In this chapter, we describe the policy-search algorithm adaptive phase estimation that

can generate successful policies for when noise and loss are included. We attain quantum-

enhanced precision using a noise-resistant variant of DE and accept-reject criteria, which

enables the algorithm to generate successful policies up to 100 particles. In principle, the

algorithm can generate policies up to any number of particles and the runtime will become

a limiting factor once N reaches a certain number.

The methods we employed do not require explicit knowledge of the system’s dynamics, al-

though the convexity of the fitness functions, the dimension of the problems and the presence

of noise have to be taken into account in order to generate a feasible policy. We minimize the

runtime of the algorithms by distributing the candidates on a high-performance cluster and

vectorizing the random number generation and employing GPUs and VSL. This technique

mostly affects the simulation of the quantum system as the simulations are the most time-

and resource-consuming components of the current algorithms. With this algorithm, we now

have an alternative, data-driven approach for policy generation that can be compared to the

model-based Bayesian feedback.
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Chapter 6

Comparing AQEM Policies

In this chapter, we commence with the comparison of model-based and data-driven control.

We use the problem of quantum-enhanced adaptive phase estimation (Sec. 3.4) as the test

problem and devise criteria for comparing the policies designed using Bayesian inference

(Sec. 3.4.2), which requires a model of the quantum dynamics, and using the DE algorithm,

which is an example of a model-free control design procedure (Chapter 5). We develop a

test of the QEAPE’s robustness against phase noise of unknown properties and assess the

computational resources used to design and implement the quantum control policies. We

also compare the asymptotic power-law scalings for when the dynamic model used in the

Bayesian feedback matches with quantum dynamics in the simulation.

6.1 Introduction

AQEM performance critically depends on the choice of policy % [13], which can be obtained by

optimizing a known mathematical model [123, 124, 125] or by a trial-and-error approach [90,

35, 3]. Whereas policies from these methods are resistant to known noise models [123],

whether they are robust against unknown noise is yet an unstudied but critical property of a

QEM scheme as noise can destroy the entanglement advantage and restore the SQL [155, 156].

Our aim is to test the robustness of AQEM policies in the presence of noise with unknown
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properties.

Our test focuses on quantum-enhanced adaptive phase estimation (QEAPE), whose poli-

cies have been devised using Bayesian techniques [39, 40] and by searching the policy space

using an evolutionary algorithm (EA) [90, 35, 3]. The Bayesian technique computes feedback

based on a trusted, noiseless quantum model, whereas EAs [32] devise policies for feedback

based on the fitness of policies obtained through trial and error. This evolution is, by de-

sign, ignorant of the quantum-dynamical nature but employs heuristics to shrink the search

space. Here both methods are applied to QEAPE including phase noise, which could arise

from path-length fluctuation in the interferometer [157, 158].

Typically, noise is assumed to be normal as a result of the central-limit theorem [159].

The periodicity of the phase makes the normal distribution problematic unless the noise is

small compared to 2π radians, which we assume here; technically, we would use the wrapped-

up normal distribution [57]. As our aim is to test robustness for unknown noise, we consider

three other noise distributions for our test: random telegraph [58], skew-normal [59] and

log-normal [60] noise. The random-telegraph noise simulates a discrete noise process. Skew-

normal and log-normal distributions represent asymmetric noise, which serve as distinct

generalizations of the normal distribution. Both distributions are used to simulate noise in

detectors and electronics [160, 161, 162].

We first test the robustness of the policy-search algorithm by including the phase noise

models with low variance and skewness during the training stage. The purpose for this part of

our work is two folds. We want to confirm that the policy-search approach can indeed adapt

the policy to deliver quantum-enhanced precision as the data-driven control promises. We

also use this preliminary study to determine the contribution of skewness to the imprecision

scaling so to decide on the parameters of the robustness test between the Bayesian feedback

and the EA-designed policy.

For AQEM, we seek an efficient procedure that beats the SQL, and we choose % that

requires the least resource to run. We assess the policy-generating procedure according to
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the complexity of its time cost [61], which is evaluated by the scaling in the number of

operations with the number of particles N . Here we consider two policy-design procedures,

namely, a policy-search method based on differential evolution (DE) [143], which is a variant

of evolutionary algorithms, and a method based on Bayesian inference, resulting in one policy

designed by each method. To determine which policy is superior, we compare the complexity

in space and time cost [62]. Thus, we are able to assess and compare the costs for generating

policies and determine the best policy.

Through our analysis, we find that both Bayesian-feedback and DE-designed policies are

robust in the face of unknown noise. Specifically, the Bayesian method yields imprecision

that approaches HL and outperforms DE-designed policies for most noise models. This per-

formance superiority is due to the Bayesian method effectively memorizing the measurement

history through the agent’s complete knowledge of the quantum state. Storing the entire

model in the agent yields better imprecision scaling but incurs higher space and operational

time costs compared to the DE-derived policy.

6.2 Background

In this section, we describe the noise models chosen for the robustness test and the ba-

sics of the regression analysis that we use to determine the asymptotic imprecision scal-

ing. Previously, only the normal-distribution noise has been considered when devising the

noise-resistant DE (Chapter 5). Here we included other noise models, including a discrete

distribution and skewed distributions to the test. The asymptotic imprecision scaling has

only been determined by assuming that the imprecision is represented by a power-law line,

which is no longer true for low N when the noise level is increased. Therefore, the regression

procedure must include a method to determine where the power-law line starts as well as

the method for computing the scaling.

76



6.2.1 Noisy phase estimation

In this section, we explain the choices of the phase-noise models for the robustness test.

This noise is simulated by turning φ into a random variable that has a unimodal probability

distribution with the peak at φ0 (Alg. 2). The mode φ0 is assumed to be the unknown

parameter to be estimated. For the test, φ is sampled from one of the following distributions:

a normal, a three-stage random telegraph, a skew-normal, or a log-normal distribution. We

review the relationship between the noise parameters and the variance and skewness as

quantified by the second and third central moments [163] as we use both in selecting the

parameters for the robustness test and the variance in particular to define the noise level.

Algorithm 2 Adaptive phase estimation

Input: N , ρ1, %N , φ0

Output: φ̃
Initialization: Φ1 ← 0, m← 1
for m ≤ N do
φ← RandomNumber(φ0) //Add noise to the phase shift.
xm, ρm+1 ← Measure(ρm, φ,Φm) //Update the state ρm depending on φ− Φm.

//Compute probabilities of xm ∈ {0, 1} from
//ρm+1, and choose xm randomly based on
//these probabilities.

if xm = 0 then
Φm+1 ← Φm −∆m //Action chosen if xm = 0.

else
Φm+1 ← Φm + ∆m //Action chosen if xm = 1.

end if
m← m+ 1

end for
return ΦN+1

Normal-distribution noise

Normal-distribution noise is important for testing robustness of the search algorithm because

the normal distribution is especially prominent due to the central limit theorem, which states

that the average of a random variable has a normal distribution [159]. Due to the prevalence

of the normal distribution, assuming normal-distribution noise model is common [164]. The
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normal distribution,

p(φ) =
e

(φ−µ)2

σ2√
2πσ

, (6.1)

is parametrized by the mean µ and standard deviation σ. As this distribution is symmetric,

skewness γ is identically zero and thus the mode is at µ, and the variance is V = σ2. In our

simulations, we set µ ≡ φ0 so the only free parameter is σ, which is bounded above by σ < π

as otherwise the width would exceed the domain of φ. We restrict σ ≤ 2 as higher values of σ

would be uninteresting as they would correspond to almost completely noisy measurements.

Random-telegraph noise

Random-telegraph noise [58] is a noise that is sampled from a discrete distribution that, for

each time step, randomly switches between two values, one being the correct and the other

an erroneous value. Whereas this noise is most relevant to digital electronics, as it simulates

a bit-flip error, this noise simulates other forms of digitized noise, such as salt-and-pepper

noise in image processing [165].

We modify two-stage random-telegraph noise to have three stages,

p(φ) =





1− ps, φ = φ0,

ps
2
, φ = φ0 ± δ.

(6.2)

The probability of switching to an erroneous value is ps, and δ is the distance between the

true and erroneous values leading to

V = psδ
2, γ ≡ 0 (6.3)

with the last relation following from the symmetry of the distribution.

Unimodality of the distribution implies that ps < 2/3. Furthermore, we restrict δ < π

so that the distance between the two side peaks are less than 2π. To comply with both
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constraints and being able to raise the noise level to at least V = 3 so the result is comparable

to other distributions, we fix ps = 1/2 for the test and vary only δ.

Skew-normal-distribution noise

The skew-normal distribution [59] is modified from a normal distribution by multiplying

with a function whose skewness parameter is α, and so skew-normal noise is a class of noise

that includes normal-distribution noise as a limiting case. Although this distribution is not

widely used as a noise model, this probability distribution arises in simulations of noise for

filters and detectors [160, 162].

The skew-normal distribution is

p(φ) =
e−

(φ−µ)2

2σ2√
2πσ

[
1 + erf

(
α√
2σ

(φ− µ)

)]
(6.4)

for erf() the error function [166]. Skewness of the distribution is

γ =
4− π

2

2β

π − 2β
, β =

α2

1 + α2
, (6.5)

and the variance is

V = σ2

(
1− 2β

π

)
(6.6)

The mode, however, does not have a closed form although it remains close to µ as α/σ

increases. For the simulation, we assume the mode is µ.

Log-normal-distribution noise

Log-normal distribution [60] is a heavy-tailed skewed distribution that provides another

approach to generalizing the normal distribution and is employed in the study of net-

works [167, 168] and electronics [161]. In this case, the logarithm of the random variable is
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said to have a normal distribution, leading to the distribution

p(φ) =
e−

(log φ−µ′)2

2σ′2√
2πσ′φ

(6.7)

with mode and variance

φ0 = eµ
′−σ′2 , V =

(
eσ
′2 − 1

)
e2µ′+σ′2 , (6.8)

respectively, and skewness

γ =
(

eσ
′2

+ 2
)√

eσ′2 − 1.

As this distribution is defined for φ ∈ (0,∞), we first generate a random number within the

compact phase domain given µ′ and σ′ and then apply the shift

φ 7→ φ+ φ0 − eµ
′−σ′2 (6.9)

so that the mode of the distribution is centred at φ0 (Eq. 6.8).

6.2.2 Regression analysis

The imprecision ∆φ̃ and N are asymptotically power-law related (Eq. 3.9). However, when

the system is noisy, this relationship fails for low N , with the actual bound on N depending

on the noise model. We employ regression analysis to select the subset of VH at high N that

scales as N−℘ and estimate the corresponding ℘ by building piecewise functions and selecting

the best candidate to represent the data. In this subsection, we explain our regression-

analysis procedure for fitting a model given a set of data.
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Fitting the model

Regression analysis aims to determine the mathematical relationship between the dependent

(VH here) and independent variables (here N) [169]. The process of building this mathemat-

ical model begins with selecting a function f(N) based on the knowledge of the mechanism

and observations of the trends [170]. The function is only a best guess as the discerned trend

could be subjective.

After a function is selected, the function is then fitted to the data by finding the function

parameters that minimize the error between the predicted VH (denoted as f(N)) and the

data VH [171]. The method we employ is the least-squares estimation [172], used in the linear

regression to calculate the parameters by constraining the gradients to zero and solving the

resulting system of linear equations. We choose this method as we fit linear and piecewise

linear equations to log-log plot of VH and N .

Consistency of the fit

As the fitted function is only an educated guess, the fitting result must be examined for

inconsistencies with respect to the model’s assumptions [171]. An alternative function can

then be proposed, fitted, and compared to the previous function in order to find one that

best represents the data. Deciding on the best model from the set is done using statistical

criteria that either estimate the goodness of the fit to the data or between two models fitted

to the same data [173]. The model that is consistently shown to fit well according to each

of the criteria is then selected to represent the data. Below are common linear-regression

criteria used in this work.

Adjusted R-squared. The coefficient of determination

R2 = 1−

∑
N

(
V

(N)
H − f(N)

)2

∑
N

(
V

(N)
H − V̄H

) , (6.10)
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is a standard measure of the goodness of fit [174]. However, the R2 does not take into account

the number of model parameters b and the number of data v, and so using this measure alone

for model selection can lead to a model that over fits, i.e., a model that fits existing data

very well but is unable to predict future data with the same precision. Adjusted R2

R2 = R2 − b

v − b− 1
(1−R2), (6.11)

is created with a trade-off between high R2 and the simplicity of the model, quantified by b.

Both measures have a maximum value of 1.

Corrected Akaike Information Criterion. The Akaike information criterion (AIC)

quantifies information lost due to the discrepancy between the model function and the true

function g(N) [175],

AIC := b ln




∑
N

(
V

(N)
H − f(N)

)2

v


+ 2b. (6.12)

Although the AIC already takes b and v into account, AIC has been known to overfit when

v is small, and so corrected AIC,

AICc := AIC +
2(b+ 2)(b+ 3)

v − b− 3
, (6.13)

is introduce to increase penalty for models with large b to avoid overfitting.

F -test assesses a full model (maximum b), as the null hypothesis, against a reduced model

(reduction from the full model) as the alternative hypothesis [174, 170]. The F -value is

computed from

F ′ :=

∑
N

(V
(N)

H − f(N)r)
2 −∑

N

(V
(N)

H − f(N)f)
2

∑
N

(V
(N)

H − f(N)f)2

(v − bf − 1)

(bf + 1− br)
, (6.14)
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where the subscript f indicates the full model and r the reduced model. The usual assumption

is that
∑

N

(V
(N)

H − f(N)f)
2 <

∑

N

(V
(N)

H − f(N)r)
2, (6.15)

so the F value is always positive.

In the F -test, the F -value is compared to the critical value computed from an F -

distribution, which is a single-sided distribution. If the F -value is smaller than the critical

value, then the reduced model is considered to be just as good as the full model in explaining

the data, and the reduced model is selected to represent the data.

Mallows’s Cp,

Cp :=

∑
N

(V
(N)

H − f(N)r)
2

∑
N

(V
(N)

H − f(N)f)2/v
− v + 2b+ 2, (6.16)

estimates the mean-square prediction error [170, 173] and is used compare a reduced model

to the full model. If the model has all the necessary parameters, Cp is expected to take the

value Cp ≈ b + 1, and so a model that deliver this value is selected in the model selection

process. This condition, however, may not be reached, and a model that minimized Cp is

also considered.

6.3 Approach

In this section, we explore the skewness’s contribution to the imprecision scaling and, based

on the results, devise a test to determine whether quantum-enhanced precision is feasible

in the presence of unknown noise. We then assess whether power-law scaling of phase

imprecision vs particle number N is valid asymptotically and establish a method to determine

this power ℘. Finally, we define the resource for generating and implementing the control

policies in terms of the scaling of the space and time cost with N .
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6.3.1 Skewness and imprecision scaling

In this section, we explain the preliminary test for the robustness of DE-designed policy and

determine the contribution of the skewness to the imprecision scaling. We run the policy-

search algorithm on simulations of QEAPE including phase noise on a computer cluster of

48 CPUs and collect the Holevo variance of accepted policies.

For random telegraph noise and skew-normal noise, we generate the policies for N =

{4, 5, . . . , 100}, giving the wall time of 48 hours. For the log-normal noise, we generate data

up to N = 30 as the rejection-sampling method for generating random numbers are time-

consuming, taking 5 hours to generate data for N = {4, 5, . . . , 30}. As such, the power-law

scaling ℘ of VH from the log-normal noise should not be directly compared with the data

from random telegraph noise and skew-normal noise but taken as suggestions for whether

the DE algorithm is able to generate successful policies.

For each noise model, we collect data for three parameter sets. For asymmetric distribu-

tions, we vary only the parameters associated with skewness in order to determine how the

asymmetry affects ∆φ̃ and ℘. We also compute the variance of the distributions to show the

correlation with the scaling ℘.

The power-law scaling ℘ is computed by linearly fitting log VH vs logN . The data from

the ideal interferometer is used to generate the SQL and HL from the intercept of the linear

fit. The SQL and HL computed in this fashion are used to provide theoretical benchmarks

for the adaptive scheme given an ideal interferometer.

6.3.2 Robustness test

The robustness of QEAPE policies is determined by testing the policies in the presence of

noise whose model is not recognized by the policies and the method that designs the policies,

although DE-designed policies are learned in a training stage that includes the noise. Here

we define the test for QEAPE, including phase noise from Sec. 6.2.1. We specify the domain

of N for simulating the phase estimation schemes to obtain VH in noisy conditions. The
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noise parameters are variance V and skewness γ (Sec. 6.2.1), but here we fix γ for the

asymptotic distributions, and we obtain the robustness-test threshold in terms of V , which

is the maximum for each noise model such that the SQL is violated.

Varying N

To ascertain the asymptotic value for ℘, we simulate QEAPE for

N ∈ {4, 5, . . . , 100}, (6.17)

as VH computed from this domain is sufficient to show power-law relationship at high N . Fur-

thermore, increasing N further requires changing double-precision arithmetic to quadruple-

precision arithmetic to generate and manipulate the sine state without rounding error. Con-

sequently, this increase in precision leads to a fifteen-fold increase in run-time at N = 100,

which is a large expense for generating a single data point. Therefore, we do not attempt to

verify the robustness beyond this 100 particles.

Skewness

We fix skewness γ to a single value for all runs and only vary V because V is the dominant

term in our noise models and γ has a small effect [4]. We fix the skewness for the asymmetric

distribution to

γ = 0.8509, (6.18)

which is sufficiently large to distinguish between the various noise models; otherwise all noise

looks Gaussian. This value of γ (6.18) corresponds to α = 5 for the skew-normal distribution

where we are able to observe its effect on ℘ when compared to symmetric noise distributions.

This same level of skewness corresponds to σ′ = 0.2715 in the log-normal distribution.

85



Robustness threshold

Our % is robust if the SQL-breaking condition ℘ > 1/2 is satisfied for all four noise models

in Sec. 6.2.1. As discussed in Sec. 6.3.2, we fix γ, and we ignore higher cumulants; thus, %

robustness threshold is in terms of V , i.e., the maximum V such that ℘ > 1/2 holds for all

four noise models. This optimization problem is hard so we adopt a simpler characterization

procedure instead to get insight into the robustness threshold. Our approach is to run the

simulations for V ∈ {1, 2, 3} for symmetric noise and V ∈ {1, 3, 5, 7} for asymmetric noise,

and we do not push beyond V = 7 to keep below an imprecision width of 2π. We use these

data to determine whether QEAPE policies pass the robustness test.

6.3.3 Determining asymptotic power-law scaling

To ascertain the robustness of QEAPE policies, the asymptotic ℘ is estimated from a subset

of VH at sufficiently high N , and determining this subset is done by fitting piecewise linear

equations to a log-log plot of VH vs N . In this subsection, we introduce five piecewise

functions that are constructed from observations regarding the trend of VH vs N . We then

explain the method of finding the breakpoints between segments in the piecewise function

and fitting the functions to the data. Using the criteria in Sec. 6.2.2, we create a majority-

vote method for selecting the function that best represents the data and thus ℘ from the

last segment of the fit is used to estimate the asymptotic scaling.

Piecewise models

The trend in log VH vs logN differs under noisy conditions, and here we describe the trends

we have observed that lead to piecewise linear functions. We construct five such functions,

containing 1 to 3 segments that are then fitted to log VH vs logN .

When the interferometer is noiseless, the relationship appears to be a power-law captured

in a linear equation, although the accept-reject criterion in the policy-search algorithm can

lead to a different ℘ for N > 93. Once the noise level becomes high, typically V > 1, the
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relationship does not appear to be linear for low N . Therefore, we include segmented models

that fit linear interpolation to the data in the first segment.

Combining these observations, we construct five piecewise-linear models that can poten-

tially represent log VH as a piecewise function of logN . The models have 1 to 3 segments,

each segment connected at the breakpoints determined by the fitting methods. Three of

the models are one, two, and three linear models, whereas the other two are a two-segment

model, where the first segment (low N) is a linear interpolation, and a three-segment model

where the first segment is a linear interpolation and the second and third segments are linear.

Fitting method

The method for fitting the linear equations that we use is the least-squares method [172].

However, because the functions in Sec. 6.3.3 are segmented, we include a step to optimize

the breakpoints depending on the specific function.

The full model for the regression analysis is the three-segment linear function, which

is fitted using a linear-square method and the segments determined by a heuristic global

optimization algorithm [176]. The two-segment linear function is also fitted using the same

least-square method although a brute-force search is used to find the breakpoint starting

from N = 4.

The method for finding the breakpoints for models with interpolation is different as

the linear interpolation leads to a small residual. Thus, optimizing using the least-squares

method can lead to a single segment of linear interpolation. For this reason, we first find

the stop point for the first segment by fixing the latter segments to a single linear line and

search for a breakpoint that results in a large decrease in sum square error. As for the

single-segment linear model, we use a standard library to fit the data.
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Fitting figures of merit and model selection

After the functions are fitted to VH(N), the criteria R2, AICc, the F -value, and Mallows’s Cp

(Sec. 6.2.2) are calculated for each of the function and the fits are visually inspected. These

criteria are used to select the function that best fits the data. Here we explain how the best

function is chosen.

After the functions are fitted and the criteria are calculated, each fit is visually presented

and inspected to ascertain that the segmentation fits the pattern. If correction is unnecessary,

the functions are then ranked for each of the criteria. Note that we do not perform the full

F -test as we discovered that reduced models typically fail the test even though there is no

discernible difference when compared to the full model. However, the F -value can still be

used to quantify the difference between using the full and reduced model, so we use the

F -value to rank the functions instead of conducting a pass-fail test.

After the functions are ranked, the function that is voted as best by most of the criteria

is chosen to represent the data. In the case where the full model, the three-segment linear

function, is voted according to the criteria, the value of ℘ from the last segment and the

subset of N where this value is computed is compared to the next alternative function to

determine whether the function overfits the data. If ℘ from the two functions differs more

than 0.001, then the full model is chosen; otherwise, the alternative function is chosen. The

limit we use here is specified based on the precision used in this paper and can be changed

based on the desired precision of ℘.

6.3.4 Resource complexity

To compare and select between policies and methods of generating policies, we determine

the complexities of designing and of implementing % using the loop-analysis method [61]

to determine both of these complexities. We begin this subsection by explaining the time

complexity for designing policies. We then explain implementation complexity by describing

the controller’s actions and concomitant resources, which are quantified by the space and
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time required for executing % with N particles.

Design complexity

When an optimization algorithm is used to design %, there is a time cost associated with

the use of the algorithm. The scaling of the upper bound of this cost is called the design

complexity. We assume that the calculation is performed on a simulation of the AQEM task,

as is common practice in policy design in quantum control [86], and, therefore, the time cost

includes the cost of simulating the AQEM task. We assume that only a single processor is

used for the purpose of comparing policy-design methods, although this cost can be reduced

by parallelizing the optimization on multiple CPUs. For policies that are devised through

analytical optimization, such as Bayesian feedback, the cost is zero as no design algorithm

is used.

Time cost of training a policy. Here we calculate the upper bound in the time cost

for generating a policy using the noise-resistant DE algorithm (Alg. 1), which has been

previously shown to be O(N6) through loop analysis [35]. Here we show that when the time

cost of the recursively training N -particles policy using (N − 1)-particle policy as the initial

guess, the time complexity is O(N7). This calculation makes certain assumptions about the

implementation of the algorithm and how the relevant DE parameters are set. Therefore,

we start with explaining these assumptions before listing the loops in the DE algorithm. We

then compute the time cost for training an N -particle QEAPE and report the term with the

highest order in N as the time complexity.

The assumptions we make in this calculation are in regards to the accept-reject criterion

and the implementation of the algorithm. We ignore the accept-reject criterion and the cri-

terion for selecting a loss-tolerant policy as the criteria make the time cost random. Instead,

we fix the number of generation, as is the case for N = {4, 5, . . . , 93} without checking for

loss-tolerance, in order to estimate the how the time cost scales with N . We acknowledge
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here that the number of generations used in our training is low, due to the use of phase

adjustment vector ∆ (Eq. 3.45) for N − 1 to initialize the search at N . In terms of the

implementation, we assume that the algorithm is executed on a single CPU, which would

give us the maximum time required to find a successful policy for QEAPE.

The time cost of the policy-search algorithm is calculated based on the loop analysis of

DE, which is the optimization algorithm used. Differential evolution improves the policy

candidates iteratively, and thus the outermost loop in the algorithm is of the number of

generations Υ before a policy is accepted. For every generation, the candidates computes

the fitness values of the policies, generate offspring, and select the members who survive

into the next generation. Therefore, for each generation there is a loop over the size of the

population Np. Let the time use to execute a fitness function be τf , the time to generate

an offspring be τo, and the time to select a member for the next generation be τs. The time

cost for a noise-resistant DE τ1 is

τ1 =
Υ∑

t=1

Np∑

l=1

(τf + τf + τo + τs) (6.19)

The second τf accounts for the second call to the fitness value in the noise-resistant DE

(Alg. 1).

As the number of generations Υ and Np are parameters of the DE algorithm, we have

the freedom to choose these parameters as long as DE can still deliver a successful policy.

In previous work, it has been shown that the Υ ∈ O(N) enables a solution at N > 45 to be

found [35]. Therefore, we assume Υ = α′N for this calculation. In the implementation we

fix Υ to Υ = α′Nmax, which we also found to work. We also fix the size of the population

Nmax/2, so that in the implementation we can ensure that every CPUs computes for one

candidate. The choice of the fixed size follows a finding that the population should scales as

Np ∈ O(N) to account for the increase in the dimension of the search space [177].

The fitness of a policy candidate is quantified by the sampled sharpness (Eq. 3.42), and
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the program simulates K = 10N2 instances of QEAPE (Sec. 3.4.1). For each instance

of adaptive phase estimation, N particles sequentially pass through the interferometer and

measured. Measuring the mth particle results in an update of the input state, which is stored

as a vector of size (N−m). Updating each of these elements is assumed to use up a constant

time ζ1. Therefore, an instance of QEAPE results in a time cost that is

N∑

m=1

ζ1(N −m) =
ζ1

2

(
N2 −N

)
(6.20)

Hence, computing fitness for a policy candidate costs

τf =
10ζ1

2

(
N4 −N3

)
(6.21)

What remains are calculating the time cost for generating an offspring and for selecting

the candidates for the next generation. Randomizing the candidates for generating the

offspring has a constant time cost ζ2. Generating an offspring, on the other hand, involves

a loop over the N elements, and so the time cost is ζ3N for a candidate policy. Deciding

whether to keep the candidate or replacing it with its offspring is a comparison that uses up

constant time ζ4.

Adding up the time costs for the noise-resistant DE (1) gives us

τ1(N) = Υ

(
Npζ1(N4 −N3) +Np(ζ2 + ζ3N +

ζ1

2
(N4 −N3)) +Npζ4

)
(6.22)

=
3

2
α′ζ1

(
N6 −N5

)
+
α′ζ3

2
N3 +

ζ2 + ζ4

2
α′N2. (6.23)

The highest order of N in the time cost is N6, and so the time complexity for generating a

policy scales as O(N6).

The calculation so far assumes that the policy for N − 1 particles is already available. In

practice, theN−1 policy has to be trained before theN -particles policy can be trained. Thus,

there is another recursive training process starting from N0, where the policy is initialized

91



using a uniform distribution, to a policy of size N . This recursive training can be viewed

as another loop over the training process whose time complexity is O(N6). Using the Gauss

summation formula and assuming N0 = 1, the complexity of finding a successful policy for

is therefore O(N7). This complexity does not change when noise is included as the addition

of noise does not change the number of loops but add to the overhead of the time cost. On

the other, an addition of the accept-reject criterion, which is used after N = 93 to make

the algorithm scalable, would change the time cost and hence the training complexity. The

process of selecting a loss-tolerant policy is also excluded from this analysis.

Implementation complexities

In this subsection, we explain the resource complexity required to implement an AQEM

policy, quantified by the scaling of space and time costs with the number of particles N [62].

We begin by explaining the connection between an AQEM policy and an algorithm by

viewing the controller as a computer, allowing us to use the method of algorithm analysis

to calculate the complexities [61]. We then define the space and time cost for implementing

policies and how these costs are calculated.

Controller. The controller holds % (Eq. 3.31) and implements % to execute decisions based

on feedback from detections of outgoing particles. The controller is essentially an agent

who receives input from detectors and transmits a control signal to an actuator that shifts

the interferometric phase. Thus, % is represented as a computer algorithm expressed as a

computer program. Computer memory is required to store % and time to execute %. The

candidate % can be designed by various means including Bayesian feedback and policy-search

method (Sec. 3.4.2). Space and time costs are discussed below.

Space complexity. We determine the upper bound for space cost, which is the worst-case

amount of memory used by an algorithm reported as a big O function of the size of the

problem [62]. As % is executed by an algorithm, this worst-case, or maximum-size, memory
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corresponds to how much space is required to hold the critical information required to execute

the feedback. For %, the computer’s space cost for memory depends on the type of %.

In the case of the DE-designed policy, the size of the policy is the number of parameters

in Eq. 3.44, which is N [35]. This linear scaling of the policy size, with respect to the

number N particles, is due to the generalized-logarithmic-search heuristic leading to the

size N phase-adjustment vector (Eq. 3.45).

In Bayesian feedback procedure, the feedback is determined by a model of the quantum

state, which is updated according to the measurement outcome xm. To avoid assuming the

value of φ, the amplitudes ψxm(φ) of the quantum state is decomposed to

ψn(xm, φ) =

m/2∑

z=−m/2

ψn,m,z(xm)eizφ, (6.24)

and so updating ψn is done by updating ψn,m,z, which are later used to compute Φm. The

value of ψn,m,z are stored in an array of size (N + 1 −m) × (m + 1), whose maximum size

is (N + 1)2 because m ∈ {1, 2, . . . , N}. Therefore, the space complexity of the Bayesian

feedback is O(N2), whereas the complexity of the DE-designed policy is O(N).

Time complexity. Time complexity is determined from the upper bound of the time

cost that is used to implement a single AQEM shot, i.e., the cost for using all N particles

once. This cost is calculated by assuming the time a particle takes to pass through an

interferometer is constant, mimicking the physical implementation of the control procedure.

We then use loop analysis, which counts the number of loops that perform operations, which

we assume all take the same constant time [61]. For a shot of AQEM task using N particles,

Φm is computed N times, corresponding to each particle passing through the interferometer

and being detected. For each particle, nested loops for computing Φm+1 exist according to %.

The complexity is reported as the scaling of this time cost with N .

We determine the implementation cost for a DE-designed policy by recognizing that the

update of Φm according to Eq. (3.44) is constant in time. We denote the time for a particle to
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pass through the interferometer as β1 and the time used to compute Φm+1 is β2. Therefore,

the time cost for the execution of the adaptive phase estimation is

τ
(L)
2 (N) =

∑

m=1

N(β1 + β2) (6.25)

= (β1 + β2)N, (6.26)

and the time complexity is O(N).

Bayesian feedback, on the other hand, has nested loops for updating the quantum state

and calculating Φm+1 for each particle that passes through. The update of the quantum

state involves two nested loops for n ∈ {0, 1, . . . , N −m} and for z ∈ {1, 2, . . . ,m+ 1}. Each

step within these nested loops involves a constant number of computations and therefore

incurs a constant time cost β′1. The time cost for updating the state is

N−m∑

n=0

m+1∑

z=1

β′1 = β′1(m+ 1)(N −m− 1). (6.27)

The next step of the computation is to generate three candidates for Φm+1 and selecting

the one with maximum estimated sharpness (Eq. 3.42). If m < N , the candidates are

computed from the updated quantum state in a series of three two-nested loops. The loop

analysis shows that the time costs for these loops are:

loop a
N−m+1∑

n=1

m∑

z=1

β′2 = β′2m(N −m+ 1), (6.28)

loop b
N−m∑

n=0

m+1∑

z=1

β′3 = β′3(m+ 1)(N −m+ 1), (6.29)

loop c
N−m∑

n=0

m+1∑

z=1

β′4 = β′4(m+ 1)(N −m+ 1). (6.30)
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If m = N , then only a two-nested loops are called and the time cost is

N−1∑

z=1

β′5 = β′5(N − 1). (6.31)

This computation gives us the estimate of φ.

Summing all these time costs for an instance of phase estimation leads to

τ
(B)
2 =

N−1∑

m=1

[β1 + β′1(m+ 1)(N −m− 1) + β′2m(N −m+ 1) + β′3(m+ 1)(N −m+ 1)

+ β′4(m+ 1)(N −m+ 1)] + β′5(N − 1) + β1 (6.32)

=
N3

6
(β′1 + β′3 + β′4 + β′5) +N2

(
β′2
2

+ β′3 + β′4

)
− N

6
(7β′1 + 4β′2 + β′3 + β′4 + 6β′5 + 6β1)

+ (β′1 − β′3 − β′4 − β′5). (6.33)

As the term with the highest order is N3, the time complexity for using Bayesian feedback

is O(N3).

6.4 Results

In this section, we report results for the robustness test and the resources calculation of

QEAPE. We start by presenting the results from the preliminary study of robustness of

DE-designed policies and the effect of skewness in Sec. 6.4.1. Then we present and compare

VH(N) (Eq. 3.41) obtained by a policy-search method and Bayesian feedback (Sec. 3.4.2).

Our analysis considers all four types of noise discussed in Sec. 6.2.1. We report values of

℘ (Eq. 3.9) from the regression procedure discussed in Sec. 6.3.3 and resource complexities

discussed in §6.3.4 for both the DE-designed policies and the Bayesian feedback.
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Table 6.1: The power-law scaling ℘ computed from the linear fit of log VH vs. logN [Repro-
duced with modification from Ref. [4] c©2017 IEEE]

Noise model Parameters V (φ) γ 2℘ R2

SQL 1
HL 2
ideal 1.4397 0.9991

Ps = 0.5, δ = 0.2 0.02 0 1.4147 0.9994
telegraph Ps = 0.5, δ = 0.5 0.125 0 1.3495 0.9994

Ps = 0.5, δ = 1.0 0.5 0 1.2703 0.9995
σ = 0.5, α = 0 0.25 0 1.3411 0.9995

skew-normal σ = 0.5, α = 2.5 0.112797 0.575781 1.3815 0.9994
σ = 0.5, α = 10 0.0924208 0.955557 1.3915 0.9993
µ = 0.2, σ = 0.2 0.063367 0.614295 1.4785 0.9944

log-normal µ = 0.2, σ = 0.5 0.544062 1.75019 1.3062 0.9985
µ = 0.2, σ = 1.0 6.96798 6.18488 1.1363 0.9976

6.4.1 Preliminary results

In this subsection, we present the Holevo variance obtained from applying the policy-search

algorithm to adaptive phase estimation in the presence of one of the three noise models

(Sec. 6.2.1) and ℘ computed from these data.

Fig. 6.1b shows the distributions for random telegraph noise plotted for three parameter

sets that are used to generate VH in Fig. 6.1a. The scaling ℘ computed from these data

exceed SQL (Table 6.1) with the tendency towards the SQL as δ, and therefore the variance,

increases.

A skew-normal distribution narrows as skewness, determined by α, increases (Fig. 6.1d).

At α = 0, the distribution takes the form of a normal distribution with a width of σ. Without

changing σ, we increase α and found that the values of ℘ increase, correlating to the decrease

in variance rather than the increase in skewness (Fig. 6.1c).

The data from the log-normal distributions (Fig. 6.1f) shows the same trend between ℘

and the variance of the distribution (Fig. 6.1e). Fixing the parameter µ, the variance of

log-normal distribution increases with skewness determined by σ. As a result, ℘ computed

from the distribution with the largest σ in the three sets also is the closest to ℘ of the SQL.
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Figure 6.1: Logarithmic plots of VH versus number of particles in the presence of phase
noise. The red crosses are the results from an ideal interferometer. The intercept from these
data is used to calculate the SQL (purple dash line) and HL (solid black line). (a) VH in
the presence of random telegraph noise with Ps = 0.5. Three values of δ are used in the
simulation: 0.2 rad (blue circles), 0.5 (green squares), and 1.0 (orange triangle). (b) The
random telegraph distributions for Ps = 0.5 and three values of δ: 0.2 (blue), 0.5 (green)
and 1.0 (orange). (c) VH in the presence of skew-normal noise with σ = 0.5. Three values of
α/σ are used in the simulation: 0 (blue circles), 5 (green squares), and 20 (orange triangle).
(d) The skew-normal distributions for σ = 0.5 and three values of α/σ: 0 (blue), 5 (green)
and 20 (orange). (e) VH in the presence of log-normal noise with µ = 0.2. Three values of σ
are used in the simulation: 0.2 (blue circles), 0.5 (green squares), and 1.0 (orange triangle).
(f) The log-normal distributions for µ = 0.2 and three values of σ: 0.2 (blue), 0.5 (green)
and 1.0 (orange). [Reproduced from Ref. [4] c©2017 IEEE]
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The power-law scaling of the Holevo variance in the presence of the three noise models

all exceed the SQL for the selected noise parameters (Table 6.1), including the one for log-

normal noise with variance of 6.96798, which is a large variance for a variable in [0, 2π).

The data in Table 6.1 also suggest that ℘ decreases with the increase in noise variance and

is not strongly affected by the skewness at low-level variance. The algorithm is, therefore,

speculated to not be robust for strong noise beyond the variance of V = 6.96798. Also, the

inverse correlation between variance and ℘ is only shown for the phase noise of the same

functional form. A conclusive relationship between variance and ℘ cannot yet be established

due to limited data.

6.4.2 Variance vs number of particles

In this subsection, we present results for VH as a function of number N of particles. Specifi-

cally, we present plots of VH vs N from 4 to 100 particles, which is enough to determine the

imprecision scaling as discussed in Sec. 6.3.4. Both cases of using DE-designed policies and

of using Bayesian feedback are presented as log-log plots and compared to the SQL, with

these plots obtained by computing from simulations of noiseless phase estimation using a

product state |0, 1〉⊗N following the notation of Eq. 3.35. The HL is generated based on the

intercept of the SQL data using the scaling of 1/N2 to provide a benchmark.

Policy search

Here we present the log-log plots of VH vs N from QEAPE using DE-designed policies, as

shown in Fig. 6.2. Subfigures 6.2(a–d) present VH for inclusion of normal-distribution noise,

random-telegraph noise, skew-normal noise, log-normal noise, respectively.

Figure 6.2(a) also includes VH from noiseless interferometry. This locus appears as a

straight line in the plot, indicating a power-law relationship between VH and N . As the

noise variance V increases, this power-law relationship breaks into two parts, clearly visible

in the VH vs N plot from V = 3. This trend also appears at V = 2 as the model selection
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Figure 6.2: Logarithmic plots of Holevo variance from simulations of QEAPE. The poli-
cies are designed using a policy-search method implemented in the specified noise con-
dition, namely, (a) normal-distribution noise, (b) random-telegraph noise, (c), skew-
normal-distribution noise, and (d) log-normal-distribution noise. The plot for the normal-
distribution noise also includes the data from the noiseless simulation (brown side-facing
triangle) and its linear fit (green solid). The blue circles are data when V = 1, the red
triangles when V = 2, the green squares when V = 3, the brown plus when V = 4, the
brown crosses when V = 5 , and the purple diamonds when V = 7. The lines shown are the
piecewise-linear fits of the data whose scaling is reported. The solid black line is the HL and
the dashed purple line in the SQL is generated from noiseless QEAPE. [Reproduced from
Ref. [5], Fig. 1.]
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procedure Sec. 6.3.3 selects the two-segment model for this data set. The observation that

the power-law relationship fails when noise is included is also evident in Figs. 6.2(b–d). In

these cases, the plots are fit to two- or three-segment linear equations as VH appears to have

a bump at low N as V increases.

The increase in phase noise V also results in an increase in the intercepts of VH power-law

lines; however, the rate of change appears to depend on the noise model. The difference is

shown in Fig. 6.2(a–b), both include symmetric noise distributions but with different spacing

of the intercepts. The same observation holds for Fig. 6.2(c–d), which are from asymmetric

distributions. Comparing the four plots shows that the intercepts appear to increase slower

for asymmetric distributions than the symmetric distributions, being close to 1 for V = 3 in

the former and V = 2 for the latter.

Bayesian feedback

Log-log plots of VH as a function of N , shown in Fig. 6.3, are computed from simulations

of QEAPE controlled by Bayesian feedback. Figures 6.3(a–d) present VH in the presence of

normal-distribution noise, random-telegraph noise, skew-normal noise, and log-normal noise

respectively.

Similar to Fig. 6.2, the trend of VH vs N in Fig. 6.3 shows that the power-law relationship

also breaks into parts. Instead of a bump, VH from Bayesian feedback exhibits noise for

low N . For this reason, the model-selection procedure Sec. 6.3.3 favours models with linear

interpolation in the first segment. The subsequent segment appears straight in the log-log

plots, although some, such as V = 7 in Fig. 6.3(c), shows a break into two linear segments.

The intercepts of the VH vs N plots increase with the increase of V , and the observation of

the changes are similar to when DE-designed policies are used (Sec. 6.4.2). The asymmetric

noise show a slow increase in intercept when compared to symmetric noise, and the rate of

change depends on the noise model.
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Figure 6.3: Logarithmic plots of Holevo variance from simulations of QEAPE using Bayesian
feedback method. The simulation includes one of the four noise models, namely, (a) normal-
distribution noise, (b) random-telegraph noise (c), skew-normal-distribution noise, and (d)
log-normal-distribution noise. The plot for the normal-distribution noise also includes the
data from the noiseless simulation (brown side-facing triangle) and its linear fit (green solid).
The blue circles are data when V = 1, the red triangles when V = 2, the green squares when
V = 3, the brown plus when V = 4, the brown crosses when V = 5 , and the purple
diamonds when V = 7. The lines shown are the piecewise-linear fit of the data whose scaling
is reported. The solid black line is the HL and the dashed purple line in the SQL generated
from noiseless QEAPE. [Reproduced from Ref. [5], Fig. 2.]
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Table 6.2: Power-law scaling from QEAPE under noisy conditions using DE-designed policies
℘S and Bayesian feedback ℘B. [Reproduced from Ref. [5], Table. 1.]

V γ 2℘S R2
S 2℘B R2

B

SQL 1 1
HL 2 2
No noise 1.459 0.9998 1.957 0.9993

1 0 1.302 0.9999 1.512 0.9985
Normal 2 0 1.267 0.9999 – –

3 0 0.954 0.9992 1.190 0.9997
4 0 – – 1.004 0.9948
1 0 1.266 0.9999 1.526 0.9991

Random telegraph 2 0 1.186 0.9997 1.277 0.9967
3 0 0.935 0.9993 0.919 0.9892
1 0.8509 1.296 0.9999 – –

Skew-normal 3 0.8509 1.246 0.9999 1.343 0.9987
5 0.8509 1.118 0.9998 1.116 0.9927
7 0.8509 1.039 0.9996 1.041 0.9964
1 0.8509 1.290 0.9999 – –

Log-normal 3 0.8509 1.217 0.9998 1.258 0.9919
5 0.8509 1.058 0.9997 1.086 0.9961
7 0.8509 0.981 0.9994 0.9209 0.7965

6.4.3 Power-law scaling

In this subsection, we present values of ℘, summarized in Table. 6.2, that are estimated by

fitting VH plots in Sec. 6.4.2. These ℘’s are from the last segment of the selected piece-

wise linear models (Sec. 6.3.3), which changes with the increase in V . We also include R2

(Eq. 6.11) to show the goodness of fit.

The power-law scaling for DE-designed policy, namely, ℘S, shows a decrease as the noise

level V increases, starting from the noiseless phase estimation at 2℘S = 1.459. The DE-

designed policies fail to deliver ℘S > 1/2 when V = 3 for the symmetric noise distributions.

This limit increases with asymmetric noise models to V = 7 in log-normal noise. Skew-

normal noise only shows a scaling at approaches the SQL but does not breach it at all.

Similar trends are observed for Bayesian feedback. The scaling ℘B from noiseless inter-

ferometer closely approximates the HL at 2℘B = 1.957 and approaches SQL when V = 4
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Table 6.3: Upper bound in policy space and time cost of the policy from DE algorithm (DE)
and Bayesian feedback (BF). [Reproduced from Ref. [5], Table. 2.]

Complexity DE BF
Design time O(N7) –
Policy space O(N) O(N2)

Implementation time O(N) O(N3)

for normal-distribution noise. This limit drops to V = 3 when random-telegraph noise is

included. This limit also appears at V = 7 for log-normal noise, whereas the same noise level

just leads to ℘B approaching SQL when skew-normal noise is present. This trend, aside from

the case of normal-distributed noise, is the same as the trend for the DE-designed policies.

The goodness-of-fit for these fits are reported in term of R2, where R2 = 1 indicates

a perfect fit. The values of the goodness is R2
S > 0.999 for VH delivered by DE-designed

policies and R2
B > 0.99 for Bayesian feedback except for when a log-normal noise of V = 7

is present. Overall, the fits that are chosen using the method in Sec. 6.3.3 provide good fits

to the data, and the DE-designed policies always deliver fits with R2
S > R2

B.

6.4.4 Bounds on time and space costs

The results from calculating space and time complexities for both designing and implement-

ing DE-designed policies and Bayesian feedback is shown in Table 6.3. Here we compare

these results.

The time complexity for generating policies, named here design time, is of a high polyno-

mial degree when the DE algorithm is used. Bayesian feedback, which is designed through

an analytical process, incurs no time cost for the design. When the implementation time

is compared, the time complexity goes from O(N) for the DE-designed policy to O(N3) for

Bayesian feedback as shown in Table 6.3. Space complexity for the DE-designed policy is

also linear with respect to the number of particles whereas Bayesian feedback requires a

memory of O(N2), also shown in Table 6.3.
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6.5 Discussion

In this section, we discuss policy robustness and why QEAPE policies are so strongly

noise-resistant. We explain the difference between the scaling parameter ℘ attained by

DE-designed policies and Bayesian feedback. Our analysis enables a user to choose policy-

design methods that minimize resource complexity for design and for implementation as

appropriate.

6.5.1 Robustness of QEAPE policies

In this subsection, we discuss the robustness of QEAPE policies and the robustness threshold

based on ℘ in Table 6.2. Both DE-designed policies and Bayesian feedback are able to

deliver ℘ > 1/2 for all four noise models until V = 3 at which point scaling in the presence

of random-telegraph noise fails to exceed the SQL. For noise models that are asymmetric,

quantum-enhanced precision is observed up to V = 7 at skewness γ = 0.8509. This high

level of robustness is surprising, especially so for Bayesian feedback, as the interferometer

dynamic no longer agrees with the noiseless assumption.

One possible reason behind this high robustness threshold is the property of the sine

state (Eq. 3.36) being strongly robust against loss [128]. The structure of the sine state may

also contribute to robustness against phase noise as well. Adaptive-phase policies discovered

by evolutionary algorithms could also play a major role in the robustness of the QEAPE

scheme.

The effect of the feedback policy is highlighted by the threshold for normal-distribution

noise, where the threshold for DE-designed policies is at V = 3 as opposed to Bayesian

feedback at V = 4. This result, however, does not imply that robustness against the noise of

unknown distribution is improved as the thresholds for all other noise models are the same

for both the DE-designed policies and Bayesian feedback.
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6.5.2 Space cost and power-law scalings

Table 6.2 shows that the power-law scaling delivered by Bayesian feedback is consistently

superior to those delivered by the DE-designed policies before the robustness threshold is

reached. Here we use the space complexity of the policies in Table 6.3 to explain the reason

behind this difference.

Table 6.3 shows that Bayesian feedback has a space cost that scales a polynomial degree

higher than for the DE-designed policies, which indicates that Bayesian feedback utilizes

more information and hence is more complex than the DE-designed policies. By using a

trusted quantum-state model, Bayesian feedback effectively uses the history of measurement

outcomes x1x2 · · ·xm to determine Φm+1 instead of the current outcome xm, which is the

approach used by DE-designed policies in (Eq. 3.44). As such, DE-designed policies are

restricted by the generalized-logarithm-search strategy (Sec. 3.4.2) and so cannot deliver a

value of ℘S that approaches the HL. Improvement of DE-designed policies is done by changing

the update rule, i.e., the structure of the policy, so that % uses a part of the measurement

history.

6.5.3 Choosing a QEAPE policy

In this subsection, we explain how the space and implementation time complexity (Sec. 6.3.4)

is used to decide between competing policies and method of generating the policies. In

particular, we discuss choosing between the DE-designed policies and Bayesian feedback.

The consideration of the space and time complexity of the policies comes after ascertain-

ing that the candidate policies are able to deliver the target performance. In the case of

QEAPE, the target is to attain ℘ > 1/2, which both the DE-designed policies and Bayesian

feedback are able to deliver. Both methods also have the same robustness threshold against

phase noise of unknown distribution. Based on these comparisons, both policies appears

equally suitable.

When comparing space and implementation complexity (Sec. 6.4.4), DE-designed policies

105



show an advantage as scaling of both costs are bound to linear scaling with respect to particle

number N , whereas Bayesian feedback is quadratic in space complexity and cubic in time

complexity. For this reason, we favour DE-designed policies for robust QEAPE.

We do not include the design complexity in choosing a QEAPE policy as the training cost

is a one-time cost. Once the training is completed and a successful policy is found, the policy

can be utilized with no further training as long as the quantum dynamic remains unchanged.

The design cost can also be reduced by distributing the training on several CPUs (Sec. 5.5).

The situation where design time may be of interest is when learning occurs in a physical

setup where parallelizing is not possible and one shot of the experiment is expensive. In this

case, there could be an upper bound to the number of experiments and hence time that can

be invested in training %. In that case, design complexity may become relevant.

6.6 Conclusion

We have tested QEAPE policy robustness based both on Bayesian feedback and on direct

policy search, and we compared performance with respect to resource complexities for de-

signing and for implementing policies. We find that both the DE-designed and the Bayesian-

feedback policies are robust against phase noise up to the noise level characterized by V = 3.

Although imprecision scaling provided by Bayesian feedback is superior to the policies de-

signed by direct policy search, direct policy search consumes far less time and space resource

than does Bayesian feedback for policy implementation.

Our methods for robustness testing and for comparing policies based on resource com-

plexity could have applications to AQEM and quantum-control applications in general. Ro-

bustness is a desirable property of any QEM schemes and the test presented here can be

adapted to quantify the robustness of non-adaptive procedures and investigate the role of the

input state to the robustness of QEM generally. Quantifying the resource used by control

policies can be used to show the efficacy of the policies not only in AQEM but in other
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quantum control tasks, and the comparison of the resource complexity can be used to select

a policy that is most efficient in accomplishing a task.
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Chapter 7

Conclusion

In this chapter, we summarize the findings from the three research objectives and discuss

their implication to our main research problem. We then discuss future directions of this

research including both the fundamental questions and the possible applications.

7.1 Summary

Our main research problem is determining the advantages and disadvantages of policies

generated using an evolutionary algorithm, which is one method of generating a control policy

that does not use a model of the quantum dynamics. In order to do so, we first formulated

a general AQEM scheme to a decision-making process and analyzed the characteristics of a

particular measurement scheme, namely the quantum-enhanced adaptive phase estimation.

Secondly, we devised a noise-resistant policy-search algorithm using DE that is capable of

generating successful policies up to 100 particles, pushing beyond the previous limitations.

Lastly, we compared the performances, robustness, and complexity of resources used by the

policies generated using this DE algorithm to the ones from Bayesian feedback. Below, we

discuss the implications of our findings point by point.
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7.1.1 AQEM as a decision-making process

In this part of the research, we cast a discrete-time AQEM procedure in a decision-making

process and found that the AQEM can be described as a POMDP with φ being the missing

parameter that would turn the POMDP into a MDP model. From this result, we pro-

ceeded to determine a suitable method for generating the feedback policy and its role in the

imprecision of obtained from an AQEM procedure.

Since the assumption about the quantum dynamics cannot be validated, we carry out

the analysis of the POMDP without trusting the dynamic model. This assumption means

that the POMDP is without defined transition probabilities and necessitates the use of a

policy-generation technique that samples control trajectories from the plant. Each trajectory

is randomly selected due to the randomness of the quantum measurement outcomes with

the probability determined in part by the policy. As such, the sequence of measurement

outcomes alone does not tell us if a certain trajectory is the correct one, i.e., the one leading

to φ̃ ≈ φ0 for φ0 ∈ [0, 2π), and an optimization method that periodically evaluates an entire

policy instead of the actions was used.

Using this formalism, we also gained insight into the physical explanation for AQEM

imprecision. The role of a policy is two folds. One is that the policy discretizes the domain

of the estimate φ̃ ∈ [0, 2π) into at most 2N possible values. The policy also controls the

probability distribution for obtaining each of these 2N value of φ̃, which means the policy

controls the probability distribution of φ̃ and hence the imprecision. The Cramér-Rao lower

bound for this imprecision can be derived, but because of the bound’s dependence on the

policy, we were not able to obtain the bound as a function of N . A policy-search algorithm

based on DE was used to find the policies that minimize the imprecision and reveal the

lower bound for the product states, which is shown to be the SQL, and the sine states,

which exceeds the SQL.

From this part of the work, we establish a connection between the discrete-time AQEM

procedure and classical techniques that have been used to solve decision-making problems.
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The technique we were able to select for the adaptive phase estimation was due to the con-

straint on the information available in the measurement outcomes. Because we are working

with only one closed-loop quantum control procedure, it is unclear if this restriction is fun-

damental to quantum control task and whether there can be a workaround that enables

more information to be gleaned from the plant without compromising the performance of

the procedure.

7.1.2 Scalable and noise-resistant policy-search algorithm

In the second part of the thesis, we devise a noise-resistant policy-search algorithm that

can be used for a hundred-particle QEAPE. Although policy-search algorithms have been

used previously to generate policies, they were not able to deliver successful policies for a

high number of particles or not tested in the presence of phase noise. We overcame both

limitations by using DE to enable successful search in a high-dimensional policy space and

including the accept-reject criteria for the high number of particles so that a sufficient number

of iterations is permitted to obtain a successful policy, and use mean policy performance to

average out the added noise in the fitness function. We have shown that this algorithm

is able to deliver imprecision that consistently scales better than SQL up to 100 particles,

which is the limit to obtaining an accurate simulation of the QEAPE using double-precision

floating-point numbers.

Although the algorithm was designed with QEAPE in mind, the policy-search algorithm

does not use any knowledge of the quantum dynamics and only the performance of the

policy. Therefore, the algorithm can be adapted to other quantum control problems that

can be efficiently solved using black-box optimization. The code is also written into modules

and so can be customized to match specific challenges of a quantum control problem. We

describe the features of this code, its structure and location, and how it can be used for other

problems in Appendix A.
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7.1.3 Comparing AQEM policies

In the last part of this thesis, we explored the advantages and disadvantages of model-

based and model-free approaches for generating policies using QEAPE as a test problem.

The noise-resistant policy-search algorithm we devised in the second part of the thesis was

used as an example of a model-free method, whereas the Bayesian feedback is used as an

example of a model-based method. We devise three criteria for the comparison. The first is

the performance when the quantum dynamic matches the model used for the model-based

policy generation. The second is the robustness test, which is when the dynamics in the

simulation does not match the model assumed by the policy-generation method. Thirdly, we

assessed the complexity of the computational resources used in designing and implementing

the policy.

By using these criteria, we were able to show that both methods are able to deliver

imprecision scalings that exceed the SQL with the Bayesian feedback being superior to the

DE-derived policy when the dynamic matches the model. Both methods are also robust in

the presence of phase noise with unknown properties to a similar level of noise quantified

by the variance of the phase-noise distribution. The time complexity of the design cost is

in high polynomial for the policy-search algorithm whereas the Bayesian feedback does not

incur a design cost as the policy is calculated analytically, although this cost is a one-time

cost and so is not relevant in the operation of the control system. However, both the time

and space complexities for implementing DE-designed policy best the ones for the Bayesian

feedback due to the controller not having to compute the quantum model during the task.

Comparing performances of control policies is a common practice in control engineering,

but the method for determining robustness and resources in designing and implementing the

control policies were never introduced. These criteria, however, are important in quantum

control as the quantum enhancement is fragile in the presence of noise and loss and so some

degree of robustness should be observed in order for the policy to be practical. The time

and space complexities can be used as a way of estimating scalability of the control policy
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with the number of particles. Furthermore, they can be used to determine a reason for the

performance difference between two types of policies.

In a practical situation, the criteria we have devised can be used to select a policy that

best suits the constraints of an AQEM procedure. For example, if φ is a result of a transient

phenomenon where the speed of the estimation procedure is of great importance, the DE-

derived policy is favoured as the policy leads to a fast estimation of φ that is still able to

exceed the SQL. However, if the value of φ is static and maximum precision is required,

then the Bayesian feedback should be chosen. We do not consider the design complexity in

choosing the policy in this work as this is an upfront cost as the policy is trained beforehand.

7.2 Research outlook

As the research in this thesis combines many disciplines, the work can be expanded in

different ways. We focus here on two directions only, one being in quantum control and

another in QEM.

1. One question that has arisen during the analysis of the AQEM decision-making process

is whether a technique that evaluates the action rather than the policy can ever be used

to generate closed-loop quantum-control policies. That is because an outcome from a

quantum measurement is informationally incomplete and thus is always insufficient to

determine the state of the quantum plant without a model or a model-inference method.

It might be that by not assuming or constructing a model of the quantum dynamics,

only black-box optimization algorithms can be applied to closed-loop quantum control

problems. A conclusion cannot be drawn at this point as we have only examined one

example of this class of control problems and thus further examples are needed before

progress can be made.

2. For this thesis, we have made comparisons between a model-free and a model-based

method to control design, which are two extreme ends of the spectrum. Control design
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techniques that combined both data and model do exist and may be of interest to

quantum control as the data-driven part of the algorithm allows for the control policy

to adapt to unknown quantum dynamics while the model-based part can provide insight

to the dynamics and reduces the number of samples needed to train the policy and

thus the design time cost.

3. This thesis has been focused on quantum-enhanced single-parameter estimation, but

the research direction in QEM has now been expanded into multiple-parameter es-

timation, where a quantum resource is used to enhanced precisions of simultaneous

estimation of more than one parameter. This expansion increases the difficulty of

devising measurement procedures as the dynamics become complex, which is the cir-

cumstance in which data-driven control is expected to be advantageous. Applying a

data-driven control-design algorithm to such a problem may become a practical way

of devising successful policies.

4. A quantum control task that stems directly from the QEM is the generation of large

entangled states, which is a key challenge in implementing QEM. Although states

that deliver quantum-enhanced precision can be found, the quantum channel in which

to generate them is often not easy to determine. The discrete-time AQEM also has

another challenge which is splitting the entangled state into bundles. It may be that

by using a data-driven approach is necessary to design these procedures due to the

complexity of the quantum circuits involved.
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[46] S. Danilin, A. V. Lebedev, A. Vepsäläinen, G. B. Lesovik, G. Blatter, and G. S.

Paraoanu. Quantum-enhanced magnetometry by phase estimation algorithms with a

single artificial atom. npj Quantum Inf., 4:29, June 2018.

[47] Bernard Yurke, Samuel L. McCall, and John R. Klauder. SU(2) and SU(1,1) interfer-

ometers. Phys. Rev. A, 33(6):4033–4054, June 1986.

[48] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum-enhanced measure-

ments: Beating the standard quantum limit. Science, 306(5700):1330–1336, November

2004.

[49] Roy S. Bondurant and Jeffrey H. Shapiro. Squeezed states in phase-sensing interfer-

ometers. Phys. Rev. D, 30(12):2548–2556, December 1984.

[50] B. Depraetere, M. Liu, G. Pinte, I. Grondman, and R. Babuska. Comparison of model-

free and model-based methods for time optimal hit control of a badminton robot.

Mechatronics, 24(8):1021–1030, December 2014.

119



[51] Eugene A. Feinberg and Adam Shwartz. Handbook of Markov Decision Processes:

Methods and Applications. International Series in Operations Research & Management

Science. Kluwer Academic, Norwell, MA, 2002.

[52] Marco Wiering and Martijn van Otterlo. Reinforcement learning and markov decision

processes. In Marco Wiering and Martijn van Otterlo, editors, Reinforcement Learning:

State-of-the-Art, volume 12 of Adaptation, Learning, And Optimization, chapter 1,

pages 3–44. Springer, Berlin, Germany, 2012.

[53] Steven M. Kay. Cramer-Rao lower bound. In A. V. Oppenheimer, editor, Fundamentals

of Statistical Signal Processing: Estimation Theory, chapter 3. Prentice-Hall, Upper

Saddle River, NJ, 1993.

[54] Carl W. Helstrom. Quantum detection and estimation theory. J. Stat. Phys., 1(2):231–

252, June 1969.

[55] Kurt Jacobs. Metrology. In Qauntum Measurement Theory and its Applications,

chapter 6, pages 303–322. Cambridge University Press, Cambridge, UK, 2014.

[56] Paul H. Lewis and Chang Yang. Performance criteria and some effects of feedback.

In Basic Control Systems Engineering, chapter 7, pages 157–206. Prentice Hall, Upper

Saddle River, NJ, 1997.

[57] Ernst Breitenberger. Analogues of the normal distribution on the circle and the sphere.

Biometrika, 50(1/2):81–88, 1963.

[58] David S. Newman. On the probability distribution of a filtered random telegraph

signal. Ann. Math. Stat., 39(3):890–896, 1968.

[59] Adelchi Azzalini and Antonella Capitanio. The skew-normal distribution: probabil-

ity. In D. R. Cox, A. Agresti, B Hambly, S. Holmes, and X.-L. Meng, editors, The

120



Skew-Normal and Related Families, Institute of Mathematical Statistics Monograph,

chapter 2, pages 24 – 56. Cambridge University Press, Cambridge, UK, 2014.

[60] Eckhard Limpert, Werner A. Stahel, and Markus Abbt. Log-normal distributions

across the sciences: Keys and clues. BioScience, 51(5):341–352, May 2001.

[61] Dana Vrajitoru and William Knight. Deterministic analysis of algorithms. In Practical

Analysis of Algorithms, chapter 5, pages 169–293. Springer, Cham, Switzerland, 2014.

[62] Dana Vrajitoru and William Knight. Introduction. In Practical Analysis of Algorithms,

chapter 1, pages 1–7. Springer, Cham, Switzerland, 2014.

[63] Armin Rahmani, Takuya Kitagawa, Eugene Demler, and Claudio Chamon. Cooling

through optimal control of quantum evolution. Phys. Rev. A, 87(4):043607, April 2013.

[64] Xiaoting Wang, Sai Vinjanampathy, Frederick W. Strauch, and Kurt Jacobs. Ultra-

efficient cooling of resonators: Beating sideband cooling with quantum control. Phys.

Rev. Lett., 107(17):177204, October 2011.

[65] Pradnya A. Vikhar. Evolutionary algorithms: A critical review and its future prospects.

In Proc. 2016 International Conference on Global Trends in Signal Processing, Infor-

mation Computing and Communication (ICGTSPICC), pages 261–265, Jalgaon, India,

December 2016. IEEE.

[66] Paul H. Lewis and Chang Yang. Control systems engineering. In Basic Control Systems

Engineering, chapter 1, pages 1–12. Prentice Hall, Upper Saddle River, NJ, 1997.

[67] Seth Lloyd. Coherent quantum feedback. Phys. Rev. A, 62(2):022108, July 2000.

[68] Clive Emary and John Gough. Coherent feedback control in quantum transport. Phys.

Rev. B, 90(20):205436, November 2014.

121



[69] Narciso F. Macia and George J. Thaler. Introduction. In Modeling & Control of

Dynamic Systems, chapter 1, pages 1–16. Thomson Delmar Learning, Clifton Park,

NY, 2005.

[70] Jerzy Zabczyk. Introduction. In Mathematical Control Theory: An Introduction,
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Appendix A

Modularized Policy-Search Code

This appendix is transcribed from the software documentation on GitHub as retrieved on

August 9th, 2018 from http://panpalitta.github.io/phase_estimation/. This repro-

duction excludes the detail on the functions of each class.

A.1 Software information

A.1.1 Policy-search algorithm for adaptive phase estimation

We implement a policy-search algorithm to the problem of adaptive phase estimation, which

is an example of quantum control problems. The aim of this project is to create a library

containing modules that streamlines the construction of an optimization algorithm for quan-

tum control problems. Access to modules of optimization algorithms provides the building

blocks that users can use to tweak the algorithm to their needs.

A.1.2 Features:

• Library in C++

• Support MPI
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• Support VSL and GPU for random number generation

• Include modules for particle swarm optimization (PSO) and differential evolution (DE)

• Include uniform and clustered method of initializing solution candidates

• Include access to user specified accept-reject criteria

• Include preliminary support for multi-objective calculation

• Support Autotools

A.1.3 Links:

• Latest release: 1.0.1 https://github.com/PanPalitta/phase_estimation/releases

• Feedback and issue: https://github.com/PanPalitta/phase_estimation/issues

A.1.4 Copyright and license

This is a free software made available under the GNU GENERAL PUBLIC LICENSE, which

means you can share, modify, and redistribute this software. While we endeavor to make

this software as useful and as error-free as possible, we cannot make any such guarantee, and

the software is hence released without any warranty.

A.1.5 Acknowledgement

This software has been developed by Pantita Palittapongarnpim and Peter Wittek with the

financial support of NSERC and AITF.

The computational work was enabled by support from WestGrid and Calcul Quebec

through Compute Canada.
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A.2 Download and installation

A.2.1 Download

• Latest release: download https://github.com/PanPalitta/phase_estimation/releases

• Development version: Github https://github.com/PanPalitta/phase_estimation

• Feedback and issues: issue https://github.com/PanPalitta/phase_estimation/

issues

A.2.2 Compilation and installation

The project contains the support for compilation using Autotools, and has been tested using

GNU Compile Chain (GCC) and Intel Compilers. The Intel VSL library and CUDA are

automatically detected. An MPI implementation is required to compile and run the code.

If you cloned the Git repository, first run autogen.sh in order to create missing files and

generate the executable configure from configure.ac.

Follow the standard POSIX procedure:

$ ./configure [options]

$ make

$ make install

To use the Intel compilers, set the following environment variables:

export CC=/path/of/intel/compiler/icc

export CXX=/path/of/intel/compiler/icpc

export OMPI_CC=/path/of/intel/compiler/icc

export OMPI_CXX=/path/of/intel/compiler/icpc

In order to use icc and icpc compilers, you have to set these variables so the mpic++ will

invoke icpc instead of the default compiler.
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Options for configure

--prefix=PATH Set directory prefix for installation

--with-mpi=MPIROOT Use MPI root directory.

--with-mpi-compilers=DIR or --with-mpi-compilers=yes

use MPI compiler (mpicxx) found in directory DIR, or in your PATH if =yes

--with-mpi-libs="LIBS" MPI libraries [default "-lmpi"]

--with-mpi-incdir=DIR MPI include directory [default MPIROOT/include]

--with-mpi-libdir=DIR MPI library directory [default MPIROOT/lib]

The above flags allow the identification of the correct MPI library the user wishes to

use. The flags are especially useful if MPI is installed in a non-standard location, or when

multiple MPI libraries are available.

--with-cuda=/path/to/cuda Set path for CUDA

The configure script looks for CUDA in /usr/local/cuda. If your installation is not

there, then specify the path with this parameter. If you do not want CUDA enabled, set the

parameter to --without-cuda.

--with-vsl=PATH prefix where Intel MKL/VSL is installed

Specify the path to the VSL installation with this parameter.

A.3 Setting and Usage

A.3.1 Usage

The program is designed to work on HPC clusters and it requires MPI to run. The basic

use is as follows:

$ [mpirun -np NPROC] phase_estimation [config_file]

138



A.3.2 Input and configuration

Arguments:

config_file Configuration file name

If it is run without a configuration file, some default values are taken for all parameters;

the exact settings are identical to the one in the provided default.cfg file. The configuration

file is a plain text file with the name of the parameter on the left, followed by an equation

sign surrounded by a space on either side, and a value on the right-hand side. For example,

the contents of default.cfg are as follows:

pop_size = 20

N_begin = 4

N_cut = 5

N_end = 10

iter = 100

iter_begin = 300

repeat = 10

output_filename = output.dat

time_filename = time.dat

If you supply a configuration file, but do not set a specific value to every possible option,

the default values are again the ones described in default.cfg.

The meaning of the individual parameters:

• pop_size: population size.

• N_begin: the starting number of particles.

• N_cut: the number of particles where the program use cluster initialization around

previous solution.
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• N_end: the final number of particles.

• iter: number of iterations when cluster initialization is used.

• iter_begin: number of iteration when uniformly random initialization is used.

• repeat: number of time the candidates are compute before the best candidate is

selected after the optimization

• optimization: choose the heuristic optimization algorithm: de (differential evolution)

or pso (particle swarm optimization)

• output_filename: the name of the file to write the results to.

• time_filename: the name of the file to write the time taken to run the program for

each number of variables.

• random_seed: fix a random seed. If it is not specified, the random number generator

is initialized with the system time

• data_end: set where accept-reject criterion based on error from expected solution is

used

• prev_dev: the boundary for the cluster initialization – for variables that are initialized

from previous solution

• new_dev: the boundary for the cluster initialization – for new variable

• t_goal: parameter corresponding to the error which the algorithm will accept to

solution

Output

The program output two files, one containing the policy and fitness value (output.dat)

and the other containing the CPU time used in finding the policy (time.dat). The numbers

are updated for every N and can be used to track the progress of the optimization.

140



Example of output:

output.dat

1 #N Sharpness Policy

2 4 0.854507 4.91056 5.44221 5.73905 5.87313

3 5 0.888902 4.92427 5.46181 5.76412 5.88404 5.95493

4 6 0.90593 4.9164 5.46353 5.75503 5.89696 5.95538 6.05514

5 7 0.920337 4.91471 5.48735 5.72474 5.8765 5.94925 6.06185 6.14271

6 8 0.932388 4.88864 5.45983 5.72587 5.88542 5.94729 6.06073 6.12173 6.17251

7 9 0.941697 4.87251 5.45756 5.74001 5.90138 5.95748 6.04226 6.13899 6.16975 6.07994

8 10 0.941703 4.86374 5.42822 5.74102 5.87777 5.96852 6.04537 6.13999 6.13744 6.0704 6.25615

time.dat

1 #N Time

2 4 1

3 5 0

4 6 1

5 7 1

6 8 0

7 9 0

8 10 0

A.4 Expanding the library

The intention of this project is to create a library that can be used for solving multiple

quantum control problems. The code is therefore designed to ease the process of including

new problems and algorithms and make the selection of problems and algorithm as error-free

as possible. The following document is a guide on how users can write and include their
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own problems and optimization algorithms to the existing library, and what is needed to

customize and compile the code.

Readers are assumed to be familiar with population-based optimization algorithm, C++,

object-oriented programming, class hierarchy and inheritance, and polymorphism.

A.4.1 Program structure

Diagram of program

User-specified components

The orange boxes correspond to the components in which the users specifies before the

compiling the program. Phase class contains the modules for the adaptive phase estimation

problem, which can be replaced with other problems. To select a problem of choice, replace

Phase() by the constructor of the class in main() in the following line.

problem = new Phase(numvar, gaussian_rng, uniform_rng);

The Phase class is accessed through the Problem class. The pointer is given to the

OptAlg class to be used for computing the fitness values and accept-reject criteria.
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Optimization algorithms

The choice of optimization algorithm is specified in the configuration file along with other

parameters shown as an orange oval in figure. Otherwise, it can also be coded in main() in

the following line if necessary.

opt = new DE(problem, gaussian_rng, pop_size);

MPI

The MPI library is required for the program to run, as the program is designed to spread

the solution candidate evenly on a group of processors. The processors communicates in the

following situations.

• Constructing new set of candidates from existing population

• Finding the best candidate in the population or subset of the population

• Selecting the best candidate as solution

A.4.2 Add a new problem

A new problem should be written as a class derived from Problem class. There are five

functions that user must include in the new problem.

• fitness() is a function intended to be a wrapper for changing conditions in which the

fitness function is evaluated.

• avg_fitness() is the function for calculating the fitness value.

• T_condition() is a function for calculating additional conditions for when the opti-

mization algorithm is set to accept solution after T iteration.

• error_condition() is a function for calculating additional conditions for when opti-

mization algorithm is set to accept solution from error bound.
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• boundary() is used to keep the solution candidate within the boundary of the search

space.

This class does not use any MPI functionalities.

A.4.3 Add new algorithm

New algorithms can be added to the library of optimization algorithms by creating a de-

rived class from the OptAlg class. The functions are designed based on swarm intelligence

algorithms and evolutionary algorithms which shares the same backbone functions for ini-

tializing the population, for selecting the final solution candidate, and so forth. Aspects that

are specific to the algorithm, such as how the new candidates are generated and selected, are

declared as virtual function in OptAlg to allow the functions to be called from the derived

class.

The functions, including virtual functions, are listed in OptAlg class document.

A.4.4 Constructing optimization algorithm

The library provides the module for users to contract the optimization algorithm in main().

The basic structure of the algorithm is given in main.cpp, which compile to the following

structure.

• Initialize MPI and setting is compute to spread the number of candidates evenly on

the processors

• Initialize problem and select the optimization algorithm

• Population is initialized using a user specified method

• The fitness values are computed and the population is prepared for the optimization

• The iterative optimization commences until the solution satisfied the specified criterion
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• The program writes the fitness value, the solution, and the computational time as .dat

files

• Program terminates

Most of these functionalities are in OptAlg class.

For adaptive phase estimation, the program runs many consecutive optimization problems

with different number of variables N and the accept-reject criteria changes for different sets of

N , which is possible by changing conditions given to the optimization algorithm in main().

A.4.5 Changing the compilation setting

When a new problem and/or algorithm is included to the library, the following line in

src\Makefile.in,

OBJS=main.o candidate.o phase_loss_opt.o io.o problem.o mpi_optalg.o

mpi_pso.o mpi_de.o candidate.o rng.o aux_functions.o,

should be updated to include the new class.

145



Appendix B

Copyright permissions

This appendix includes the relevant copyright permissions for published and submitted pa-

pers whose materials are included in this thesis. The publishers’ policies granting permission

for an author to include published materials in derivative works are given in the links below:

• Elsevier: https://www.elsevier.com/about/policies/sharing

• SPIE: https://www.spiedigitallibrary.org/article-sharing-policies?SSO=1

• IEEE: https://ieeeauthorcenter.ieee.org/publishing-ethics/guidelines-and-policies/

avoid-infringement-upon-ieee-copyright/.

Copyright permission letters from co-authors of published and submitted papers are repro-

duced in the following pages.
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