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Abstract

We characterize coherent dynamics of closely-spaced dangling bond (DB) pairs positioned

on a silicon surface and sharing an excess electron. We investigate whether a coupled-DB

pair is a potential candidate for a charge qubit. A dangling bond is an atomic-scale entity

that acts like a quantum dot. By shrinking the scale of the quantum dots and the spacing

between them, we expect that the excess-electron tunneling rate increases dramatically with

decreasing inter-dot separation, while decoherence scales weakly.

Our analysis of the coherent dynamics of coupled-DB pairs shows promise in this respect.

Extremely high tunneling rate of the DB excess charge greatly exceeds the expected decoher-

ence rates for a silicon-based system, thereby overcoming the critical obstacle of charge qubit

for quantum computing purposes. However, this scaling advantage comes at the price of re-

quiring rapid control and readout. We devise a scheme for measuring the DB-pair dynamics,

but investigating the fast control is beyond the scope of this thesis.

Furthermore, we investigate the effect of the silicon-surface structure on the coherence of

a coupled-DB pair. The silicon surface of interest is well patterned, but it has an anisotropic

structure. Therefore, coupling strength of a DB pair depends on the arrangement of the DBs

on the silicon surface. We employ ab initio techniques and calculate energy splitting for a

wide variety of coupled DB-pair configurations on this surface.

The results show that energy splitting (and consequently the tunneling rate of the DB-

pair excess charge) is a function of the DBs’ location on the surface and also it strongly

depends on the structural orientation of the DBs’ orbital. Based on the results, DB-pair

configurations are categorized into four groups, such that the changing rate of energy splitting

versus DB-pair separation is different among the groups. Knowing about the effect of the

surface structure on the DB-pair energy splitting is especially useful when dealing with more

complex systems such as DB subnanowires, quantum cellular automata cells, and quantum
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computing schemes. Also, the results help to have a better understanding of the coherence

and bonding on this Si surface.

As mentioned earlier, the high coherent dynamics of coupled-DB pairs comes at the price

of being too fast to be directly measured by any conventional techniques. We therefore devise

a scheme to characterize tunneling of the DB excess charge by measuring the time-averaged

charge distribution of the DB pair with an atomic force microscope. In our approach, a

DB pair is capacitively coupled to an atomic force microscope tip in the presence of an

electrostatic potential bias applied along the DB pair, and a tunable mid-infrared laser to

drive the pair.

With a non-resonant laser field, the time-averaged charge distribution in the dangling-

bond pair is asymmetric as imposed by the bias. However, as the laser becomes resonant

with the coherent electron tunneling in the biased pair the theory predicts that the time-

averaged charge distribution becomes symmetric. This resonant symmetry effect should not

only reveal the tunneling rate, but also the nature and rate of decoherence of single electron

dynamics in our system.
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Chapter 1

Introduction

“People are like crystals. It is the defects in them that makes them interesting.” Sir F. C. Frank

1.1 Motivation

Quantum computing (QC) enables some computational problems to be solved faster and

more efficiently than would ever be possible with any conventional computer. Establishment

of some important quantum algorithms [4, 5] has motivated scientists to look for feasible

architectures for quantum computing. It has been speculated that the solid-state QC imple-

mentation is a suitable candidate because of the stability and possible scalability of solid-state

systems. Among the suggested solid state QC schemes [6, 7, 8, 9, 10, 11], semiconductor

implementations, especially in silicon, are particularly attractive because of the advanced

state of silicon technology and the desire to integrate standard silicon-chip computing with

quantum computation.

The first Si-based QC scheme was proposed by Kane in 1998, and it was based on the

nuclear spin of phosphorous atoms buried in the silicon (Si) crystal [9]. Impressive progress

has been achieved since then in developing silicon-based QC implementations not only with

nuclear spin, but also with electron spin [12, 13, 14, 15] as well as electron charge [10, 11, 15].

A recent breakthrough towards Si-based QC was the experimental achievement of atomic

precision in positioning phosphorous dopants in the Si crystal [16, 17]. However, despite all

the achievements in this area, there are still serious obstacles remaining for realizing such

schemes, at the heart of which are the challenges in realizing the qubit.

The qubit is the unit of quantum information and it is used as the building block for

quantum computation and quantum communication. Quantum information is built on a
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framework of logical qubits. Nature provides two-level systems that can serve as a physi-

cal means for encoding, processing and decoding quantum information. Whether physical

qubits suffice for quantum information processing depend on whether they satisfy necessary

conditions such as DiVincenzo’s criteria [18]. Strictly speaking, these physical qubits and

their operations are adequate if they meet the threshold condition for fault-tolerant quantum

error correction [19, 20].

In silicon-based QC schemes the qubit is physically realized in the form of electron charge,

electron spin and nuclei spin. The spin qubit, which is a superposition of spin up and down,

has a long lifetime but faces severe challenges such as readout. A promising approach to

read the spin qubit is to first convert it to a charge qubit [21], which is a superposition of

charge in two locations (assuming that the spin degree of freedom is stationary). Thus, the

semiconductor charge qubit is important both as a quantum information carrier and as an

intercessor for spin-qubit measurements.

The semiconductor charge qubit manifests as a pair of coupled quantum dots (QD) that

share a single electron via coherent tunneling [10, 11, 22]. The charge qubit also faces some

obstacles such as the spread of tunneling rate due to variation in the size and positioning of

QDs. Also, it suffers from a short coherence time [13, 23] due to environmental noise effects

such as the semiconductor’s surface and bulk phonon modes, stray charges in the system,

charge carriers of the electronic gates, and the charges trapped in surface dangling bonds

(DBs).

To overcome at least some of these obstacles, one should look for the right type of QD.

We propose using silicon-surface dangling bonds as tunnel-coupled quantum dots sharing

a controllable number of electrons in order to deal with some of the challenges of charge

qubit [1, 2, 24]. Dangling bonds are identical in shape and their spacing is determined

by the surface structure of the silicon crystal. Furthermore, fabrication of relatively large

assemblies of DBs can be achieved using a scanning tunneling microscope [25], which is a
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nanotool with atomic-scale precision, reliability, reproducibility, and virtually no variability

at the single dot level. We predict that the excess electron shared in a pair of DBs is highly

coherent [2]. Details on coupled-DB pairs (DBP−) will be presented in the following sections.

1.2 Research problem and objectives

The aim is to turn coupled dangling-bond pairs (where DBs are known as semiconductor

defects) into a useful tool for implementations at the quantum level. A dangling bond is an

unsaturated bond located on a semiconductor surface [26, 27, 28]. Structural and electronic

properties of DBs have been studied extensively [29, 30, 31, 32]. Also, recently various

implementations of DBs have been explored with possible applications for engineering new

devices on silicon surfaces [1, 33, 34, 35].

A dangling bond naturally possesses a single electron; hence it is capable of undergoing

a chemical reaction with atomic and molecular species, or bonding with another DB. Alter-

natively, a DB can become negatively charged by hosting an excess electron either provided

by a donor source such as a phosphorous (P) atom doped within a semiconductor material,

or by trapping a stray charge from the semiconductor’s conduction band.

1.2.1 Research Problem

For the first time in 2009, it was experimentally shown that pairs of appropriately separated

DBs are coupled with each other and they precisely share one excess electron [1]. Also, the

experiment illustrated that the coupling strength of the DB pairs depends on the separation

distance between the two DBs. However, whether this coupling is coherent or not remains as

an open question. This feature has opened up a new area of interest about coherent dynamics

of coupled DBs on a silicon surface with the potential of employing them in devising quantum

computing schemes and also utilizing them as building blocks for more complex nanosystems

such as DB sub-nanowires [33] and quantum cellular automata cells [1, 25].
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Dangling bonds are excellent candidates for quantum dots as they display localized

features, have truly atomic-scale size, and are identical in shape. Furthermore, DBs can

relatively easily be fabricated by selectively removing hydrogen atoms from a hydrogen-

terminated Si surface by means of a scanning probe such as scanning tunneling microscope

tip [1, 2, 24]. Therefore, as surface entities, DBs are directly amenable to control and read-

out, and they can be precisely positioned within subnanometer distance from each other.

Considering the DB features listed above, a DBP− is a potential candidate for a charge

qubit, conditioned to having long coherence times. It may be impossible or hard to overcome

decoherence due to inherent noises in the silicon crystal, but the atomic size of DBs helps to

reduce inter-DB separation, leading to exponential increase in the tunneling rate of the DB-

pair’s excess electron. Also, the identical shape and controllable positioning of DBs prevent

variation of tunneling rate. Thus, by employing DB as quantum dot, one can defeat the

obstacles of other proposed QD charge qubits.

1.2.2 Objectives

In this thesis three objectives are pursued. First, we use proper theories to estimate coherent

dynamics of DBP−s on the phosphorous-doped hydrogen-terminated Si(100)–2×1 surface.

Due to its well-ordered surface functionality, this Si surface is one of the most commonly

used surfaces in the Si-wafer fabrication technology [36]. Therefore, analyzing the coherent

dynamics of the DB pairs on this surface provides the opportunity to hybridize our system

with the existing Si infrastructure technology.

As the second objective, we investigate the effect of the Si-surface structure on the cou-

pling strength of various DB pairs. Although the Si surface of interest is well ordered, it

has an anisotropic structure. Thus, the coupling strength of a DB pair (and consequently

the tunneling rate of its excess charge) is expected to depend on the location of the corre-

sponding DBs on the surface. We employ ab initio techniques to calculate energy splitting

for various DBP−s with different configurations on this surface. The calculated results help
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us to choose a proper DB-pair configuration with the desired coherent dynamics for QC and

QE implementations.

Our third objective is to devise a scheme for experimentally characterizing DB-pair co-

herent dynamics. Based on our theoretical estimations, the high tunneling rate of the DB

excess-charge greatly exceeds any experimental capability to resolve at such a fast timescale.

Thus, it is impossible to directly detect the dynamics of a DB pair from an experiment.

We propose a scheme to indirectly retrieve information about the dynamics of a DB pair.

This information helps to characterize the tunneling rate as well as the nature and rates of

decoherence. In the following sections each objective is described in more detail.

1.3 Coherent dynamics of a coupled dangling-bond pair

A schematic view of the hydrogen-terminated Si(100)–2×1 surface is depicted in Fig. 1.1(a).

On this surface, each silicon atom shares two bonds with the silicons in the bulk, has one

bond with another surface silicon, and is capped by a hydrogen atom. A hydrogen can be

removed by a scanning probe, thereby creating a dangling bond [26, 28, 37]. A dangling

bond has only one confined electron with an energy state located within the Si crystal

bandgap. Consequently, the energy state of a DB is decoupled from the crystal’s conduction

and valence bands, and this leads to the localized feature of the DB.

A DB can lose its single electron to the bulk, thereby becoming a positively charged

DB+, or it can host one excess electron (with opposite spin) from the bulk, hence becoming

negatively charged DB−. Losing or acquiring charge depends on the type and amount of

doping in the host crystal, and on temperature. The crystal of our interest has a high

concentration of n-type phosphorous doping, therefore each DB is highly likely to become

negatively charged by carrying an excess electron [1].

Although, in the Si system of interest, an individual DB is most likely negatively charged,

experiments show that for DB pairs with a separation less than 16 Å, the two DBs display
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Figure 1.1: (a) Ball-and-stick representation of hydrogen-terminated Si(100)–2×1 surface.
The larger (gray) balls represent Si atoms and the smaller (white) balls are hydrogens. Each
Si on the surface shares a dimer bond with its neighboring surface Si, and each Si atom is
capped by a hydrogen. The inset depicts a top-down view of the surface and shows its bar-like
feature. The bars correspond to Si-Si dimers. The notation Ri, i ∈ {Si-H, Si-Si, row, dimer}
represents distances between each Si and its neighbors on the surface. (b) Schematic view of
a DBP− sharing an excess electron located on the H–Si(100)–2×1 surface. Bubbles represent
DBs and arrows represent electrons (with spin up or down). The couped DBs have their
natural electrons and they share an excess electron provided by P.

coupling behavior [1, 25]. In fact, when the second DB is created within 16 Å of the first

one, the strong Coulombic repulsion from the existing extra electron (located in the first DB)

prevents the second DB to host an extra charge. The resulting configuration is a coupled-DB

pair with the excess electron shared between the two DBs by tunnel coupling; see Fig. 1.1(b).

The excess electron tunnels between the two DBs with a rate that is a function of DB-

pair separation distance. In addition, the excess-electron tunneling rate also depends on the

geometry of the Si surface between the two DBs. Our theoretical estimations show that DB-

pair tunneling rate has an upper and lower bound of∼ 467 THz and∼ 0.1 THz corresponding

to the minimum and the maximum separation between the two DBs, respectively. The

minimum separation is ∼ 3.84 Å, determined by the structure of the Si surface and the

maximum separation is 16 Å, as stated above.

The excess electron, which is oscillating between the two DBs of a DB pair, can behave
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as a two-level system in the sense that, in the position representation, the states of the

system can be given in terms of the left and the right states. A useful alternative to the

left and the right states is the symmetric and antisymmetric states, corresponding to the

two lowest-lying energy levels of the DB-pair excess electron. These two states are given by

linear superpositions of the left and the right states.

Based on our ab initio calculations, the symmetric and the antisymmetric states of a

DBP− are within the Si-crystal band gap [2]. The higher energy levels are all above the

band gap. Consequently, any excitation of the excess electron to a higher energy level

results in the electron loss to the bulk or the conduction band of the Si crystal. Hence, the

two-level system approximation yields an excellent model for a DBP−. However, for such a

two-level system to be useful as a charge qubit, the oscillating excess electron should have

long coherent dynamics.

Coherence of a DBP− can be estimated by assessing the tunneling rate and the decoher-

ence rates of the excess electron and finding the ratio between them. This ratio indicates

the electron’s number of oscillations before it decays due to environmental noise effects. The

larger this ratio, the longer the DBP− coherence.

We used two different approaches for calculating the tunneling rate of the DBP− excess

charge. For small DB-pair separations (dDBP− < 8 Å), ab inito density functional theory

(DFT) was used. For larger separations (dDBP− > 8 Å), the size of the Si cluster model used

for DFT computation becomes prohibitively expensive. Thus, we used a simpler method

called Wentzel-Kramers-Brillouin (WKB) approximation to estimate the excess-charge tun-

neling rate.

For analyzing decoherence due to noise in our system, we employed the spin-boson

model [38]. This is a well-established model for characterizing coupling between a two-level

system and a generic bosonic bath corresponding to the relevant sources of noise. Based on

the earlier studies on silicon systems [13, 39, 40], we estimate that the main sources of noise
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in our system are the voltage fluctuations on the gate electrodes and the interaction between

the DBP− and phonons in the silicon bulk and at the surface.

Decoherence due to stray charges in the silicon crystal is believed to be small [1], because

the spacing between DBs in a DBP− is much smaller than distances to the nearest trapped

charges in the semiconductor. Also, to avoid the effect of spin coupling with the host nuclear

spins, we consider using 28Si, which is a spinless isotope of silicon. Decoherence due to

coupling with the spin of phosphorous atom is estimated to be ≈ 10−8 sec which is several

orders of magnitude smaller than the tunneling time estimated for the DBP− excess charge.

Our analysis show that DBP− tunneling rate increases exponentially with decreasing DB

separation, while decoherence rates scales weakly. For the particular model that we used, the

ratio between the resultant tunneling rate and decoherence rate reaches above the threshold

for fault-tolerant quantum computation [41]. Thus, DBP− has the potential to be a great

candidate for semiconductor charge qubit.

As one step further, we also formulated the dynamics for N number of DBP−s by adapt-

ing the extended Hubbard model (EHM) [42]. We assumed that the DBP−s are put in a

well-patterned form similar to the circuit-model proposed by Kane for the spin-qubit QC

system [9]. We modified the EHM model by adding an extra term corresponding to the

inter-DB potential bias. This term comes into play when control over the electron tunneling

rate is required, and it can be used for instance when employing DBP−s as the building

blocks of a quantum computing architecture.

1.4 Ab initio energy splitting for various DBP− configurations

The hydrogen-terminated Si(100)–2×1 surface has an anisotropic structure. On this surface,

any Si shares a dimer bond with its neighboring Si atom, such that the top-down view of

the surface displays rows of Si-Si dimers; see the inset in Fig. 1.1(a). Spacing between the

Si dimers in a single row is smaller than the spacing between the neighboring rows. Thus,
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the coupling strength of a DBP− and consequently the tunneling rate of the corresponding

excess electron depend on the arrangement of the two DBs on the Si surface. Using ab initio

techniques, we calculate the energy splitting for a wide variety of DBP− configurations in

order to investigate the effect of the surface structure on the excess-charge tunneling rate.

The tunneling rate of the excess electron is directly proportional to the energy difference

(also called energy splitting) between the two lowest-lying energy states of the excess electron,

i.e. the ground state and the first excited state. We use ab initio density functional theory

(DFT) and time-dependent DFT to calculate the energies corresponding to the ground state

and the first excited state of a DBP−, respectively. Learning about the tunneling rate of

different DBP− configurations becomes specially important and useful when DBP−s find

applicability in larger systems, such as designing a QC scheme.

In order to calculate (from first principles) the ground-state energy of a DBP− on a piece

of Si crystal, one should solve the Schrödinger equation for a system of N nuclei and M

electrons that are all interacting with each other. The Schrödinger equation is a function of

spatial and spin coordinates of the system’s particles. Thus solving the Schrödinger equation

for such a large system is practically impossible due to the large number of unknown variables

as well as the limitations on the required computational resources.

Density functional theory resolves this obstacle by considering the Schrödinger equation

as a functional (i.e. a function of function) of the system’s electron density, rather than a

function of the spatial and spin coordinates. This technique is built based on a theorem [43]

stating that there is a one-to-one correspondence between the electron-density of a system

and its ground-state properties. Thus, knowing the electron density of a system is suffi-

cient for determining any other properties of that system. To calculate the ground-state

energy, DFT optimizes system’s molecular geometry and then computes the corresponding

energy [44].

Time-dependent density functional theory (TDDFT) is an extension of DFT, and their
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Figure 1.2: (a) A schematic view of the pyramidal-shape of a Si cluster used for the ab initio
calculations. This cluster is phosphorous-doped (the orange ball) and has hydrogen-ter-
minated Si(100)–2×1 surface (white balls for hydrogen and green balls for Si), with two
dangling bonds (purple balls) equidistant from the dopant P. (b)-(e) Four different types of
DB-pair configurations on the surface of a cluster–(b) vertical, (c) horizontal, (d) diagonal
same-row, (e) diagonal different-rows. The rectangular boxes represent the top-down view
of the surface of the cluster given in (a). The short lines inside the boxes are Si dimers on
this surface. The black dot accompanied with letter P is the phosphorous dopant and the
other two dots are DBs.

conceptual and computational foundations are analogous to each other [45]. Time-dependent

DFT investigates the dynamics and the change in structural properties of a system in the

presence of a time-dependent external perturbation. We employ time-dependent DFT to

compute the energy of the first excited state of our system.

We model our system using Si clusters made of hundreds of Si atoms. Dangling bonds

are created on a cluster by removing hydrogen atoms from the silicons of the surface. The

DBP− excess electron is provided by a doped phosphorous (P) atom, simply by replacing

one of the Si atoms within the cluster with phosphorous. Some limitations are applied to the

location of DBs and P to avoid significant errors in computation: DBs can not be positioned

on the silicons of the surface borders as these Si atoms should be fixed in place by hydrogens

for computational purposes. Also, P should be surrounded by a layer of silicon atoms and
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it should not be in direct contact with DBs and with the lateral surfaces of the cluster.

The desired shape for a Si cluster is an upside-down pyramid with a DB pair on its base

and a P atom equidistant from both DBs and doped in a location within the cluster so

that it satisfies the conditions listed above; see Fig. 1.2(a). The pyramidal shape helps the

bonds on the lateral surfaces to be appropriately terminated by fixed-in-place H atoms while

preventing the H atoms to overlap each other. Furthermore, the pyramidal shape reduces

computational costs (i.e. memory, processor and time) as compared to the cost associated

with a cubic Si cluster.

We have three types of DBP− configurations, namely vertical, horizontal, and diagonal;

see Fig. 1.2(b). The computed results show that although the energy splitting of DBP−s

decreases with the increase of DBs separation, the rate of decrease is different from one

configuration to the other. The rate difference is partially due to surface structure influencing

each configuration differently, but it is also related to the shape and orientation of DBs orbital

and the degree of overlap between them. Based on the results, we categorize DBP−s into

four different groups each corresponding to a particular configuration.

The size of cluster and the location of P can be potential sources of error in our calcula-

tions. We tested the effect of the former source by looking at a particular configuration on

different cluster sizes. As a result, we found a lower bound on the size of the cluster in order

to reduce its effect on the DBP− energy splitting.

We used two different methods to check the effect of P location on the results: (1)

by placing P at different depths of a cluster and looking at its effect on a particular DBP−

splitting, and (2) by replacing P with a Si but instead adding an excess charge to the system.

According to the results, we found that P should not be very close to DBs to avoid strong

interaction with them. On the other hand, as P gets further away from the DB pair, the

results converge to a unique value, indicating that P would look like an excess charge for

sufficiently far distances from DBs.

11



Figure 1.3: (a) A schematic view of our proposed scheme for measuring DBP− fast coherent
dynamics. This scheme consists of: an atomic force microscope tip (AFM) capacitively
coupled to the DBP−, a bias Vb applied along the pair, and a mid-infrared field (MIR)
driving the pair. The left (L) and right (R) dangling bonds are shown by bubbles on the Si
surface. (b) The dangling-bond pair (DBL and DBR) is depicted as a double-well potential
with the other elements as described in (a). The AFM tip is sensitive to the time-averaged
charge distribution in the DBs, thus yielding the charge distribution ρL of the DB pair vs
dangling-bond position x.

The results of our calculation give us an insight on how the Si-surface structure is affecting

the DBP− energy splitting. Learning about different configurations of DBP− helps us in

choosing the appropriate type of DBP−s when it comes to employing them in larger-scale

systems such as building quantum cellular automata cells, devising quantum computing

schemes and performing quantum engineering with a set of DBs.

1.5 Scheme for characterizing DBP− coherent dynamics

The feature of fast tunneling and high coherence of DBP−s comes at the price of some

considerable practical difficulties. For instance, direct characterization of DBP− dynamics

by monitoring the oscillation of the DB excess-electron is not feasible electronically by any

straightforward methods. To resolve this problem, we propose a strategy to measure the rate
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and coherence of tunneling by controlling and monitoring time-averaged charge distribution

in pairs of coupled DBs [46]. These measurements are inspired by previous experiments on

double quantum-dot structures with tunneling rates in the microwave regime [47, 48].

Figure 1.3(a) shows our proposed scheme for measuring the coherent dynamics of a DBP−.

In our scheme, the excess electron’s position within the ‘left’ or ‘right’ DB is discerned by

an atomic force microscope (AFM) capacitively coupled to the pair. The AFM monitors the

charge distribution in the presence of two other elements: a surface-parallel electrostatic bias

applied along the two dangling bonds, and a tunable mid-infrared (MIR) laser field capable

of driving the excess electron oscillation in the DBP−.

When the MIR laser field is not resonant with the coherent electron tunneling of the

DBP−, the time-averaged charge distribution in the pair is asymmetric as imposed by the

applied bias. However, as the laser becomes resonant, the theory predicts that the time-

averaged charge distribution becomes symmetric; see Fig. 1.3(b). This resonant symmetry

effect reveals the tunneling rate as well as the nature and rate of decoherence of the DB

excess electron dynamics.

Despite the fact that an atomic force microscope (AFM) has single-electron resolution [46,

49], considering the fast DBP− charge dynamics, the AFM measurement is relatively slow

to directly realize the DB charge oscillation. In fact, AFM averages over many oscillations

thereby losing all direct information about the excess-charge tunneling rate and decoherence.

Nonetheless, during such a measurement, the DBP− induces a shift in the AFM oscillation

frequency, which is otherwise harmonic in the absence of capacitive coupling to localized

charges [50]. The strength of this coupling reveals the time-averaged charge in the left and

right DBs.

In general, it is possible to apply electrostatic biases by using lithographic contacts in

order to locally address single atoms and molecules [16, 32, 51]. Such contacts can be used to

establish an electric field along the two DBs in a DBP−. This bias will cause the probability
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distribution for the position of an excess electron to be more heavily weighted in the left or

right DB depending on the sign and strength of the bias. In our scheme it is exactly this

distribution that is observable by AFM. Furthermore, the actual tunneling rate is influenced

by this static bias. For zero bias, the position of the excess electron is equally probable in

the right and left DB; see Fig. 1.3(b).

In order to experimentally determine the tunneling rate and decoherence, we also need

an oscillatory driving force pushing the excess electron back and forth rapidly between the

two DBs at a rate comparable to the native tunneling frequency of the DB excess electron.

In the case of two DBs, the driving field needs to be in the mid-infrared (MIR) regime. If

the MIR field is off-resonant with the inter-dot tunneling frequency, the resultant force has

only a small perturbative effect on the DB system so that the excess electron distribution

is nearly the same as that without a driving field. If the MIR field is resonant, it can be

theoretically shown that its field causes the electron to be equally probable at either DB.

This effect can be measured experimentally by AFM and the data provided can be used to

reveal the DBP− tunneling rate and some properties and parameters of decoherence.

1.6 Overview of chapters

This chapter briefly explained the objectives pursued in the course of my PhD studies. The

next two chapters cover the background information required for modeling and characterizing

our DBP− system. The following three chapters each contain the detailed description of each

objective.

Chapter 2 contains background information about some electronic and structural proper-

ties of the Si crystal with the surface of interest, various types of charge qubit and their type

of characterization, and models and methods employed for characterizing DBP− dynamics.

Chapter 3 covers background on the tools required for our proposed scheme in order to ex-

perimentally characterize the coherence of a DBP−. This chapter also contains the details
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about DFT and TDDFT methods used for calculating the tunneling rate of different DBP−

configurations.

Chapter 4 explains characterization of DBP− coherent dynamics in full detail. Chapter 5

contains the results of ab initio calculations on the tunneling rate of different DBP− con-

figurations. Chapter 6 describes in detail our proposed scheme for measuring the coherent

dynamics of a DBP−. Chapter 7 summarizes the main conclusions of my thesis. In that

chapter, I also suggest some new directions and future work that can be undertaken following

my research project.
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Chapter 2

Background for System and Methods

In this chapter, some background information is given about the system of interest and

methods used for characterizing it. The chapter begins with a brief introduction on the

silicon surface of interest, dangling bond, and charge qubit. Then, it continues with a short

description of the extended Hubbard model, spin-boson model, and WKB approximation as

the methods used for the characterization of coupled dangling-bond pairs.

2.1 Hydrogen-terminated Si(100)–2×1 surface

This section describes the structure and the nomenclature of the H-Si(100)-2×1 surface. A

silicon (Si) crystal can be built by repeatedly putting together a unit cell1 that has diamond-

cubic structure with a lattice spacing of a0 ≈ 5.43 Å. The diamond-cubic structure is made

of two merged face-centered cubics that are offset by 1/4 of the lattice constant in the x, y,

and z directions. Each Si atom in the crystal shares the sp3-type bond with its four nearest

neighbors.

The surface plane of a crystal is defined by Miller indices with notation (hkl). These

indices are determined by first finding the intercept of the desired surface plane with the

three basis axes (xyz) in terms of the lattice constant and then taking the reciprocal of these

values and reducing them to the smallest three integers that share the same ratio. Based on

this notation, the indices ‘(100)’ in Si(100)–2×1 indicate that the surface plane of interest

is parallel to the yz-plane and has an intercept with the x-axis at one lattice constant. The

three common surface planes of silicon crystals are Si(100), Si(110), and Si(111). The crystal

orientations (100) and (111) are the most commonly used Si surfaces in the industry [52].

1A unit cell is a fundamental unit, made of one or more atoms, from which the whole crystal can be
generated by putting copies of this cell together.
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Atoms on a crystal surface can form different structures than those in the substrate.

During surface reconstruction, surface atoms rearrange themselves and bond together so as

to reduce the number of dangling bonds and to lower the free energy of the surface. The

type of reconstruction depends on the material and the direction of the surface plane, as well

as the environmental conditions, such as temperature and pressure, applied to the system.

In general, two types of reconstruction can occur: conservative and non-conservative. In the

former, all the original atoms remain at the surface while in the later some of the surface

atoms will be missing after reconstruction.

A reconstructed surface is usually named by Wood’s notation [53] given by X(hkl) (m×

n)–Rφ, which uses the ratio of the lengths of the primitive translation vectors2 of the top

layer(s) ‘m’, to the primitive translation vectors of the underlying substrate ‘n’ and, if

applicable, the angle to the underlying substrate ‘φ’. In this notation,‘X’ denotes the type

of atoms on the crystal surface and (hkl) is the Miller indices introduced above. As a simple

example, Fig. 2.1 shows a 2×1 reconstructed surface.

2 

1 

Figure 2.1: Woods notation for 2×1 reconstructed surface. Large circles are atoms on the
surface plane and small circles are atoms in the underlying substrate. The short horizontal
lines connecting the large circles represent surface-atoms dimer bonds. Three rows of surface
atom pairs can be seen in this picture.

The Si(100) should ideally be a 1×1 surface, where the surface atoms are equally spaced

in both directions. However, the Si(100) surface reconstructs into a 2×1 arrangement so that

2A primitive translation vector is the length and direction that the unit cell can be moved to still build
the structure.
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pairs of Si-atoms forms rows; see Fig. 2.1. In fact, by this DB-pairing the surface energy is

lowered due to the reduction of dangling bonds. As a result, the surface atoms pair together

and thus have two bonds to the underlying layer, one between the pairing neighbors and one

unsaturated bond pointing out of the surface.

A clean Si(100)–2×1 surface is highly reactive, as each Si atom on the surface contains

an unsaturated bond. A common way to passivate such a surface is achieved by allowing

hydrogen atoms to react with the clean silicon surface in an ultrahigh vacuum chamber. The

H atoms are provided by cracking HF gas or H2 gas by means of a hot tungsten filament [54].

Ab initio calculations and experimental observations reveal that the Si-Si dimer bond is

RSi-Si ∼ 2.25 Å, the Si-H bond is RSi-H ∼ 1.509 Å, the distance between adjacent dimers

is Rdimer ∼ 3.84 Å, and the distance between adjacent rows is RRow ∼ 7.68 Å, which is

∼
√
2× 5.431 Å with 5.431 Å the unit cell length in Si [24].

Analogous to an atom having infinitely many energy levels, a semiconductor also has an

infinite number of allowed bands. However, usually only those bands closest to the Fermi-

level are most interesting as they have applications in electronics and optoelectonics. The

Fermi level is located within the bandgap, which is a gap where the crystal’s energy bands

can not exist. The nearest energy bands above and below this bandgap are known as crystal

conduction and valence bands, respectively. The energy bandgap of a semiconductor can be

influenced by some phenomena such as temperature, pressure, and presence of impurities.

At room temperature, i.e. 300 K, the energy bandgap of Si crystalline is 1.12 eV.

For a non-doped Si crystal, the Fermi level is located in the middle of the bandgap.

However, when impurities are introduced to the system, the Fermi level shifts up or down so

to preserve the neutrality of the crystal. In an n-type doped crystal the Fermi level gets closer

to the conduction band as the donor provides an extra electron to the system. Similarly,

for the p-type case the Fermi level lies nearer to the valence band. In general, the value of

the absorption coefficient in the infrared range depends strongly on the doping level and can
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become greater than 2000 cm−1 for donor concentrations above 1019 cm−3 [55].

2.2 Bulk and surface phonon modes of Si crystal

This section aims to introduce phonons and its different types in the bulk and surface of a

semiconductor crystal, which is required for understanding the effect of phonon modes on the

dynamics of a desired system. Considering a piece of crystal as a three-dimensional lattice

of connected atoms, displacement of any number of atoms from their equilibrium positions

leads to a set of vibration waves that propagate throughout the lattice. A phonon is a quanta

of lattice vibrational motion (analogous to photon being the quanta of electromagnetic ra-

diation), for which atoms in the lattice uniformly oscillate with a specific frequency. Any

arbitrary lattice vibration can be written as a superposition of these primary phonons.

Similar to bulk phonons, a surface phonon is a quanta of lattice vibration on a crystal

surface. Surface phonons can be either due to real surface vibration or it can be a consequence

of bulk vibrations at the presence of a surface [56]. In both cases (i.e. bulk and surface), the

nature of phonon modes depends on the structure of the crystal. Phonons play an important

role in the determination of electronical, thermochemical and optical properties of condensed

matter systems. For instance, understanding surface phonons provides useful information

about the presence, quantity and type of defects existing on a crystal surface [57].

At non-zero temperatures, a lattice behaves as a collection of oscillators. Dynamics of

atomic displacements, and consequently the energy of phonons generated in the lattice can

be described by a harmonic approximation, such that the force exerted on each atom is

proportional to the atom displacement with respect to its nearest neighbors. The force is

characterized by a harmonic potential that depends on the atoms’ separation distance. How-

ever, this assumption is valid only if the atoms remain close to their equilibrium positions.

The simplest model of a crystal lattice that leads to deriving information about the

phonon modes of such system is a one-dimensional harmonic chain consisting of N identical
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atoms that are connected with each other via springs that have a particular spring constant.

The Hamiltonian for such model is the sum of atoms kinetic energy and springs potential

energy and is given by

Ĥ =
N�

i=1

P̂ 2
i

2m
+

1

2
mω2

�

�ij�

(x̂i − x̂j)
2 (2.1)

where m is the mass of each atom (assuming that all atoms in the system are identical),

and Pi and xi are the momentum and position operators of the ith atom. Also, �ij� denotes

nearest neighbors of each atom.

This model can be generalized to 2 and 3 dimensions by replacing the momentum and

position with their corresponding vectors having 2 or 3 coordinates. However, as we go to

higher dimensions the polarization of phonons comes into play as well. As we go to 2 or 3

dimensions, propagation of vibrational modes is no longer restricted to one direction, while

in one dimension phonons corresponds only to longitudinal waves.

Solving the equations of motion for such a system, one obtains a formula showing the

relationship between angular frequency and wavenumber of phonon modes. This relation is

called the “dispersion relation”. The type of phonons can be characterized by this relation

between phonon frequency and its wavenumber.

Two well-known types of phonons for which the energy can be described by the dispersion

relation are acoustic phonons and optical phonons. In the acoustic type of phonons, the

atoms’ displacements are in-phase with each other, meaning that they all move in the same

direction. Acoustic phonons correspond to lattice vibrations that have a wavelength much

longer than the lattice constant so that the phonon wave behaves like a sound wave.

If the wavelength of acoustic phonon is very large as compared to lattice constant, this lat-

tice movement corresponds to a displacement of the whole crystal. For long wavelengths, the

dispersion curve for acoustic phonons show a linear relation between the phonon wavevector

and its frequency, which is similar to the case of sound waves. As a consequence, acoustic

phonons with long wavelengths can propagate a long distance through a crystal without
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falling apart.

Optical phonons corresponds to lattice vibrations for which atom movements are out of

phase, such that the neighboring atoms are moving in opposite direction of each other. They

are called optical because this type of phonon modes are responsible for optical behavior of

the lattice, for instance they can be excited by an infrared field [58]. In the long wavelength

limit, optical modes interact with electromagnetic radiation. Optical phonons have high

frequencies whereas acoustic phonons have low frequencies.

Depending on the direction of the atomic displacements in a phonon mode, the modes are

either labeled as longitudinal or transverse. If the atomic displacement is in the direction

of the wave propagation such that contraction and relaxation happens in the lattice, the

phonon is named a longitudinal phonon. If the atomic displacement is perpendicular to the

direction of propagation such that atoms vibrate side-to-side, the phonon is a transverse

mode. Transverse phonon modes usually have smaller frequencies than the longitudinal

ones [58].

Phonons have an important role in describing some of the characteristics of solid systems.

Employing a suitable statistical model is one way to deal with the role of phonons in a

system. For studying some of the electrical and thermodynamical properties of solid systems,

especially those properties related to the system temperature (such as specific heat, thermal

and electrical conductivity, and superconductivity) one must incorporate the role of the

phonons of the system.

Phonons are boson-type particles, so they are indistinguishable and there is no limit on

the number of phonon particles that can occupy an energy state. The collection of phonons in

a given energy state is given by its density of states. Phonons obey Bose-Einstein distribution

function which states that, in thermal equilibrium, the probability of finding phonons with

a chosen angular frequency in a desired state is given by

n(ωk,s) = (exp �ωk,s/kBT − 1)−1 , (2.2)
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where ωk,s is the angular frequency of a phonon with wavenumber k and polarization s, KB is

the Boltzmann constant and T is the temperature of the system. In fact, n(ωk,s) is the mean

occupation number of phonons at temperature T . The product of the phonon density of

states and Bose-Einstein distribution function gives the number of phonons occupied states

per unit volume at a given energy.

The scattering mechanism is a common approach for studying phonons of a system ex-

perimentally. This mechanism works based on inelastic scattering of photons or particles

from the system where the resulting change of energy in the scattered particles provides

information about phonons. Raman and X-ray scattering are two types of scattering mech-

anisms. The former is used for the study of optical phonons and the latter is employed for

acoustic phonons.

Experimental studies of silicon phonon modes at room temperature show that the phonons

have frequencies within the range of 50 GHz to 15 THz. More specifically, longitudinal acous-

tic phonons frequency were found to be within the range of 50-100 GHz [59]. In another

experiment the optical phonon mode was reported to have a frequency of 15 THz [60]. On

the other hand silicon surface vibrational modes of H-Si bonds were reported to be in the

interval from 526 to 1111 cm−1 [61, 62].

2.3 Dangling bonds on the silicon surface

In this section, structural and electronic properties of dangling bond are explained in more

detail and its applications in different systems are discussed. A dangling bond is an un-

satisfied valence bond located on the surface of semiconductors or their interfaces; a DB is

capable of accepting an excess charge or undergoing in a chemical reaction. The existence of

DBs can be a consequence of surface imperfections due to missing atoms from the surface,

or it can be the result of removing atoms by a physical or chemical process. Dangling bonds

were first identified by Igor Tamm in 1932 [63, 64], and since then, it has been known and
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studied as a defect in semiconductor devices. A common approach to reduce these defects

is to expose hydrogen or oxygen atoms to the surface of the semiconductor.

The unique characteristic of the DB is its energy state which lies within the host semi-

conductor bandgap and so it is decoupled from the semiconductor conduction and valence

bands. The DB energy state can either be discrete or may be continuous depending on the

concentration of DBs on the host semiconductor [64]. High concentration of DBs pins the

semiconductor Fermi level, and does not allow its energy bands to move freely under any

applied bias, hence the reason for DBs to be considered as a defect. Oxidization or hydrogen

passivation of the semiconductor surface shifts the DBs energy level out of the semiconductor

bandgap and thus eliminates DBs electrical activity [65].

Dangling bonds usually have long lifetimes (from hours to days) depending on the level of

cleanliness of their surrounding environment. Usually such surfaces are kept in an ultrahigh

vacuum to prevent surface contamination with unwanted molecules/atoms. The reason for

DB’s long lifetime is its immobilized feature and the fact that most often a second adjacent

DB is required for a molecule in order to bond to the surface [25]. Also, the strong bonding

of DBs to their sites allows room-temperature experimental operations.

Generally speaking, the type and concentration of dopant atoms in a semiconductor, the

density of DBs on the surface, local electric field and current applied directly to the DBs, all

affect the charge state of a DB [66, 67]. More specifically, the location of the semiconductor

Fermi level controls the DB charge state [68]. The Fermi level can be shifted up or down by

changing the type and concentration of dopant in the semiconductor [24, 69].

For instance, high-levels of n-type doping in a semiconductor leads to high concentra-

tions of electrons in the semiconductor. As a consequence, for a neutral DB (owning its

inherit single electron) located on this semiconductor, the DB hosts a second electron with

opposite spin (due to the Pauli exclusion principle) and thus becomes negatively charged. A

negatively-charged DB exhibits a 0.5 eV upward shift of its energy level relative to that of a
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(a) (c) (b) 

Figure 2.2: Scanning tunneling microscope images of dangling bonds on (a) a low-doped and
(b) high-doped n-type Si(100)-2×1 surface. In low-doped crystals, dangling bonds appear as
bright spots whereas in high-doped they appear as dark spots. (c) Three coupled-DB pairs
where their image brightness depends on DBs separation in each pair. [reproduced from
ref. [1], Fig. 1]

neutral DB Also, the silicon atom hosting a negatively-charged DB is elevated by 0.3 Å from

the plane of the surface.

It has recently been shown that all three types of DB charging states (i.e. positive,

neutral and negative charge states) are experimentally accessible as their energy states are

well-separated from each other [70]. As mentioned above, specifying the level and type

of doping is one way to control DB charge level. However, this type of control is passive

because once it is set, there is no control over changing it. However, there are different ways

to actively alter the charging level of a DB. The use of Schottky contacts [51], scanning

tunneling microscope tip or any other type of probe tip, and the use of another charged DB

are some examples of these approaches [71].

Scanning tunneling microscope (STM) imaging of DBs, located on a semiconductor with

different level of doping, display differently; see Fig. 2.2. Low-level n-type doping causes DBs

to be neutral, which is visible as white protrusions in STM imaging. On the other hand,

in a high-doped n-type surface, STM imaging shows DBs as bumps surrounded by a dark

region. In the case of coupled DBs, due to less local charge occupied by the coupled DBs,
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they have a lighter appearance in the STM image. However, as the spacing between coupled

DBs increases they look increasingly darker as the net charge approaches to two electrons

per each DB.

Although DBs have been known as a defect for so many decades, recently new attempts

have been taken towards finding possible applications of this entity in nanoscale technologies.

With the progress made in fine-tuning control of nanotools such as the scanning tunneling

microscope, it has become relatively easy to selectively create individual DBs on silicon

surfaces and to pattern desired DB wires or clusters with an ensemble of DBs [51, 25]. This

achievement has provided the opportunity to study the dynamics and electronic properties

of DBs from a new perspective.

Ease and precise fabrication of DBs, plus having identical shapes, truly atomic-size, and

the capability of hosting up to maximum 2 charges, all make DBs an excellent candidate

for quantum dot [1] with the potential to be used for quantum computation. Furthermore,

it was experimentally shown that DBs can control the type of chemical reactions occurring

between organic molecules and a silicon surface [72, 73].

In another more recent experiment, it was demonstrated that DBs can be used as a truly

atomic-scale bias-gate electrode to manipulate the charge distribution in coupled-DB clusters

or a line of coupled cells served as DB-wire [1, 34, 24]. A linear chain of DBs will delocalize

charge and allow biasing wires to be fabricated where needed. These applications of DBs

implies that the high density ensembles of DBs enable passive components such as wires

while widely spaced structures allow for the creation of the active elements in a circuit [25].

2.4 Solid-state qubit

This section discusses different types of qubits in solid-state systems and explains the meth-

ods used for characterizing coherent dynamics of such qubits. A qubit (or quantum bit) is

the building block of quantum computation, and it is defined by the linear superposition of
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two orthogonal states. Any candidate that is proposed for physical realization of a qubit

must satisfy DiVincenzo’s criteria [74]. Having a well-characterized qubit and long coherence

time are two of these criteria, which are discussed in more detail in this section. The other

DiVincenzo criteria are: the existence of a scalable system, ability to initialize the qubits

in that system, having a universal set of quantum gates, and the capability to measure the

qubit state.

Spin qubit and charge qubit are the two main types of candidates proposed for solid-state

quantum computing. Different realizations of solid-state charge qubit can be categorized into

two main groups of semiconductor [10, 11, 13, 22] and superconductor [6, 8] charge qubits.

In the following, semiconductor charge and spin qubits are discussed followed by a brief

discussion about superconductor charge qubit.

2.4.1 Semiconductor charge qubit

Semiconductor charge qubit is manifested, in general, as a coupled pair of quantum dots

(QD) sharing a single electron. The electron bound between the two QDs can behave as

a two-level system such that, in the position representation, the states of the system are

defined by the electron position in the ‘left’ (L) or ‘right’ (R) quantum dot. We assume that

the spin-degree of freedom of the electron is preserved and thus we only consider the charge

position in the left or right QD.

This two-level system can be thought of as a double-well potential where the quantum

states of the individual wells are given by |L� and |R�, respectively [10, 11]. Approximating

a two-level system by a double-well potential holds only if energy levels of each potential well

are widely spaced so that only the ground states of each well are involved in the quantum

superposition.

An alternative replacement for |L� and |R� states is the symmetric |ψ+� and antisym-

metric states |ψ−�, which are the eigenstates of the charge qubit Hamiltonian in the absence

of any external field. In fact, the symmetric and antisymmetric qubit states correspond to
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energy encoding, whereas the left and right states are used for position encoding. However,

the left and right states are related to the symmetric and antisymmetric states according to

|L� = 1√
2
(|ψ+� − |ψ−�) , |R� =

1√
2
(|ψ+�+ |ψ−�) . (2.3)

The Hamiltonian for coherent dynamics of a charge qubit is given by

Ĥ0 = E0 (|L��L|+ |R��R|) + �∆
2

(|R��L|+ |L��R|) , (2.4)

where E0 is the on-site energy of electron at each individual QD (considering that the two

QDs are identical in shape) and∆ is the frequency (or rate) of the electron coherent tunneling

between the two QDs. Diagonalizing the Hamiltonian Ĥ0 yields eigenenergies E0 ± �∆/2

with corresponding eigenstates |ψ±�, respectively.

Qubit tunneling and decoherence are the two key components required for quantum com-

putation. The qubit manipulation time should be a multiple factor of the qubit tunneling

time, where the tunneling time is inversely proportional to its rate. Decoherence is a conse-

quence of any unwanted coupling between the qubit and its surrounding environment, and

manifests itself in two types of qubit-state relaxation and dephasing. Manipulation and mea-

surement of charge qubit should be made before the charge dies out due to coupling with its

surrounding environment.

The semiconductor charge qubit has been mainly realized based on two types of con-

stituent, namely quantum dot and donor. The quantum dot (QD) is a small region in a

semiconductor material where the motion of electrons is confined in all three spatial dimen-

sions. The donor-type charge qubit is made of phosphorous atoms doped within a semicon-

ductor [11, 22, 40, 75]. In both types of charge qubit, an excess electron is shared between

two QD or P sites. In both cases, phonon modes and background charge fluctuations are

known to be the two dominant sources of noise causing qubit decoherence [23, 47, 76].

Quantum dots are either self-assembled, or they are formed by spatial confinement of a

region in a semiconductor by means of biased-gate electrodes [10, 23, 47, 77]. In the case
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of electronically-confined-QD charge qubit, the dots are fabricated from a two-dimensional

electron gas (2DEG) confined in either GaAs/AlGaAs [10, 47, 78, 79] or Si/SiGe [77] het-

erostructure. In fact, by putting together different types of semiconductor material, an edge

is created in the band structure of the system; electrons can be confined in this edge and

thereby forming a 2DEG. The number of electrons in the 2DEG is controlled by means of

gate electrodes.

To experimentally characterize the dynamics of QD charge qubits, direct and indirect

read-out schemes have been proposed. In direct read-out, the state of the qubit is measured

by passing a current directly through the double QD, after applying an electric pulse for

desired qubit manipulation. The qubit relaxation is controlled by the pulse period and

its phase is controlled by tailoring the pulse shape [10, 23]. For indirect charge detection,

a current-based quantum point contact (QPC) charge detector is employed. The QPC is

located close to one of the QDs and the current passing through the QPC changes depending

on the nearby QD being occupied or unoccupied (with the excess charge) [78, 79].

Another indirect technique proposed for characterizing the dynamics of a QD charge

qubit is the photon-assisted tunneling (PAT) spectroscopy [47, 80, 81]. In this technique,

the qubit state is driven by a microwave field and concomitantly is electronically biased;

a QPC in close proximity to one of the quantum dots, detects the qubit dynamics by a

continuous measurement of the photon-induced change in the charge-state occupancy of that

QD. This method is different from the other methods in that it is based on a continuous

measurement rather than a single-shot read-out. Thus, this technique is especially useful

when the estimated coherent dynamics of the charge qubit is faster than the QPC-detecting

resolution.

In the case of donor-type charge qubit, the qubit is comprised two shallow-doped phos-

phorous (P) atoms (in a semiconductor material such as silicon crystal) one of which is singly

ionized. The outermost electron of the other P atom (that is not ionized) is shared between
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the two P atoms resulting a P+
2 (artificial) molecule [22, 40, 75, 76]. Phosphorous atoms are

implanted within a silicon-on-insulator wafer [11]. The wafer is patterned and etched to form

the desired electronic elements for the purpose of manipulation, control, and measurement of

the qubit. The read-out is performed by means of single-electron transistor (SET) [11], which

is a sensitive electrometer whose operation is based on qubit single-electron tunneling to a

small island; the island is isolated from the qubit by two slightly-separated voltage-controlled

electronic leads.

Both QD- and P-type charge qubits pose their own typical challenges. For instance, the

dots in a double-QD charge qubit are never identical in shape. Furthermore, since the QDs

are defined by the gate electrodes, charge fluctuation surrounding the gate electrodes have a

significant influence on qubit coherent dynamics. On the other hand, while the constituents

of P-type qubits are identical, there is the problem of precisely positioning P dopants in the

host crystal. Furthermore, the tunnel coupling for this type of charge qubit is influenced by

the Si crystal band structure. Thus, even keeping the separation between the two P atoms

constant, qubit tunnelling rate can still vary over a wide range of values.

Experimental characterization of QD charge-qubit dynamics shows that maximum timescales

obtained for qubit tunneling, relaxation, and dephasing are ≈ 0.5 nsec ≈ 10-18 nsec, and

≈ 60 ps-2 nsec, respectively [77, 78, 79]. For the case of P-type charge qubit, the latest

experimental assessment gives a tunneling time of 10 psec and a relaxation time of 10 msec,

but does not report on the dephasing time [40]. In an earlier experiment though, the tun-

neling, relaxation, and dephasing times are reported as 0.1 µsec, 100 µsec and 200 nsec,

respectively [11].

In both cases, the tunneling time and worse-case decoherence time (which belongs to

dephasing) are almost in the same order of magnitude, implying that these proposed qubits

are not yet good enough for quantum computation. One rational approach to overcome

this problem is to look for smaller-size quantum dots. In a recent experiment, a coupled
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dangling-bond pair was proposed as a potential candidate for semiconductor charge qubit.

However, characterization of the dangling-bond-pair coherent dynamics was left as an open

question [1].

2.4.2 Semiconductor spin qubit

The spin qubit in semiconductors is realized in the form of electron spin and nuclear spin [9,

15]. The electron-spin qubit is usually a confined isolated electron in a gate-defined quantum

dot [82]. The nuclear-spin qubit is manifested in the form of a neutral or ionized donor

embedded in a host semiconductor material [9, 83]. In general, the qubit state in both cases

is defined as a linear superposition of spin-up and -down of the electron or nuclei.

In 1998, Loss and DiVincenzo proposed using a single electron in a QD as spin qubit. In

their proposal, electron spin was manipulated by controlling the potential barrier between

quantum dots. They also suggested three different approaches for spin read-out, one of which

is the well-known spin-to-charge conversion method. In this method, the spin qubit has a

spin-dependent tunneling through a spin-valve into a third QD which then is measured by a

charge-sensitive electrometer, such as a quantum point contact or a single electron transistor.

The role of the spin-valve is to allow only one type of electron spin to pass into the third

QD; thus the presence of a charge in the third QD is an indication of the spin of the qubit.

Detecting charge occupancy and determining the type of spin is significantly easier than

measuring the spin directly. This method has become a common approach for dealing with

spin-qubit measurements [21].

The dominant source of decoherence for electron-spin qubit is determined to be qubit

interactions with the host-material nuclear spin bath [84]. One way to overcome this problem

is to use a host material with nuclei that are spinless. For instance 28Si is an excellent host

not only because it is spinless but also due to its wide application in the nanofabrication

industry. In an alternative approach, it has been shown that a spin qubit made of a pair

of electrons, each residing in a QD, is more robust against decoherence caused by nuclear
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spins and also charge noises [85]. In this case, information is encoded in the superposition of

electron-pair singlet/triplet states. Since these two states are spinless, they are unaffected

by the nuclear spins.

Kane suggested using the nuclear spin of phosphorous donors embedded in a pure silicon

crystal as spin qubit and proposed a quantum computing architecture, based on an array of

individual 31P atoms with nuclear spin of 1/2 [9] dopped in 28Si material. In such a system,

a large DC magnetic field is applied to create an energy splitting between spin-up and spin-

down states and also to initialize the nuclear spin qubits in one of its states. Also, an AC

magnetic field is applied to keep the nuclear spin oscillating between the up and down states

at resonance and thus creates a linear superposition of them.

The spin qubits are then manipulated by electric gates located on the silicon surface above

and between the spin qubits. The gates above the qubits control the resonance frequency of

the nuclear spin and gates located between two nuclear spins control the electron-mediated

coupling between the two nuclear spins. Electrons are used to mediate between nuclear-spin

interactions and to facilitate nuclear spin measurement. The measurement is performed by

first transferring the state of the phosphorous nuclear spin to the state of the corresponding

electrons and then use the spin-to-charge conversion approach for read out.

In a recent experiment, a coherence time of ≈ 200 µsec has been observed for an electron-

spin qubit in a GaAs quantum dot, which allows more than 1000 coherent quantum oper-

ations before the qubit decohers [86]. For the nuclear-spin qubit, a coherence time of 180

sec (at low temperature) has been reported [87]. It was recently shown that employing ion-

ized donors rather than the neutral ones as nuclear-spin qubits help to dramatically increase

the coherence time to 39 minutes, at room temperature [83]. In the same experiment, a

coherence time of 3 hours was reported for the low-temperature condition.

Spin qubits, in general, are better isolated from the environment than charge qubits,

consequently they have longer coherence times. On the other hand, a comparison between
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the coherence of electron spin and nuclear spin shows that the nuclear spin has a much

longer coherence than the electron spin. Furthermore, electron spin can be manipulated and

also be coupled to other electron-spin qubits in a much shorter time-scale than the nuclear

spin qubit. Therefore, the electron spin seems to be more suitable to be used as a quantum

processor while the nuclear spin works better as a quantum memory for storing quantum

information.

2.4.3 Superconductor charge qubit

The superconducting charge qubit [6, 8, 7] is realized by the superposition of zero and one

Cooper pair in a nanometer-scale superconducting island, also known as Cooper-pair box.

The island is connected via one or two Josephson junction(s) to the rest of the electronic

circuit. The number of Cooper pairs tunneling across the junctions and the effective fields

acting on the qubit are controlled by tuning the gate voltages in the circuit.

The architecture proposed for quantum computing with superconducting qubits involves

embedding superconducting charge qubits in a one-dimensional transmission line resonator

(i.e. a copper waveguide cavity) and coupling the lowest mode of the cavity with the qubit

transition [88, 89]. This proposal enables coherent control, manipulation and readout of

qubits. Recent achievements for coherence and decoherence rates of such qubits are in

the order of ≈ 10−10 and ≈ 10−4sec, respectively [90, 91, 92]. The high quality factor of

≈ 10−6 makes the superconducting charge qubit a successful achievement towards quantum

computation.

2.5 Extended Hubbard model

The Hubbard model is an approximate model used mostly in solid state and condensed matter

physics for investigating the electronic and magnetic properties of interacting particles in a

lattice [42, 93]. This model was originally proposed for fermions, but later it was applied
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to bosonic systems as well [94]. The Hubbard model is originally composed of the on-site

energy and Coulombic interaction of particles at any site of the lattice plus particles hopping

between different lattice sites. If the long-range Coulombic interaction between particles at

different sites are added to this model, then it is referred to as the “extended Hubbard

model” [95]. In other words, the extended Hubbard model considers Coulombic interactions

between the particles to be located in the nearest-neighbor lattice sites.

Dynamics of electrons, as fermionic particles, on a two-dimensional lattice can be de-

scribed by a Hamiltonian Ĥ that acts upon the Hilbert space spanned by zero, one, or

two electrons per each lattice site. The Hamiltonian of the extend Hubbard model can be

expressed, in general, by:

Ĥ =
�

i,σ

Eosn̂i,σ −
�

�i,j�
σ

Tij(ĉ
†
i,σ ĉj,σ + ĉ†j,σ ĉi,σ)

+
�

i

Uin̂i,↑n̂i,↓ +
�

�i,j�,σ,σ�

Wiσjσ�n̂i,σn̂j,σ� , (2.5)

where �i, j� indicates the nearest-neighbor interaction on the lattice sites i and j, and

{σ, σ�} ∈ {↑, ↓} is the electron spin up and down. In addition, ĉ†i,σ, ĉi,σ, and n̂i,σ are the

creation, annihilation, and number operators, respectively, acting on electrons with spin σ

at lattice-site i.

The parameter Eos is the on-site energy of the electron at any site. The hopping (or

tunneling) between sites i and j is given by Tij, which depends on the separation distance

between the two sites i and j. The on-site Coulombic interaction Ui denotes the energy cost

of putting two electrons of opposite spin at the same site i. The inter-site Coulombic effect

denoted by Wiσjσ� is the cost of putting one electron with spin σ at site i concomitantly

with putting another electron of spin σ� at site j.

Depending on the level of electron filling in a lattice, and the strength and comparability

of the terms in the Hamiltonian, which is manifested in the coefficient incorporated in each

term, the extended Hubbard model is capable of describing a wide range of physical phe-
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nomena. The strength of the coefficients in the Hamiltonian determines whether electrons

have the tendency to be localized in the lattice sites or to be delocalized, which leads to

better understanding of electronic or magnetic characteristics of a system. For example,

the extended Hubbard model has been used for modeling high-temperature superconductiv-

ity [96, 97], and for identifying phase diagram [97, 98]. It has also been used for modeling

trapped ions or atoms with fermion-type spin in optical lattices [96].

2.6 Spin–boson model

In this section we consider the spin-boson model which is a common model for studying

environmentally induced decoherence for semiconductor qubits [38, 39]. The spin-boson

model is a well-established simplified model for characterizing weak coupling between a two-

level system, e.g. charge qubit, interacting with a bosonic bath of harmonic oscillators, such

as phonons or charge fluctuations.

One of the simplifying features of the spin-boson model is that in the limit of weak

coupling, the relaxation rate of the system (due to its population decay) and its decoherence

rate (due to its coherence decay) are equal to second order in the coupling [38], which allows

us to characterize the system by a single decoherence rate. This model has been used, for

instance, in the estimation of decoherence rate for the P-P+ charge qubit in bulk silicon [13]

The spin-boson model is described by a Hamiltonian given by [38]

Ĥsb =
�

i

�ωib̂
†
i b̂i + σ̂z

�

i

λi

�
b̂†i + b̂i

�
(2.6)

where ωi is the frequency of the bath ith harmonic oscillator mode, b̂†i and b̂i are the corre-

sponding creation and annihilation operators, and λi is the coupling strength between the

two-level system and the ith mode of the bath.

The first term on the right-hand side of Eq. (6.28) is the bath free Hamiltonian, and

the second term is the interaction Hamiltonian describing the system-bath coupling. The
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interaction Hamiltonian can be rewritten as

Ĥint = σ̂z

�

i

λi

�
b̂†i + b̂i

�
= σ̂zd

�

i

cix̂i, (2.7)

with d being the distance between the two localized states of the system, x̂i being the spatial

coordinate of mode i, and ci being the coupling strength between the system and mode i.

Equation 2.7 clearly shows that the system-bath coupling depends linearly on the coordinates

of the system and those of the bath harmonic-oscillator modes.

Studies show that, for any system characterized by the equilibrium statistical average

over the initial and final states of the bath, the only physically relevant quantity in the

spin-boson model is the spectral density function of the bath [38]

J(ω) =
π

2

�

i

δ(ω − ωi)
c2i

miωi
. (2.8)

A large class of open systems, i.e. systems interacting with their surrounding environment,

can be characterized by a spectral density of the form

J(ω) = αωs exp(−ω/ωc) (2.9)

for ωc being a cutoff frequency and α and s being empirically-fitted constants. For s = 1, the

bath is said to be ohmic. The spin-boson model, although is known as a simple dissipative

model, does not have a general analytic solution. The next step of assessing a system by

this model depends on the ratio between the coherence rate of the system ∆, parameters ωc,

and kΘ, where k is the Boltzmann constant and Θ is the temperature.

In a practical level, the most common solution for this model is the perturbative ones

in which the weakest term in the total Hamiltonian plays the role of the perturbation. For

example, in the adiabatic limit, where ∆ � ωc, the bath evolves quite slowly and has an

almost classical behavior, whereas in the non-adiabatic limit, ∆ ≈ ωc, the golden rule offers

a reliable solution. There are also other limiting cases where kΘ and other energy scales are

involved and are well understood [99, 100], but these are beyond the scope of our interest.
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2.7 Wentzel–Kramers–Brillouin approximation

The aim of this section is to provide the WKB approximation that is used to estimate the

tunneling rate in different systems such as electron tunneling in charge qubit systems and

STM-sample tunneling current. The WKB approximation was first developed by Wentzel,

Kramers and Brillouin (hence the acronym WKB) in 1926 [101, 102]. This approximation

gives a semiclassical treatment of the Schrödinger equation associated with a particle moving

towards a potential barrier V (x) with an arbitrary (but slowly varying) shape. To apply this

method one requires the shape of the potential barrier and the energy of the particle E (i.e.

whether E is smaller or larger than V (x)) in order to calculate the particle wavefunction

and its tunneling through the potential barrier.

Assuming that a potential barrier has a width of x1 < w < x2, based on WKB approxi-

mation, tunneling of a particle through the potential barrier can be estimated by calculating

the probability densities of the particle wavefunction on the emerging side and the incident

side of the barrier and then finding the ratio between them, i.e.

|T |2 = |ψ(x2)|2

|ψ0|2
= exp

�
−2

� x2

x1

|k(x�)|dx�
�
. (2.10)

The parameter k�(x) =
�

2m(E−V (x))
�2 is the particle wavenumber. Equation (2.10) holds if

the derivative of the wavenumber is much smaller than the wavenumber itself, i.e.
����
dk�(x)

dx

���� � k�2. (2.11)

This condition implies that the particle wavelength λ (where λ ∝ k−1) must be much smaller

than the variation of k(x) (and consequently the variation of V (x)) with respect to x.

In cases where the energy of the particle is larger than the barrier height E > V (x),

the wavenumber is real, the probability density remains constant, i.e. |ψ(x)|2 = |ψ0|2, the

system can be treated classically. However, for the cases where the particle is passing through

the potential barrier E < V (x), the wavenumber becomes imaginary and should be treated

quantum mechanically.
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2.8 Conclusion

In this chapter, I established some of the basic frameworks that are required in order to

understand the new results in chapters 4 and 6. This chapter includes the background

material about the system of interest plus the methods used for theoretical modeling of

the coherent dynamics of our system. The next chapter also covers the rest of the basic

knowledge essential for employing in the study of our system of interest, i.e. a coupled DB

pair on the Si(100)-2×1 surface.
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Chapter 3

Background on the Experimental Tools and Ab Initio

Techniques for DBP− Characterization

In this chapter, I present the relevant background material behind the experimental

tools and the ab initio techniques employed for characterizing coherent dynamics of different

DBP− configurations. The experimental tools to be discussed are atomic force microscope,

scanning tunneling microscope, mid-infrared laser field, and applied bias. These tools are

used in our proposed scheme for characterizing DBP−s tunneling rate and the nature and

rate of decoherence, which is given in details in chapter 6.

Also, in this chapter, the basic concepts underlying ab initio density functional theory

(DFT) and time-dependent DFT are explained and some of the features that lead to their

widespread application as well as some of their failures in calculating properties of atomic

and molecular systems are discussed. These ab initio methods are employed for calculating

energy splitting of DBP−s with different configurations and a variety of DB-pair separations.

The results of these ab initio calculations are reported mainly in chapter 5.

3.1 Experimental tools for characterization of DBP− coherent dynamics

3.1.1 Frequency-mode atomic force microscope

Atomic force microscope is a very high-resolution nanotool which can achieve single-electron

sensitivity [46, 49]. Recently, it has been used for detecting the electronic properties of

individual and coupled quantum dots in contact with a reservoir [103, 104]. In the frequency-

mode atomic force microscope, the AFM cantilever behaves as a simple harmonic oscillator
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along the coordinate axis z perpendicular to the sample surface. The tip is driven by an

externally controlled force F0 sinω0t, with F0 being constant. When scanning a sample, the

AFM tip experiences distance-dependent forces Fz (z) from its interaction with the sample.

In the limit of small oscillation amplitudes and small force gradients, the equation of

motion for the AFM tip around its equilibrium position (chosen as the origin of the z-axis,

at a height z0 from the surface) is [105]

mz̈ + γż +mω2
0z = F0 sinω0t+ Fz (z) , (3.1)

where γ is the AFM damping factor, m the mass of the probe and k = mω2
0 the AFM probe

spring constant.

In the same limit of small oscillation amplitudes (a few Å is anticipated), we can use a

truncated Taylor expansion

Fz (z) � Fz (0) + z
∂Fz

∂z

����
z=0

, (3.2)

with a resultant equation of motion for the tip,

mz̈ + γż +mω2z � F0 sinω0t+ Fz (0) , (3.3)

describing driven oscillations with a modified resonant frequency depending on the lateral

tip position

ω2 = ω2
0 −

1

m

∂Fz

∂z

����
z=0

. (3.4)

The right-hand side of Eq. (3.3) is a constant in space so the tip-sample force is detected

by measuring the frequency response of the tip according to (3.4). Employing the binomial

expansion on Eq. (3.4) yields the modified frequency expression

∆ω := ω − ω0 � −ω0

2k

∂Fz

∂z

����
z0

(3.5)

showing the proportionality between the frequency shift and the local force gradient.
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Note that far from the limit of small amplitudes one can still approximate the AFM

motion from the above equation, but instead of the force gradient at the equilibrium position,

one should use an average force gradient over an entire oscillation range [zmin, zmax], i.e.

∆ω � − ω0

2k (zmin − zmax)

zmax�

zmin

∂Fz

∂z
dz. (3.6)

The experimental goal is then to measure these changes in the tip oscillation frequency

thereby revealing information about the sample.

From Eq. (6.18), we see that the ratio ω0/k gives the sensitivity of the cantilever, which

in practice depends on the build geometry and material of the cantilever. Typical examples

are silicon cantilevers with a sensitivity factor ω0/k = 4000 Hz m/N, and the qPlus tuning

fork with ω0/k = 20 Hz m/N [50, 106, 107]. However, when choosing a cantilever for a

given experiment, the sensitivity is not the only factor to consider, as scan stability (e.g.

against jump-to-contact), quality factor, measurement bandwidth, and appropriate size of

oscillation amplitudes also play important roles.

The minimum detectable signal of an AFM experimental setup is determined by assessing

its frequency noise δ (∆ω), i.e. the standard deviation of the frequency shift. Theoretically,

δ (∆ω) is given by [108, 109]

δ (∆ω) =
2π

A

�
ω0BkBT

2π2kQ
+

n2
qB

3

π2
+

n2
qB

2Q2
, (3.7)

where Q is the quality factor, A is the oscillation amplitude, B is the measurement band-

width, kBT is the thermal energy, and nq is the deflection noise density. The first term on

the right-hand side of Eq. (3.7) is the thermal noise of the AFM tip, the second term is the

deflection-detector noise, and the third term is the noise of the instrumental setup. Thus, one

should choose the experimental parameters such that the sensitivity and the signal-to-noise

ratio of the AFM setup are optimized.
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3.1.2 Scanning tunneling microscope

Scanning tunneling microscope (STM) is a tool capable of imaging conductive materials,

such as metals and semiconductors, at the atomic level. It works based on current tunneling

between a sharp conductive tip and the surface of the sample of interest. Most of the current

is carried by the atom of the tip that is closest to the surface, which is the reason for STM

atomic precision. The lateral resolution of STM is typically ≈ 0.1 nm and its depth resolution

is ≈ 0.01nm [110]. With this resolution, STM is also capable of manipulating individual

atoms or molecules on the surfaces and directing them to predetermined positions.

In scanning tunneling microscope, a sharp tip is held a few Ångstroms away from a

sample. A small bias voltage is applied between the tip and the sample which results in

tunneling current. The STM tip is typically made from tungsten and is mounted on a

piezoelectric-crystal tube that allows positioning of the STM tip with subatomic precision in

all three spatial directions [50]. Electronic properties of the sample of interest can be studied,

by measuring the changes in current, bias voltage, the tip-surface separation distance, or the

derivative of one with respect to the other.

The STM tip-sample tunneling current is given by [111]

It(z) = I0 exp (−2ktz) (3.8)

where I0 is a function of the applied bias and a function of the density of states in both

the tip and the sample. kt =
�

2mΦt/� where Φt is the average workfunction of the tip

and the sample. The potential-barrier height between the tip and the sample is roughly

approximated by the average workfunction of the sample and the tip. Since the tunneling

current is exponentially proportional to the tip-sample distance, the current drops by an

order of magnitude if z is displaced by 1 Å. The typical current in STM is in the order of

It ≈ 100 pA [50]

Scanning tunneling microscope can operate in constant current mode and constant height

mode. In the former, while the current is kept constant, the tip’s height changes as the tip
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scans through the surface; thus the resultant image is from the tip topography of the sample

and the image is showing the charge density of the surface of the sample. In the latter, the

height and the voltage of the tip are both kept constant and thus the current varies as the

tip is swept through the surface [111]. The scanning is much faster in the height mode than

in the current mode, as the piezoelectric-scanning tube needs more time to adjust with the

height change than with the current change [112].

In addition to topographic (real-space) imaging, STM can be used for spectroscopic

purposes to obtain information about the electronic structure of the density of state in a

chosen sample. For instance, the electronic structure at a desired location on a sample can

be obtained by sweeping voltage and measuring current at that location [110].

The noise in the STM current measurement is related to the STM vertical noise δz. The

vertical noise is described by the root-mean-square deviation of the mean value and for STM

is given by

δz ≈
�

4kBTB/R

2kt|It|
(3.9)

where kB is the Boltzmann constant, B is the measurement bandwidth, T is the temperature

and R is the resistance in the feedback loop. For the STM imaging to work properly, the

vertical noise of the tip should be smaller than the atomic corrugation of the sample.

Besides the benefits, STM faces some challenges and limitations. For instance, appli-

cation of STM is limited to conductive materials and thin non-conductive films deposited

on conductive substrates, in order to allow current tunneling between the STM biased tip

and the sample. Also, the surface of the sample should be clean and stable. Furthermore,

although STM has atomic spatial resolution, its temporal resolution is typically on the order

of seconds. Therefore, STM is unable to image fast dynamics of the chemical processes on a

sample.
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3.1.3 Electric-field biasing and space-charge layer

The energy levels of a semiconductor can be altered by applying an external electric field.

The applied field can be due to a metallic contact to the semiconductor surface, or a probe

close to the surface, or even can be due to a charged surface state. A typical approach to

treat the electric field effect on a semiconductor is the use of band-bending diagram.

The band-bending diagram represents energy of a semiconductor’s band edges with re-

spect to the depth into the material. When applying a voltage bias to a semiconductor, its

conduction- and valence-band edges bend upward or downward depending on the sign of

the applied bias. The amount of bending is determined by the difference between the work

function of the bias gate and the semiconductor [113].

When a metallic bias electrode is brought close to a semiconductor or gets in contact with

it, due to the low concentration of free charges in the semiconductor as compared to the bias,

the free charges of the semiconductor get depleted or accumulated near the semiconductor

surface. The depletion or accumulation of the charge depends on the sign (i.e. positive or

negative) of the applied bias and results into a region called the space-charge layer [113]. In

this region, the semiconductor energy bands are bent due to the applied electric field or due

to the charge transfer caused by the field.

In the case where a metallic bias gate is in contact with a semiconductor, the free electrons

will flow between the metal and the semiconductor until their Fermi levels are aligned. An

example of nanoscale metallic contact is the titanium silicide (TiSi2) islands, which are

patterned by optical lithography on Si(100) and Si(111) surfaces [51, 114]. This metallic

contact causes upward band bending in the region surrounding the island. The band bending

was detected by the shift observed in I-V spectra of the STMmeasurement. Since the resulted

band bending leads to depletion of electrons in the region close to the island, TiSi2 contact

can be used for controlling and alternating the charging state of the DBs created on the

silicon surface. The depth and length of the depletion region can be varied by applying a
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voltage bias to these metallic islands.

Another way to alter the energy bands of a semiconductor is to bring an STM or AFM

tip close to the surface. When a voltage is applied between the STM/AFM tip and the

semiconductor, it generates an electric field between them which results in the band bending

of the semiconductor energy levels. Recently, it was experimentally shown that the charge

state of individual DBs is controlled by STM tip where the control relies on the tip-induced

band bending [70, 115]. Scanning tunneling microscope has not only been used as a tool to

apply a bias to a semiconductor, but also as a means to measure the semiconductor band

bending [113].

Negatively-charged dangling bonds can also lead to band bending and thus can play the

role of a bias gate. In an experiment, it was shown that a negative DB located close to a string

of identical molecules shifted their energy levels, while the amount of shift was a function

of each molecule’s distance from the DB [25, 116]. Due to their atomic size, dangling bonds

have the potential for electrostatically addressing atomic structures that are too small to be

addressed by any conventional biasing tools. It was recently proposed to use DB ultra-fine

wires extended from TiSi2 contacts for precise control of atomic structures [25].

3.1.4 Mid-infrared field

Mid-infrared (MIR) sources have a wide range of varieties [117]. They have wavelengths

ranging from ≈ 3 − 30 µm (i.e. 300–3000 cm−1 / 0.4–0.04 eV / 10–100 THz). Mid-infrared

sources cover the vibrational transition of many molecules and species and have a wide

application in science, such as spectroscopy, chemical and bimolecular sensing, and material

processing. Among tunable continuous wave (CW) mid-infrared sources, solid-state lasers

and CO2 lasers are the two examples of interest [118].

Semiconductor lasers and quantum-cascade lasers are two types of solid-state MIR sources.

Semiconductor lasers operate in a wavelength range of ≈ 3− 30 µm. The field can be tuned

anywhere between 100 cm−1 (for coarse tuning) to 1–2 cm−1 (for fine tuning). This type of
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MIR lasers operates with an output power in the range of 0.1 − 0.5 mW. Two drawbacks

of such lasers are: (1) large beam divergence and (2) the requirement for cryogenic cooling,

which imposes limitation on laser performance.

Quantum cascade lasers work based on inter sub-band transitions within a multiple-

quantum-well structure [117, 119]. This type of MIR source emits in wavelengths ranging

from 3–25 µm, but it can have single-frequency operation within the range of 4.3–24 µm, so

it can operate either in CW mode or pulsed mode. The linewidth of CW quantum cascade

lasers ranges from a few MHz to a few KHz, but for pulse operation it exceeds 150 MHz

(HWHM). Quantum cascade lasers have a fine tuning of 3 cm−1 and a coarse tuning of 35

cm−1 and can operate with a power within the range of 1–100 mW. Similar to the case of

semiconductor lasers, quantum cascade fields suffer from producing large amount of heat

and having a large beam divergence.

Another type of MIR source is the carbon-dioxide laser. The gas-type CO2 source has

a continuous-wave field and can generate light with a wavelength within the domain of

≈ 9− 11 µm. Carbon-dioxide lasers have the ability for fine tuning of 1 cm−1 (i.e. 30 GHz)

and operates with a power ranging from mW to hundreds of kW. Due to its wide range of

power, this type of MIR source has a wide application in research, industry and military.

3.2 Density-Functional Theory

An unperturbed multi-particle system such as a piece of Si crystal can be characterized by

solving its time-independent Schrödinger equation

Ĥψ (x1,x2, · · · ) = Eψ (x1,x2, · · · ) , (3.10)

where Ĥ is the Hamiltonian of the system and ψ (x1,x2, · · · ) is the wavefunction containing

information about the spatial and the spin coordinates of the particles in the system. For a

piece of Si crystal having M nuclei and N interacting electrons the Hamiltonian is composed

of the kinetic energy of the electrons T̂e and the nuclei T̂n, the attractive electron-nuclei
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potential energy V̂ne, and the repulsive electron-electron V̂ee and nucleus-nucleus interactions

V̂nn.

Assuming that the nuclei are spinless, the wavefunction depends on 4N + 3M variables,

which is a considerably large number. Therefore, solving the Schrödinger equation is a big

challenge as it requires a large amount of resources. The Schrödinger equation can be greatly

simplified using the Born-Oppenheimer approximation, which assumes that nuclei are fixed

in place as they are ≈ 1800 times heavier than electrons. Consequently, the nuclei kinetic

energy in the Hamiltonian can be set to zero and the nucleus repulsive potential is almost a

constant. Thus, the Hamiltonian reduces to the so-called electronic Hamiltonian, given by

Ĥelec =T̂e + V̂ee + V̂ne

=− �2
2me

N�

i=1

∇2
i +

1

2

N�

i,j=1

e2

|ri − rj|
−

N,M�

i=1,I=1

ZIe2

|ri −RI |
, (3.11)

where me is the electron mass and ZI is the atomic number. The number of variables is

reduced to 4N , however this number is still large enough to make solving the Schrödinger

equation impractical.

Density functional theory provides an alternative approach for solving the Schrödinger

equation. Density functional technique is a powerful technique that is built upon the

Hohenberg-Kohn theorem [43]. This theorem states that the dynamics of a multi-particle

system can be formulated in terms of its ground-state electron density rather than the coor-

dinates of its electrons. Based on this theorem, there is a one-to-one correspondence between

the potential energy of a system and its ground-state electron density.

As a result of this theorem, the value of any physical observable in a system is a unique

functional1 of the ground-state density of that system. This leads to a great simplification

of the problem, because electron density is a scalar quantity of the electrons’ coordinates.

Therefore, the Schrödinger equation associated with a multi-particle system will only depend

on three dimensions rather than depending on the coordinates of all the electrons in the

1Contrary to a function that maps a number to a number, a functional maps a function to a number.
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system as is the case for the wavefunction theory 2 Furthermore, electron density can be

measured by experiment, and with the knowledge of the ground-state density all the physical

properties of a system can, in principle, be obtained.

In order to have a better understanding of the Hohenberg-Kohn theorem, a closer look

at the Hamiltonian in Eq. (3.11) is required: the first and the second terms on the right

hand side of the equal sign are ‘universal’, meaning that they are the same for any system;

the third term is different from one system to another. Therefore, it is only the electron-

nuclei potential that characterizes the Hamiltonian, the eigenstates and any other physical

observables such as the ground-state electron density.

The mapping is invertible meaning that given the ground-state electron density, the

Hamiltonian and all the eigenstates and the expectation value of any operator, can be

uniquely determined. Therefore, by knowing the ground-state density of a system, everything

about that system, including the system ground-state energy, can be obtained.

In addition, Hohenberg and Kohn have a second theorem stating that for the ground-

state density n0(r), the functional E[n] (which is obtained by calculating the expectation

value of Ĥelec) takes on the value E0 [43]. The ground state energy is uniquely determined

by n0(r), therefore

E0 < E[n(r)] for n(r) �= n0(r), (3.12)

where

E[n(r)] = �ψ[n(r)]|T̂ + V̂ee|ψ[n(r)]�+
�

V̂ne(r)n(r)dr. (3.13)

Thus, based on the second Hohenberg-Kohn theorem we can find the ground-state energy of

a multi-particle system by varying the electron density to minimize the energy.

Later, Kohn and Sham provided a useful formalism for practically using these theo-

rems [120]. They suggested to use an auxiliary system with non-interacting electrons and

then find a potential for which both the auxiliary system and the system of interest (with

2From practical aspect, the DFT approach to a system with N number of correlated electrons scales as
N3 whereas in the standard wavefunction approach this scaling is N7.
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interacting electrons) have the same ground-state density.

Once this density is found, the ground-state energy of the desired system can be found.

The advantage of using a system with non-interacting electrons is that it makes solving the

Schrödinger much easier, because the wavefuntion as well as the electron density of such a

non-interacting system can be written in terms of the Slater determinant3 of single-particle

orbitals. In other words, in the Kohn-Sham (KS) system, the non-interacting electrons obey

the one-particle Schrödinger equation with an effective potential which should match with

the potential of the system with interacting electrons.

The Hamiltonian of a KS system is given by

Ĥs = T̂s + V̂s(r), (3.15)

where T̂s is the kinetic energy of non-interacting electrons given by − 1
2m

�N
i �φi|∇̂2|φi� and

V̂s(r) is the potential of the KS system. The ground state density of such system is given by

ns(r) =
N�

i=1

|φi(r)|2 (3.16)

where φi(r) are the lowest-lying single particle states or orbitals which satisfy

Ĥsφi(r) = �iφi(r). (3.17)

The KS potential V̂s(r) is related to the potential of the desired system by

V̂s(r) = V̂ne(r) + V̂H + V̂xc(r) (3.18)

where the first term is the electron-nuclei potential, the second term is the classical part of

V̂ee also known as Hartree potential given by

V̂H = e2
�

n(r�)

|r − r�|dr
�, (3.19)

3The Slater determinant is an antisymmetric product of N one-electron wave functions:

φSD =
1√
N !

det{χ1(r1) χ2(r2) · · · χN (rN )}, (3.14)

where χi(ri) are the diagonal elements. χi(ri)s are called spin orbitals, and are composed of a spatial orbital
plus one of the two spin functions, χ(ri) = φ(ri)σ(s) where σ = α,β. Spin functions are orthogonal and
spin orbitals are chosen to be orthogonal.
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and V̂xc(r) is the exchange-correlation (XC) potential and is given by

V̂xc(r) =
δÊxc[n]

δn
. (3.20)

The exchange part of the XC potential arises from the antisymmetry feature of the system’s

wavefuntion and the correlation part corresponds to the dynamic correlation in the motion

of the individual electrons. In other words, the exchange part corresponds to the same-spin

interactions and the correlation part is due to mixed-spin interactions.

The XC potential V̂xc(r) contains all the complex and nontrivial part of electron interac-

tions corresponding to their quantum behavior. There is no an exact formulation for V̂xc(r)

and we need to approximate it using physical arguments. So far, a variety of reasonably

good approximations have been developed [45]. Obviously, the quality of the DFT results

depends on the quality of the approximation used for the XC potential.

The KS potential V̂s(r) is a functional of the electron density. Thus, the KS equations

given in Eq. (3.17) should be solved self-consistently, which means that first we need to

assume an initial electron density, plug it in Eq. (3.18) and find the potential V̂s(r), then

solve the KS equations, Eq. (3.17), for the single-particle orbitals, and then use the result and

find the corresponding electron density ns(r) from Eq. (3.16). Next, we should substitute the

resultant electron density ns(r) into Eq. (3.18) to find a new V̂s(r). We need to repeat this

procedure untill no further changes occur to the electron density. The final electron density

not only satisfies the Schrödinger equation of the KS system, but it is also the correct electron

density of the desired system for that particular functional.

To summarize this section, DFT is a highly efficient technique for finding the ground state

properties of a system with interacting electrons. While being computationally cost-effective,

the accuracy of DFT calculations is usually comparable with traditional ab initio techniques.

Practically, DFT calculations are done by solving the KS equations for an auxiliary system

having non-interacting electrons; then finding the electron density of that system which is

the same as the one of the system of interest.
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In the following, two essential components for performing DFT calculations are discussed;

these components are called “functional” and “basis set”. Any pairing of these two com-

ponents is a uniquely defined and uniformly applicable “theoretical model”, also known as

“model chemistry”. Each model provides a unique approximation to the Schrödinger equa-

tion.

3.2.1 Functional

One of the key components that must be specified prior to performing a DFT calculation

is “functional” (also known as “method” or “level of theory”). Usually, DFT methods

are composed of an exchange functional paired with a correlation functional. Since the

introduction of DFT, a wide variety of functionals have been developed [121] where one

differs from the other by the type of the exchange and the correlation functionals that are

used for V̂xc(r). Generally speaking, there are two types of functionals, known as“pure”

functionals and “hybrid” functionals, some of which are briefly introduced in this section.

As mentioned earlier, the XC potential is usually approximated because it contains all

the complex interactions of the electrons in a multi-particle system. The simplest case of

approximation is to set the correlation part of V̂xc(r) to zero. As a result, electrons are

influenced by the exchange potential and a mean field potential consisting of the classical

Coulomb interaction. This approximation is called the Hartree-Fock theory, which is known

as the lowest ab initio quantum theory.

Kohn and Sham proposed the local density approximation (LDA) [120]. In the LDA,

one uses the knowledge of the exchange-correlation energy of the homogeneous electron

gas [122]. In general, the form of V̂xc(r) not only depends on local density, but also depends

on the density at all other points, and this dependence is usually unknown. In the LDA,

one assumes that the inhomogeneous density of a system varies slowly enough that the

exchange-correlation energy of that system is locally the same as that of a homogeneous

system.
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Local density approximation can be considered as the lowest-order term in the expansion

of the exchange-correlation potential with respect to the electron density. Local density

approximation is a very simple and reliable approximation for determining the structure of

many species, but it is less accurate for calculating binding energies and dealing with details

of the potential energy surface away from equilibrium geometries, such as transition states.

However, it can be improved by including the gradient of the density in the approximation.

The gradient-corrected approximation is known as the generalized gradient approximation

(GGA), and it shows a dramatic improvement in the accuracy of some of the calculations

over LDA, e.g. relative error of 3 to 7 percent for binding energies.

The functionals introduced above are “pure” functionals. These density functionals pro-

vide an approximation to both exchange and correlation parts of V̂xc(r). However, consid-

ering that the Hartree-Fock theory provides an exact exchange potential for a system, it

is possible to greatly improve the result of a computational method by mixing some pro-

portions of Hartree-Fock formalism with local- and non-local density exchange functionals.

This approach to build a functional was first introduced by Becke [123] and the resultant

was called “hybrid” functional.

One of the most commonly used “hybrid” functional in computational chemistry is the

three parameter functional B3LYP [124, 125, 126] given by

Exc
B3LYP = Exc

LDA + c0 (E
x
HF − Ex

LDA) + cx (E
x
GGA − Ex

LDA) + cc (E
c
GGA − Ec

LDA) (3.21)

where parameters c0 = 0.20, cx = 0.72, and cc = 0.81 are empirical constant values that are

determined by fitting this hybrid functional with atomization energies, ionization potentials,

and some other properties of the G1 molecule set [124]4. The parameter c0 allows combining

the exchange HF with the LDA exchange functional. These terms are corrected by Becke’s

gradient correction [128] to LDA which is scaled by parameter cx. Equation (3.21) also con-

tains the Lee-Yang-Parr (LYP) gradient-corrected correlation functional [126], Ec
GGA, with a

4G1 molecule set is a set of 55 molecules, representing a broad range of chemical environments, which is
used as a benchmark tool for gauging the accuracy of a given computational functional [127].
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correction provided by Vosko-Wilk-Nusair (VWN3) local correlation functional Ec
LDA [125].

The development of functionals continues to be updated. Nowadays, even more complex

functionals have been developed such as meta-hybrid GGAs [129]. Besides other factors,

meta-hybrid GGAs have explicit dependence on the kinetic energy of the density of the

system, as well. However, they are not introduced here, as they are out of the scope of this

work.

3.2.2 Basis set

A“basis set” is the second key component that must be specified for a DFT calculation. A

basis set is the mathematical description of molecular orbitals (MOs) in a multi-atomic sys-

tem. Based on the molecular orbital theory [130], the electronic wavefunction of a system ψ

and its electron density can be decomposed into a combination of normalized and orthogonal

set of molecular orbitals φi
5. Molecular orbitals are themselves composed of a set of basis

functions χµ. These basis functions are usually centered on the atomic nuclei, thus bearing

some similarities to atomic orbitals, such as s, p, and d.

Similar to the case of functionals, nowadays a wide range of predefined basis sets are

available that are categorized based on the number and the type of basis functions that they

contain. A basis set assigns a group of basis functions to each atom within a system, and then

the molecular orbital of the system is approximated, accordingly. In the Gaussian program,

basis functions are built from linear combination of gaussian-type “primitive” functions that

have general form of

g(α, r) = cxnymzle−αr2 , (3.22)

where α is determining the spatial extent of the function, and r is the spatial vector composed

of x, y, and z components and c is the normalization factor so that g(α, r) is normalized

5To include the electron spin in ψ, each molecular orbital is multiplied by a spin function. The product
of a molecular orbital and a spin function is called ‘spin orbital’. The wavefunction of a system is then
built by the determinant of spin orbitals where each row represent possible assignments of electron i to all
spin-orbital combinations.
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over all space. Therefore, the basis functions are given by

χµ =
�

p

dµpgp (3.23)

where dµp represents constants within a given basis set. Consequently, the molecular orbitals

are given by

φi =
N�

µ=1

ciµχµ, (3.24)

where ciµ are the molecular expansion coefficients.

As an example of interest, the basis set 6-31G(d) assigns six Gaussian primitives to the

core atomic orbitals of the atoms of a system of interest; it assigns two sets of basis functions

to the valence orbitals, the first one comprising three Gaussian primitives and the second

one made of only one Gaussian primitive. Also, this basis set assigns d-type polarization

functions to the atoms of the desired system.

Positions of electrons in a system can only be determined probabilistically; thus the larger

the basis set, the more accurate is the approximation of molecular orbitals (MOs). However,

larger basis sets come at the price of higher computational costs. Therefore, the choice of

basis set should be made carefully.

3.3 Selection and limitations on chosen model chemistry

Density functional theory has become a standard tool to deal with problems such as evalu-

ating molecular properties and chemical reactions. Nowadays, a lot of collaborative exper-

imental and theoretical work have been produced in which DFT is used as the theory of

choice [44, 131]. However, due to the large number of proposed density functionals [45, 121]

and basis sets [44], certain amount of care is required for choosing an appropriate and cost-

effective level of theory to solve any specific problem. For instance, a feasible level of theory

for a large system, e.g. a piece of crystal, is the one that can balance between the size of

the cluster (or the periodic slab) used for modeling the system and the size of the basis set
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and the XC functional employed to assess the desired properties or the chemical reactions

in that system.

In the DFT approach, one way to deal with a large-size system is to model it by a clus-

ter [132]. The size of the cluster plays an important role in the accuracy of the calculations.

For instance, when studying chemical reactions on the surface of a cluster, the finite size of

the cluster’s surface introduces error in the computed energies and reformed structure of the

surface (caused by the chemical reactions). Different studies have been performed in assess-

ing the cluster-size effect on the DFT calculations of different systems [54, 133, 134, 135].

These studies demonstrate that despite the chemical models employed in the calculations,

the calculated results show convergence with respect to the cluster-size increment and the

converged results become more comparable to the results found in a relevant experiment.

Finite-size basis sets suffer from two common problems known as basis-set incompleteness

error (BSIE) and basis-set superposition error (BSSE) [136]. A basis set is complete if it

has an infinite number of basis functions. A finite-size basis set imposes restrictions on

the position of electrons in the system of interest, which leads to BSIE error in the desired

calculations. In the case of BSSE, the basis set associated with each atom of the cluster

model overlaps with the basis set of the neighboring atoms, thereby they compensate the

incompleteness of each other. This “borrowing” feature effectively increases the size of the

basis set used in a computation, which in turn would influence calculations such as energy

and structural properties. Different methods have been proposed to eliminate this type of

error [137, 138]. However, in the cases where a small basis set is applied to a large cluster,

basis-set superposition helps to improve the results of a desired computation while keeping

the computational costs at a reasonable level. Thus, a small basis set should be sufficient

for evaluating properties in large-size systems [54, 132].

For clusters made of hundreds of heavy atoms B3LYP/6-31G(d) is the recommended

chemical model [44, 131, 139]. Among the XC functionals, the hybrid functional B3LYP has
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been (and still is) popularly used in computational chemistry [140]. Due to the extensive use

of B3LYP in different studies, a large set of databases have been developed for evaluation of

this functional [44, 131].

In some case studies (such as dealing with relative energies in a system) B3LYP pro-

vides reasonably good results comparable with those obtained from experiments and/or

higher-level theories [44, 135, 141]. There are also cases where B3LYP fails to predict prop-

erly [136, 140, 141, 142]; a few examples are: underestimation of reaction barrier heights,

failure to give reliable energy ordering of isomers, and underestimation of energy bandgap

in semiconductors and insulators. However, new methods have been proposed recently to

correct and extend the reliability and applicability of B3LYP [140].

Similar to any other choice of model chemistry, performance of B3LYP/6-31G(d) in

predicting the properties of a system strongly depends on the chemical nature of that sys-

tem [132]. However, different studies show that this specific model chemistry is a reliable

model when dealing with medium- to large-size systems as it is computationally less expen-

sive than other high-level ab initio models, and usually provides fairly good results with

reasonable accuracy [136, 139, 54]. Nevertheless, for a system of choice, even if this DFT

model chemistry performs poorly, it may still provide valuable qualitative insights and help

in establishing a “big picture” of the property that is being pursued for that system.

An alternative approach for modeling a large-size system is the use of a periodic slab.

In the slab modeling calculations are performed using planewave expansion and pseudopo-

tentials. However, for systems that are hosting extra charges, this approach does not work

properly, because replication of the unit cell for making the slab of interest causes duplica-

tion of the charge in the system, therefore leading to incorrectly calculated results. Also, a

comparative study between the use of these two approaches for modeling a Si(100) crystal

shows a lack of any convincing evidence that the results from slab models are better than

those from cluster models [132]. Therefore, it is more appropriate to employ cluster modeling
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to deal with Si systems that contain extra charges to avoid wrong results.

3.4 Time-dependent density-functional theory

Time-dependent density-functional theory (TDDFT) is a reformulation of time-dependent

quantum mechanics in which the fundamental variable is the electron density of a system

rather than its wavefunction [45]. This theory is used to investigate the dynamics and

properties of multi-particle systems at the presence of a time-dependent potential caused,

for example, by an electric field or a magnetic field. The TDDFT is popularly used in

calculating the excitation energies of multi-particle systems, because it is shown that the

density response function to a potential change has poles in the exact location of the excited

states of a system and thus gives the exact excitation energies of that system.

The conceptual and computational foundation behind TDDFT is analogous to the one

for DFT. Time-dependent DFT is conceptually built based on the Runge-Gross (RG) the-

orem [143], which is the time-dependent analogue of the Hohenberg-Kohn theorem. The

RG theorem states that in a time-dependent multi-particle system, there is a one-to-one

correspondence between the external potential Vext(r, t) and the electron density n(r, t) of

the system, but this functional relationship depends on the choice of the initial state ψ0(r, t)

of the system [143].

The RG theorem conceptually implies that if one knows the density of a system then the

external potential that produces this density can uniquely be determined. Once the potential

is specified, one can solve the time-dependent Schrödinger equation of the system and find

all other properties of that system. However, to obtain this information knowing the initial

state of the system is also required.

To establish a computational formalism for TDDFT, one should consider a fictitious

non-interacting system (known as the Kohn-Sham system) subjected to an effective external

potential Vs [n] (r, t) that causes the Kohn-Sham system to display the same density as the
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system of interest (having interacting electrons). The time-dependent Schrödinger equation

for the Kohn-Sham orbitals is

i�∂ϕi(r, t)

∂t
=

�
− �2
2m

∇̂2 + V̂s [n] (r, t)

�
ϕi(r, t). (3.25)

The density of the desired system can then be calculated from the Kohn-Sham orbitals using

n(r, t) =
N�

i

|ϕi(r, t)|2. (3.26)

The time-dependent Kohn-Sham potential is decomposed of three terms

V̂s [n] (r, t) = V̂xc [n] (r, t) + V̂ext [n] (r, t) + V̂H [n] (r, t). (3.27)

Similar to DFT calculations, the first term corresponding to the exchange-correlation poten-

tial is the only functional approximation used in TDDFT calculations.

In TDDFT calculations the aim is to find changes in the density of the system as a re-

sponse to the time-dependent external potential. Suppose that for a system with interacting

electrons, up to some time t0, the external potential is the one provided by the nuclei of the

system, V0(r), and at t � t0 a small time-dependent perturbation V1(r, t) is applied to the

system. Applying a small potential guarantees that the ground state of the system is not

completely destroyed due to this potential, thus the system properties found by DFT can

be used to calculate the properties of its excited states. In this case, one can use the linear

response of the system, which can be obtained by expanding the density in a Taylor series

n(r, t) = n0(r) + n1(r, t) + · · · (3.28)

where the second term is a linear function of V1(r, t) and is given by

δn1(r, t) = χ(r, t; r�, t�)δV1(r
�, t�). (3.29)

χ(r, t; r�, t�) is the response function and it describes the amount of change in the density of

the system as a result of the change in the external potential.
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Similarly, we can consider the response function of the non-interacting KS system to

the external potential and then relate these two response functions together [45]. The KS

response function is a function of the exchange-correlation potential. The Fourier transform

of the system’s response function turns out to have poles at the exact excitation energies of

the interacting system. Thus, the linear response theory provides a practical way to calculate

the excitation energies of a system with interacting electrons.

3.5 Selection and limitations of TDDFT

One can find the highest occupied molecular orbital (HOMO) and the lowest unoccupied

molecular orbital (LUMO) of a system with the use of DFT. However whether these orbitals

correspond to the ground state and the first excited state of the system, respectively, is under

question. In fact the question is why should one employ TDDFT, when DFT is also able to

provide information about the excited state of the system? This concern can be addressed

by considering the cases where the system has only two energy levels such as H−
2 (which is

similar to the case of a DBP−).

In a two-level system containing three electrons (e.g. H−
2 ), the lower energy state

(i.e. called the ground state or the bonding orbital) is doubly occupied and the higher

energy state (called the first excited state or the antibonding orbital) is singly occupied by

an electron. Density functional theory calculates the energy corresponding to the highest

occupied molecular orbital (HOMO), which in this case is the single electron in the anti-

bonding orbital. Thus, DFT energy calculation of the antibonding orbital is associated with

the HOMO of the system.

On the other hand, time-dependent DFT (TDDFT) determines the electron density of

the ground state and the first excited state of the system, and calculates the transition

energy required to move an electron from the former state to the latter. For instance, in

the case of H−
2 , TDDFT enables estimating the energy required to move an electron from
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doubly occupied (bonding) to singly occupied (antibonding) molecular orbital (SOMO).

Thus, within the framework of the used model chemistry, TDDFT correctly addresses the

excited state and consequently gives a better estimation of the corresponding excitation

energy [144].

Time-dependent DFT has become a popular technique for dealing with electronic ex-

citation spectra, specially in medium- and large-size molecular systems [145, 146] due to

its relatively low computational cost. Especially for excitation states that are energetically

below the first ionization potential, TDDFT has shown remarkably accurate results with an

error range of 0.1− 0.5 eV as compared to the experimental data [133, 134].

Despite its high accuracy performance, since TDDFT employs XC functionals it suffers

from certain severe problems such as correctly calculating Rydberg states, excited states

involving significant charge transfer [147, 148], and excitation states in molecules with ex-

tended π-conjugation [142, 145, 146]. Perhaps the best way to check the reliability of TDDFT

(and also DFT) calculations is to compare the results with the ones of a relevant experiment

or with the results obtained from other choices of XC functionals. If the system is small

enough that wavefunction-based calculations are feasible, then this can be an alternative for

checking the reliability of the (TD) DFT calculated results.

3.6 Summary

To summarize, this chapter contains experimental tools and (TD) DFT techniques required

for investigating the level of coherence of DBP−s. For a multi-atomic system (e.g. the Si

structure of our interest) finding the exact solution to the Schrödinger equation is impossible

due to the limitation on the resources. Density-functional theory provides the best approach

by suggesting to use the electron density of the system as the variable rather than using the

electron and nuclear coordinates.

To solve the Schrödinger equation with this technique specifying a theoretical functional
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and a basis set is required. A wide variety of functionals and basis sets are available. Em-

ploying larger basis sets and better functionals improves the ability of the computational

model to approach the real results. However, this requires jobs running for longer times.

Therefore, in choosing the right basis set and functional for calculating a chemical cluster,

one should try to balance between accuracy of the result and the computational cost.
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Chapter 4

Dangling-Bond Charge Qubit on a Silicon Surface

In this chapter, we propose a coupled dangling-bond pair (DBP−) positioned on Si(100)–2×1

surface as a potential candidate for a charge qubit. A first-order analysis of the coherent

dynamics of such a system shows that its extremely high tunneling rate greatly exceeds the

expected decoherence rates for a silicon-based system, thereby overcoming a critical obstacle

of the charge qubit for quantum computing. However, the fast dynamics of DBP− comes at

the price of requiring fast control and gating for quantum computation.

This chapter begins with a description of the formation of coupled dangling-bond pairs.

Also, for a particular DBP− configuration, its tunneling rate as a function of DB-pair sepa-

ration is analyzed in Sec. 4.1. Then, the effect of dominant sources of noise (i.e. electrodes

charge fluctuation and silicon-substrate phonon modes) on the dynamics of the DB system

is investigated and the resultant decoherence rates are estimated in Sec. 4.2. The quan-

tum dynamics of a large number of DBP−s in the frame of a new architecture for quantum

computing purposes is formulated in Sec. 4.3. In Sec. 4.4 we mention how these DBP−s

could find applicability in a quantum computing circuit. This chapter wraps up by briefly

summarizing the main objectives of this work.

The majority of the material in this chapter is taken from our collaborative work which

has been published in New Journal of Physics [2]. However, wherever required, new material

is added or existing material is shifted or eliminated to keep the chapter fluent. Those parts

that are reproduced verbatim from our journal paper are listed in “Materials reproduced

from my published paper”. As part of this collaboration, I designed a new architecture for

quantum computing with any number of DBP−s and determined the Hamiltonian that de-

scribes the quantum dynamics associated with this architecture. More specifically, I showed
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the Hamiltonian assoicated with a bias-controlled DBP− as well as the Hamiltonian incor-

porated with two DBP−s having Coulombic interactions. These two specific Hamiltonians

describe the quantum dynamics leading to single-qubit and two-qubit gates required for

quantum computation.

The result of my calculations is reported in Sections 4.3 and 4.4. The result on deco-

herence analysis, which is reported in Sec. 4.2, is developed by our collaborators but it is

included in this chapter because it is an essential part of our analysis on DBP− coherent

dynamics. However, I understand the concept of this section as it is part of the DBP−

characterization.

4.1 Dangling-bond pairs as charge qubits

Structural and electrical properties of dangling bonds are described in Sec. 2.3. A neutral DB

hosts a bound electron within the Si 1.1 eV bulk band gap. The itinerant electrons available

in a doped semiconductor can provide a second electron of opposite spin to the DB, thus

rendering it a DB−. If two DB−s are sufficiently close together (≤ 16 Å), Coulombic repulsion

ensures that a doubly-charged DB−-DB− pair cannot form [1]. Hence, a closely-spaced DB

pair (DBP−) shares one extra electron tunneling between the two centers, suggesting its use

as a charge qubit. Tunnel-coupled DBs, as shown in Fig. 4.1(a), have been created on a H–

Si(100)–2×1 surface by using a scanning tunneling microscope (STM) tip to remove H atoms

at selected sites [1]. A brief background information on STM can be found in Subsec. 3.1.2.

Separation between the two DBs forming a pair has a strict lower bound of 3.84 Å as de-

termined by the lattice spacing of the Si(100) surface, whereas the upper bound for enabling

a qubit is given by a separation of about 16 Å. Distinct pairs are created farther apart than

this limit to avoid inter-pair tunnel coupling. Here, we claim that coupled dangling-bond

pairs (DBP−) exhibit coherent quantum dynamics and can serve as good charge qubits.

The localized nature of the DB wavefunction and its energy level in the band gap allows
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Figure 4.1: (a) Variably spaced qubits in an atom-resolved STM image (46 Å×46 Å, 2 V,
0.2 nA) created from pairs of DBs on a H–Si(100)–2×1 surface, separated by 15.36 Å (qubit
A) and 7.68 Å (qubit B). Dangling bonds appear as bright protrusions in the gray scale image.
A schematic (left) shows the position of DBs (red and green circles) on the Si surface. Black
dashes represent silicon dimers. (b) A DB-DB− pair modeled as double-well potential, with
the extra electron at the left well immediately after initialization to |0�. (c) Relaxed ground
state of the DB electrons after lattice relaxation has completed. [reproduced from ref. [2],
Fig. 1]

us to formulate an electron-confinement model corresponding to a potential well accounting

for the effect of the environment. Such a potential-well description must render the correct

eigenstate energy and orbital size, and must allow for electron excitation into the bulk

conduction band of the crystal. In a highly-doped n-type crystal, a high Fermi level of the

crystal allows an extra electron to be localized at a DB, rendering the DB site negatively

charged. Similarly, if the crystal is p-type, the DB can lose all its electrons thereby becoming

positively charged.

In Figures 4.1(b) and (c), we depict a DB pair as an effective double-well potential

with (b) an excess electron at the left well immediately after release from a biasing external

field, as required for qubit initialization, and (c) after complete lattice equilibration when the

potential landscape becomes symmetrical. Due to the localized extra charge, the double-well

in case (b) does not exhibit the symmetry of case (c), and the DB energy is shifted upward

at the left site. Consequently, during lattice relaxation, the coherent oscillation between the
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two DBs takes place between two wells of slightly different shapes, resulting in a periodic

oscillation that is biased towards the ‘left’ (excess electron spends more time on the left than

on the ‘right’). Slow relaxation of the lattice will modify the electron oscillation and cause

weak decoherence.

We calculate tunneling rates of a DBP− for various separations using two different meth-

ods. Employing (time-dependent) density-functional theory ((TD) DFT) on cluster mod-

els [149], the energy splitting for DBP− separations of 3.84 Å and 7.68 Å is determined to

be 307.7 meV and 87.8 meV, respectively. These values correspond to tunneling rates of

4.67×1014s−1 and 1.33×1014s−1, respectively. For these calculations, we assumed that the

two DBs are located on the same-side Si dimers of one dimer row, and are separated by one

or two dimer spacing resulting to the DBP− separations given above; see Fig. 4.1(a).

For larger separations, the size of Si-cluster model becomes expensive for this type of com-

putation. Thus, for the purpose of this chapter, we use a simpler approximations, namely the

Wentzel-Kramers-Brillouin (WKB) method (see Sec. 2.7 for a description on this method).

In Ch. 5, we evaluate the energy splitting of DBP−s with larger separations and differ-

ent configurations using (TD) DFT techniques. We use these ab initio methods, despite

their computational costs, to investigate the effect of anisotropic structure of H-terminated

Si(100)–2×1 surface on DBP− energy splitting.

The Log-line plot in Fig. 4.2 shows the result of our calculations. Vertical axis represents

the DB excess-charge tunneling rate while the horizontal axis shows the DB-pair separation.

The first two points, shown by circles, are the results of ab initio (TD) DFT calculation and

the rest of the points are found by WKB approximation. As expected, the DBP− tunneling

rate strongly depends on DB-pair separation and decreases exponentially by increasing the

separation. Achieving the extremely high tunneling rate is the result of the atomic-size DBs

and the capability of creating them very close to each other.
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Figure 4.2: Bare tunneling rates of the excess electron in a DBP− by time-dependent den-
sity-functional theory (black circles) and the WKB method (black squares) versus DBP−

separation d. The red line depicts the calculated decoherence rate due to longitudinal-acous-
tical (LA) phonons. The vertical blue dotted line indicates (to its left) the region in which
the two DBs are tunnel coupled. [reproduced from ref. [2], Fig. 3]

4.2 Decoherence analysis for DB-pair qubit systems

For a DBP− on a hydrogen-terminated Si(100) surface, we treat the decoherence mechanism

due to various interactions with the environment using the spin-boson model1 (see Sec. 2.6 for

more detail on this model). Based on earlier studies on silicon systems [13, 40], we estimate

that the main sources of decoherence for our system are: (i) the voltage fluctuations on the

gate electrodes, and (ii) the interaction between the qubit electron and phonons in silicon

bulk and at the surface. In the following, we analyze these two cases in detail.

1The material in this section was developed by co-author Lucian Livadaru
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4.2.1 Decoherence due to Johnson-Nyquist voltage fluctuations

Johnson-Nyquist noise is due to random thermal fluctuations of the charge carriers in a con-

ductor or semiconductor. For the purpose of calculating its effect on the coherent oscillations

in a DBP−, we employ the spin-boson model with the qubit being the two-level system and

the gate electrode being the bath. In order to obtain a reliable estimate of the decoherence

effect, we need to look at how the power spectrum of the bath compares to the bare tunneling

frequency of the qubit.

The Johnson noise stretches uniformly in the frequency range from zero up to about

1011-1013s−1. In particular, we can see that for a temperature Θ = 4 K the spectrum has

a cutoff frequency ωc = 5.2 × 1011s−1. As the bare tunneling frequency of our DBP− has

a value of ∆ ≈ 1014s−1 � ωc ≈ 1012s−1, we can safely regard the effect of the bath on the

qubit as being approximately adiabatic (i.e. changes in potential-energy experienced by a

DBP− excess electron due to fluctuations in the bath vary slowly in time compared to the

bare tunneling frequency of the DBP−).

To proceed, we assume ohmic dissipation (corresponding to s = 1 in Eq. (2.9) for the

bath spectral density function), so the spectral function in the spin-boson model has the

form

J(ω) = αJNω exp(−ω/ωc) (4.1)

for

αJN =
ηd

2π� (4.2)

a dimensionless dissipation/coupling function of the distance between the two charge cen-

ters d and viscosity coefficient η.

One of the simplifying features of the spin-boson Hamiltonian is that, in the limit of

weak qubit-bath coupling, the decoherence times T1 (describing population decay) and T2

(describing coherence decay) are equal to second order in the coupling [38], which allows

to characterize the system by a single decoherence rate Γ = 1/T1. In the adiabatic limit
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Figure 4.3: Sketch of the gating geometry for our proposed DBP− qubit on silicon surface.
DBs are indicated as red circles and are indexed L and R corresponding to their locations.
The electrodes (based on STM tips) are indicated in blue and have fixed potentials V1 and V2,
with V12 = V1 − V2. The radius of the electrode at the apex is a. [reproduced from ref. [2],
Fig. 2]

(∆ � ωc), and for the case when ωc � Γ (which can be verified a posteriori), the decoherence

rate for the DBP− can be determined according to [99, 100]

ΓJN =
1

2

√
π�∆2

1 + �∆2

ωcEr

exp(− Er
4kT )�

Er
kΘ

(4.3)

for Er the bath reorganization energy

Er = �
∞�

0

dω
G(ω)

ω
(4.4)

which can be calculated from Eq. (4.1) to yield

Er = 2αJN�ωc. (4.5)
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For a typical charge-qubit gating [13]

αJN =
e2β2Rg

4h
(4.6)

for Rg the resistance of the gate circuit, and

β =
δVLR

δV12
(4.7)

where δVLR is the potential difference between the two DB sites, δV12 represents the bias-

gate voltage fluctuation, and β is another dimensionless parameter that depends solely on the

system geometry. Here, parameter VLR the difference between the electrostatic potentials at

the L and R sites and V12 the difference between in the applied voltage on the two electrodes.

A simple approximation (but yielding good order-of-magnitude estimate) for the electro-

static problem (Fig. 4.3) yields

δVLR ≈
�
a

r1
− a

r2

�
(V1 − V2) (4.8)

whence we obtain

βJN ≈ a

�
1�

c2 + (a+ b)2
− 1�

(c+ d)2 + (a+ b)2

�
. (4.9)

Plugging in reasonable estimates for the parameters: a = b = c = 2 nm, d = 0.772 nm,

we find β = 0.036. Further, by assuming Rg = 50 Ω and using Eq. (4.6) yields αJN =

6.364× 10−7.

Finally we can calculate the decoherence rate due to Johnson-Nyquist noise for a DBP−

charge-qubit implementation depicted in Fig. 4.3 with typical parameters∆ = 1.33×1014 s−1,

ωc = 1.31× 1011 s−1 (Θ= 1 K). From Eq. (4.3) we obtain

ΓJN = 1.30× 108 s−1, (4.10)

which is much less than ωc, thereby showing that our approximations are consistent. Note

that as the bare tunneling rate in a qubit increases, fluctuations in the tunneling splitting
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can play an important role in the coupling with the environment. The spin-boson model can

only accommodate such system as far as the tunneling rate is much less than the classical

oscillation frequency ω0 corresponding to electron confinement in an isolated DB.

As the confinement energy in a DB is about 0.6 eV, this condition is generally fulfilled

for all qubit configurations, with the exception of the qubit with a separation of 3.84 Å.

Therefore, we must bear in mind that, in this limit, the accuracy of the spin-boson model may

be unreliable. Nonetheless, the decoherence for all other DB separations can be accurately

treated by this model because the corresponding tunnel-splitting energy is much less than

the binding energy 0.6 eV. Therefore, we claim that decoherence rate of our DB system due

to charge fluctuation is much smaller than the DBP− bare tunneling frequency, which is a

favorable fact for implementing reliable quantum gates.

4.2.2 Decoherence due to electron-phonon interaction

Previous studies on electron-phonon scattering in reduced-dimension systems have found

that, for zero-dimensional systems, such as quantum dots, the scattering rates are smaller

by at least an order of magnitude than in one- and two-dimensional systems [150]. This is

due to the fact that, for a given initial state of the electron, the number of final states is

greatly reduced in the zero-dimensional case. For our system, if the DBP− excess charge is

in the antibonding state (also known as the first excited state), only the bonding (ground)

state is lower in energy, thereby drastically reducing coupling to phonons.

Nonetheless, for our system, the interaction between electrons and phonons can be a

serious source of decoherence, and we anticipate that in our system as it dominates all other

forms. From previous experimental and theoretical studies [151] on phonons in the Si(100)

crystal, we know that the phonon spectrum can extend up to about 70 meV, corresponding

to a frequency of 1.06× 1014s−1. This rate is comparable to the bare tunneling frequency of

our DB system, which means that the adiabatic approximation used in the previous section

fails.
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A different approach is required and, as in previous theoretical analyses of the electron-

phonon interaction, we calculate the rates of electron-phonon scattering within the frame of

the first-order perturbation theory via the Fermi golden rule given by [150]

Γe-ph =
2π

�
�

f,q

α2(q)
���ψf |e±iq·r|ψi

���2 × δ(Ef − Ei ∓ Eq)

�
nB(Eq,Θ) +

1

2
∓ 1

2

�
(4.11)

for i and f indicating the initial and final electronic states, q the phonon wavevector and q =

|q|, Eq the phonon energy, α(q) a coupling function, nB is the Bose occupation distribution,

and upper/lower signs corresponds to absorption/emission of a phonon by the system of

interest, i.e. the DBP− in our case.

Below, we quantify the coupling of the DBP− excess charge with the longitudinal-acoustic

(LA) phonons only (see Sec. 2.2 for more details on different types of phonons). The coupling

of the excess electron to the longitudinal-optical (LO) phonons is also possible. However,

optical phonons have a more discrete-like energy spectrum (set of distinct spectral lines), and

this fact prevents any first-order coupling to electrons, unless the energy matching condition

�ωLO = Ef − Ei (4.12)

is fulfilled. Condition (4.12) can be avoided in our system by judiciously choosing the inter-

dot distance and the amplitude of the applied bias.

If the coupling is given via a deformation potential, D, then the coupling function above

can be shown to be

α2(q) =
D2

2ρc2sΩ
�c2sq (4.13)

where c2s is the longitudinal sound velocity, ρ is the density, and Ω is a normalization volume.

Piezoelectric coupling to acoustic phonons is also possible, but in general it is much weaker

(by an order of magnitude [150]) than the coupling via a deformation potential. After

appropriate manipulation, the expression for the scattering rate can be reduced to [152]

Γe-ph =
D2q3if
8π2�ρc2s

�
nB(Eq,Θ) +

1

2
∓ 1

2

� �
dΩq|

�
ψf |e±iq·r|ψi

�
|2 (4.14)
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where qif = Eif/�cs for Eif the energy difference between the i and f states and dΩq is the

solid angle element in q-space.

As in previous studies [13, 40] we assume that a DB can be modeled as a 1s hydrogen-like

orbital with a renormalized Bohr radius, aB, and we fit this parameter so that the tunnel

splitting of a DB pair derived from the hydrogen-like model reproduces the value predicted

by our ab initio calculations for a DB separation of 7.68 Å. Then it can be shown that the

rate of phonon emission is given by

Γe-ph =
64D2q3 sin2 θ

πρ�cs
nB(E,Θ) + 1

[(qaB)2 + 4]4

�
1− sin qd

qd

�
(4.15)

where θ = tan−1(�∆/ε), and ε is the applied bias on the qubit, and d is the dot separation.

Note that the results for Γe-ph are of the same order of magnitude for any other form of the

isolated dot wavefunction exhibiting exponential decay, as long as the decay rate is similar.

The decoherence rate due to electron interaction with LA phonons is plotted in Fig. 4.2

as a function of dot separation. Note that, for our DB system, the above rate Γe-ph is greater

than the decoherence rate due to Johnson noise in the electrodes, ΓJN, calculated in the

previous section. Thus we identify Γe-ph as the dominant decoherence rate. We note an

important fact for our DBP−: relaxation via this mode occurs over several nanoseconds

whereas the tunneling period for the DBP− with a few Å separation is close to 10 fs, which

enables many coherent qubit oscillations before decoherence sets in.

Other phonon modes both in bulk and at the surface [151] are less likely to couple to

electron tunneling due to their discrete-like energy spectrum. At least for DB separations of

3.84 Å and 7.68 Å, there are no phonon modes to match the tunnel splitting energy, as the

highest phonon energy is about 70 meV. A more detailed analysis of the qubit coupling to

the optical phonon modes is beyond the scope of this paper. Overall, we estimate that for

our closely spaced DBP−s, the excess-charge oscillations will take place over many periods

before the onset of critical decoherence, illustrating the advantage of closely spaced quantum

dots for charge qubit.
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4.3 Quantum dynamics for any number of DBP−s

Consider i number of DBs on the Si surface, and let Eos to be the on-site energy of an electron

in any DB site, and ηi be a site-dependent energy correction due to any local field effect (such

as the lattice deformation due to the excess electron, or the potential-well deformation due

to an external bias field). Also, suppose that electron tunneling between sites i and j is

given by Tij = �∆ij/2, where ∆ij is the electron tunneling rate and depends on DB pair

separation rij; and Ui and Wiσjσ� are the intra- and inter-DB Coulomb repulsion between

electrons, respectively. The subscripts σ and σ� represent the electron spin {↑, ↓} at sites i

and j, respectively. The above parameters are all incorporated into Hamiltonian Ĥ.

Furthermore, tunneling between DB sites can be controlled by modifying the inter-site

potential bias. For example two sites i and j can have a time-dependent potential difference

of Vij(t). For ĉi,σ (ĉ†i,σ) the annihilation (creation) operator for an electron with spin σ at

site i and n̂i,σ = ĉ†i,σ ĉi,σ the number operator for electrons of spin σ at site i, the potential

difference operator between sites i and j is

V̂ ≡ 1

2

�

i<j,σ

Vij(n̂i,σ − n̂j,σ). (4.16)

We now have all the terms required to express the Hamiltonian as an extended Hubbard

model [42]:

Ĥ =
�

i,σ

(Eos + ηi)n̂i,σ −
�

i<j
σ

Tij(ĉ
†
i,σ ĉj,σ + ĉ†j,σ ĉi,σ) +

�

i

Uin̂i,↑n̂i,↓ +
�

i<j,σ,σ�

Wiσjσ�n̂i,σn̂j,σ� + V̂ .

(4.17)

The Hamiltonian acts upon a Hilbert space that is spanned by zero, one, or two electrons

per each DB site. Considering the spin of electrons as well as their position, the Hilbert space

associated with the Hamiltonian is obtained by the tensor product of the Hilbert spaces Hp

for electrons position and Hs for their spin. Alternatively, the Hilbert space can be written

as a direct sum of H�, where � stands for the number of electrons associated with each sector

of the Hilbert space. For instance, for a pair of DBs, with the possibility of having zero up
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to maximum four electrons, the Hilbert space is given by

H = Hp ⊗ Hs = ⊕4
�=0H� = span {|εL↑, εL↓, εR↑, εR↓�} ,

where εiσ ∈ {0, 1} and
�

iσ εiσ = � ∈ {0, 1, 2, 3, 4}. Therefore, the Hilbert space for such a

system is composed of five sectors, and consequently the Hamiltonian describing a pair of

DBs has sixteen dimensions.

The above Hamiltonian describes the dynamics of any number of DBs in a quite gen-

eral layout. However, we are interested to develop a well-patterned architecture comprising

closely-spaced DB pairs, with each pair sharing one excess electron (DBP−), and relatively

large inter-DBP− separation so that Tij is non negligible only for intra-pair dynamics. How-

ever, the amount of separation is such that it allows DBP−s to have Coulombic interaction

with each other. Using Eq. (4.17), we derive the Hamiltonian that describes the dynamics

of such an architecture.

A coupled DB pair sharing an excess electron contains a total of three electrons; thus for

a DBP− we focus on � = 3 portion of the Hilbert space. In the � = 3 sector, the Hamiltonian

acts on a four-dimensional Hilbert space spanned by

H3 = {|1, 1, 1, 0� , |1, 1, 0, 1� , |1, 0, 1, 1� , |0, 1, 1, 1�} .

In position representation this basis set is equivalent to {|L ↑� , |L ↓� , |R ↑� , |R ↓�}, where L

and R stands for the ‘left’ and ‘right’ DBs in the DBP−, respectively. The spin is unimportant

provided that interactions are spin independent.

In our system of interest, we assume that the electron spin is preserved as the DBP−

spin coupling with surrounding environment is believed to be small and negligible [1]. Con-

sequently, the DBP− dynamics can be modeled by a two-level system and the correspond-

ing four-dimensional Hamiltonian can be written as a direct sum of two identical (two-

dimensional) Hamiltonians, each corresponding to one of the spins. Considering the ‘left’

(L) state |0� and the ‘right’ (R) state |1� to form a basis for the Hamiltonian and using
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Eq. (4.17), the Hamiltonian for a DBP− influenced by an applied bias is derived to be

ĤDBP−(t) = (3Eos + 3η + U0 + 2W0) + TX̂ +
1

2
∆V (t)Ẑ, (4.18)

with U0 and W0 on-site and inter-site Coulombic interaction within the DBP−. Also, =

|0� �0| + |1� �1| is the identity operator, and X̂ and Ẑ are the Pauli operators given by

X̂ = |0� �1|+ |1� �0| and Ẑ = |0� �0|− |1� �1|.

Generalizing the above result, the Hamiltonian describing N number of DBP−s is now

expressed as an operator-sum that acts on and between DBP−s:

Ĥ(t) =

�
N (3Eos + 3η + U0 + 2W0) +

9

2

N�

ı<

W+
ı

�
(4.19)

+
N�

ı=1

�
TX̂ı +

1

2
∆Vı(t)Ẑı +

1

2

�

<ı

W−
ı Ẑı ⊗ Ẑ

�
,

where parameters ı and  denote DBP− sites, ∆Vı(t) denotes the time-dependent potential

biasing, and T is the intra-qubit tunnel splitting energy. The inter-DBP− Coulombic re-

pulsion is shown by Wı, where W±
ı = W s

ı ±W c
ı and W s

ı (W
c
ı) is the inter-site Coulombic

interaction between the same (cross) sites of two DBP−s. Also, we assume that intra-DBP−

separation is constant. We emphasize that although the above Hamiltonian is derived for

a system of DBP−, it holds generally for any similar systems, such as those semiconductor

systems made with any type of double-quantum-dot charge qubits.

The Hamiltonian given in Eq. (4.19) generates the unitary evolution of a system of

DBP−s, and thus it is responsible for the coherent dynamics of the system. However, this is

true only if the system is completely isolated and it is not interacting with its surrounding

environment. Coupling with the environment causes relative drift in the evolution of the

system dynamics leading to its decoherence for which the above approach does not hold

anymore.
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4.4 Applications to quantum computation

For our DBP− to be an effective charge qubit for quantum computation, it should satisfy at

least DiVincenzo’s five criteria [74] (see Sec. 2.4 for the criteria). We already discussed and

estimated the tunneling rate and decoherence rates of the DBP− as two of these criteria. In

this section we discuss the rest of the DiVincenzo’s criteria briefly, as complete fulfillment of

the criteria is beyond the scope of our work.

Initialization of the DBP− in the |0� state is performed by applying an electrostatic

potential ∆Vı(t) so that the left DB is lower in energy thus attracting the pair’s excess

electron [13]. The electrostatic potential can be applied by means of an electronic gate such

as an AFM or STM tip, or even a negatively-charged DB; see Sec. 3.1.3 for more details on

biasing.

The amount of biasing should be large enough to dominate charge fluctuations in the

electric gate. When initialization is complete, the electrostatic bias is eliminated, and tun-

neling between the two DBs commences. A lattice deformation due to charge localization is

present during subsequent tunneling, but it is expected to relax at a much lower rate than

∆ (by a few orders of magnitude), hence having a small decoherence effect.

In an experiment, application of a static potential (by a nearby negatively charged DB)

has shown DBP− polarization to be achievable [1]. In the same experiment, steps towards

DBP− readout were achieved by STM detection of the excess charge preferentially localized

at one site in the DBP−. This experiment thus shows that both state preparation on one

side and readout of |0� vs |1� state is in principle feasible.

The Hamiltonian H(t), Eq. (4.19), enables a universal set of gates [153]. A single-

qubit gate can be implemented by varying the DBP− tunneling rate by tilting the potential

landscape by means of an applied bias then rapidly turning off the tilting. A second single-

qubit gate that does not commute with the first one can be implemented by controlling

an ancilla DBP− nearby to the DBP− of interest and letting the ancilla DBP− affect the
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evolution of the desired DBP− by Coulombic interaction. Similarly, for two-qubit gate

we allow the two DBP− of interest to interact via Coulombic interaction, thus becoming

entangled with each other. The time of interaction is determined by tilting one or two of

the DBP−s to control the position of the excess electron, or alternatively, by increasing the

potential barrier between them.

The applied bias should have a timescale comparable with the tunneling rate of the

DBP−s. Since DBP−s have fast dynamics, fast control is required for gate operations. Such

fast and spatially precise control is beyond the current capability of standard electronics,

but is in principle achievable by placing a suitable pattern of metallic nanowires near the

surface and irradiating them with laser pulses. The laser pulse generates an electromagnetic

discharge that biases the surface for a duration comparable to the duration of the pulse,

which could be as short as femtoseconds. The laser carrier frequency should be low enough

to avoid charging and discharging of DBs through excitation processes, thereby causing qubit

losses. Different gates could be effected by time-varying biases achieved by controlled laser

pulses.

Scalability of our surface DBP− quantum computing follows the same arguments as for

the other proposed cases, but of course better understanding of small-scale devices is required

to assess scalability to many-qubit devices. At this early stage, bearing in mind that many

implementation details are in need of development, possible computing schemes appear to be:

a four-rail flying qubit model analogous to the one for nuclear-spin qubits in bulk silicon [9],

or a one-way quantum computer [154] where the qubits are stationary.

4.5 Summary

In this chapter, we demonstrated that a closely-spaced coupled DB pair (DBP−) on the

Si(100) surface is a potential candidate for charge qubit, as it shows excellent coherent dy-

namics due to its extreme miniaturization to the atomic realm. The excellent coherence is
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a consequence of the fact that, based on our theoretical estimations, the tunneling rate is

extremely high due to atomic-scale proximity of DBs, whereas the major source of decoher-

ence scales weakly with DB-pair separation. However, we note that the scaling advantage

comes at the price of having to achieve rapid gating control and measurement.

Furthermore, we developed a quantum computing architecture with DBP− as its building

block. To describe the quantum dynamics of such an architecture, we employed the extended

Hubbard model and modified it in order to accommodate with our scheme of interest. The

importance of this architecture lies in the fact that not only does it work with DBP−s,

but it is also compatible with other types of other semiconductor charge qubits. However,

addressing all DiVincenzo’s criteria in detail for such architecture will of course require more

elaboration.

As the next step forward we believe that experimental characterization of the coherent

dynamics of DBP−s is of paramount importance, as it provides a way to test the theoretical

estimations provided in this chapter. Due to the fast dynamics of DBP−s, it is impossible

to directly characterize DBP− dynamics with conventional electronic tools. In Chap. 6,

we propose a scheme to address this issue and to indirectly characterize DBP−s coherent

dynamics.
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Chapter 5

Coherence of various DBP− configurations: ab initio

approach

In this chapter, we aim to develop a theory for characterizing energy splitting of coupled-

DB pairs (DBP−) for various DB-pair configurations and separations. We model the desired

system by a Si cluster with the hydrogen-terminated Si(100)–2×1 surface, where two DBs

are located on the surface and the DB-pair excess charge is provided by a P atom doped

within the cluster. Energy splitting is a consequence of covalent bonding between the two

DBs in a DBP−; thus weaker bonding leads to smaller splitting. We employ ab initio

density-functional theory (DFT) and time-dependent DFT techniques to calculate the energy

splitting between bonding and antibonding states of the DBP−.

Hydrogen-terminated Si(100)–2×1 is a well-patterned surface that has an anisotropic

structure. The surface structure puts a constraint on the places where the DBs can be

located. As a result, there is no continuous range of choice for DBs separation to explore

DB-pair coupling strength and the information we obtain for energy splitting is quantized due

to the structure of the surface. Coupled-DB pair can be used as the building block of more

complex systems, such as DB nanowires and DB quantum cellular automata. Also, DBP−

has the potential to be used as a charge qubit for quantum computing. Hence, learning about

the coherence of different DBP− configurations helps in better understanding the effect of

the surface structure on the construction of more complex systems on this surface.

As the cluster size, its edges, and the dopant position affect the calculated results, we

explore the impact of these effects to find reliable models to use. Based on the results, we

analyze the role of anisotropic structure of Si(100)–2×1 surface on the coherence of DBP−s.
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The chapter begins with Sec. 5.1 where we develop a cluster model for our system of

interest. This section contains computational details (such as approximations used and

limitations applied) about the clusters we built for modeling our desired system. In Sec. 5.2,

the structure of the dangling-bond orbital is analyzed, which helps to understand the results

presented in the following sections. In the next two sections, we develop an understanding

on the effect of cluster size and dopant position by studying the convergence properties of

the calculated results as a function of these factors. Any change in energy splitting less than

20% is considered as a good indicator of convergence.

In Sec. 5.3, we investigate the effect of cluster size and its surface edges on DBP−s energy

splitting. For each configuration, we use the minimum cluster size required to obtain reason-

ably reliable results while minimizing the computational-resources consumption. Similarly,

in Sec. 5.4, we study the effect of dopant placement within the cluster on the calculated

results. In Sec. 5.5, we test our results, presented in Sec. 5.4, by repeating the calculations

where the dopant is replaced by an excess charge in the cluster model. We succeed in de-

termining where the P atom should be placed within the cluster in order to behave like an

excess charge for the DBP−s. In Sec. 5.6, we analyze the effect of the Si-surface structure on

DBP− energy splitting. We learn that all DBP− configurations can be put in four different

groups, where each group has its unique behavior based on the arrangement of DBs. At the

end, we wrap up this chapter with a summary on the main points and concluding remarks.

5.1 Cluster modeling of the Si system

A piece of silicon crystal can be modeled by a cluster, where the cluster is made from a lattice

of a repeated cell. The cell is obtained by adequately replicating a cell of a section of Si

crystal in the directions perpendicular to its surface; thus it consists of a few layers of silicon

atoms. Repeated use of the cell leads to a cubic-shaped cluster; however for a Si cluster a

pyramidal shape is desired because the unsaturated bonds on the surface edges of the cluster
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should be fixed by hydrogen atoms for computational purposes, and the pyramid shape

helps for having the bonds appropriately terminated without having H atoms overlapping

each other. To shape the Si cluster to a pyramid, one can remove Si atoms such that the sides

of the cluster have a (111) reconstruction. This also reduces computational costs compared

to the cost associated with a cube of Si. Also, symmetrizing the cluster is another factor for

reducing the need for computational resources. Therefore, an upside down pyramidal cluster

is our desired model for a piece of Si crystal.

We use an energetically optimized cell, for which the structure was initially used for ana-

lyzing the change in the electronic properties of Si(100)–2×1 surface that was functionalized

with organic molecules [155]. This cell is made of thirty-two Si atoms put in sixteen layers.

The top layer has one Si-Si dimer where each Si is capped by a hydrogen (H); see Fig. 5.1.

Duplicating this cell, one obtains a Si cluster with the H-terminated Si(100)–2×1 surface.

The resultant Si cluster is structurally optimized using a DFT-based method. In this

process, all non-surface Si atoms are capped by hydrogens that are fixed in place and the

position of the other atoms are optimized under this condition. The non-surface H atoms

are fixed in order to simulate the bond connection to the rest of the Si atoms (in the crystal)

that are not explicitly included in the cluster model. This ensures that the Si atoms in the

cluster are less perturbed by truncation of the Si-Si bonds.

A phosphorous-doped Si crystal can be modeled by replacing one of the Si atoms located

in the middle layers of the cluster with a phosphorous atoms. Dangling bonds can be

created by removing some of the hydrogen atoms from the surface of the cluster. As the size

of a cluster and consequently the number of atoms in the cluster increases, the amount of

computing resources (i.e. processors, memory, and time) required for any type of calculation

dramatically increase, and at one point it becomes unfeasible to perform the calculation.

Therefore, it is essential to put some limitations on the desired cluster in order to make the

computation practical. We use clusters with only one pair of DBs on the surface and one
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(a) (b) 

Si-Si dimer 

Figure 5.1: Ball-and-stick model of the Si cell with two views: (a) along and (b) across a
Si-Si dimer. The green balls are silicon atoms and the white ones are hydrogens. This cell
contains sixteen layers of Si atoms, where one of the layers is shown by a dashed-horizontal
line. The Si-Si dimer on the top layer is framed by an oval box.

phosphorous (P) atom within the bulk. The P atom provides the excess electron for the DB

pair. Such a cluster should be made symmetric to eliminate the possibility for the excess

electron to become localized in one DB site.

There are some constraints on the location where P is allowed to reside within the clus-

ter. The phosphorous atom should be in equal distance from both DBs to avoid symmetry

breaking. It should not be in direct contact with the DBs to avoid complete bonding, thereby

localizing the excess charge into the P-Si bond. Furthermore, P should be surrounded by Si

atoms, so it can not be located on the cut edges. These constraints put a lower bound on

the size of a Si cluster.

Based on the above constraints, the smallest cluster consists of three rows each with four

Si-Si dimers. We study all possible DBP− configurations on clusters of the size n × 4 and
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Figure 5.2: (a) A pyramidal cluster that is used for modeling a P-doped Si crystal with
a coupled DB-pair on its surface. This cluster has three dimer rows each having five Si
dimers. One of the dimer rows is framed by a box. The purple balls on the surface are
the silicons that ended with a dangling bond. The DBs are created by removing hydrogen
atoms. The orange ball within the cluster represents a phosphorous atom. (b) A schematic
view of a coupled DB-pair, DBP−, located on P-doped H-terminated Si(100)–2×1 surface.
The bubbles represent DBs and the arrows represent electrons with spin up or down. Each
DB originally owns a single electron, and both DBs share an excess electron provided by a
doped phosphorous.

3 ×m, where n ∈ {3, 4, 5} and m ∈ {5, 6, 7}, respectively. The parameter n is the number

of rows and m is the number of Si dimers per row. Thus, the clusters are an extension of

the smallest-size cluster either in the number of rows or in the number of dimers per row.

The total number of atoms in these clusters (i.e. Si, H, and P) ranges from 243 to 443,

corresponding to the smallest up to the largest cluster size, respectively. We categorize all

the DBP− configurations to six groups. Each group contains only those configurations that

belong to a particular cluster size.

Three types of DBP− configurations can be recognized based on the location of the two

DBs. The‘Vertical’ configuration corresponds to the cases where DBs are located on the

same side of one dimer row. The ‘Horizontal’ configuration occurs when DBs lay on a line
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(3x4-V) 
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(4x4-D1) 
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(5x4-H1) 

(3x5-D1) 
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(3x6-D3) 
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(3x7-V1) 

P 

Figure 5.3: Six sample of DBP− configurations each accompanied by its name, which is
composed of the cluster size and the type of DBP− configuration (‘V’ for vertical, ‘H’ for
horizontal, and ‘D’ for diagonal) on that cluster accompanied by a number representing the
increasing order of DB-pair separation. Each sample belongs to a particular cluster size.
The boxes represent top-down view of hydrogen-terminated Si(100)-2×1 surface and the
horizontal short-lines represent Si-Si dimers. The DBs are shown by filled circles and the
phosphorous atom doped within the cluster is shown by an open circle and the letter P.
DBP−s on these clusters have either vertical, horizontal, or diagonal configuration.
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that is perpendicular to the rows. Any configuration other than these two we refer to it as a

‘diagonal’ configuration. We found a total of thirty-five DBP− configurations on the cluster

sizes mentioned above. Figure 5.3 shows a sample from each cluster size. All of the DBP−

configurations are given in Appendix A.

Each sample of a DBP− is named by the cluster size it resides upon, accompanied by the

DBP− type of configuration. For a particular type of configuration, there might be more than

one possibility for DBs separation. In such cases, the name ends with a number x ∈ {1, 2, 3}

representing the order by which DB-pair separation increases while symmetry is maintained,

with x = 1 corresponding to the smallest separation. For instance, the name 3×5-D1 belongs

to a DBP− that is located on a 3×5 cluster size, has a diagonal configuration, and the DBs

are separated by the 1st possible separation, determined by the surface structure; see Fig. 5.3.

We employed the Gaussian program [149, 156] on “Westgrid”1 for computing the energy

splitting of various DBP− configurations. For each cluster, a Gaussian input file is prepared;

Appendix B demonstrates a sample of the Gaussian input file. Computations are performed

using the DFT-based method B3LYP/6-31G(d). This method has been employed in the-

oretical studies of various Si systems, and for some cases, the results are compared with

experiment and show a good agreement in this respect [135, 139, 54, 133, 134, 132]. The

conjecture is that this model gives reasonably good results for DBP− energy-splitting calcu-

lations, as well. Nonetheless, one can improve the accuracy of the model by using a more

accurate method and a larger basis set, but this will be at the cost of larger computational

expenses.

5.2 Dangling-bond orbital

In this section, we analyze the structural properties of dangling-bond orbital, located on the

Si(100)–2×1 surface. Learning about the shape and orientation of DB orbital leads to a

1Westgrid is a computing facility that is part of the Compute Canada Consortium.
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(a) (b) 

Figure 5.4: Representations of the dangling-bond orbital on hydrogen-terminated
Si(100)-2×1 surface obtained from a DFT calculation (a) top-down view of the DB orbital
and (b) the view along the surface dimer rows. In both images, Si and H atoms are shown by
gray and white balls, respectively. The green and red portions of the orbital are representing
the relative phases of the dangling bond orbital. The dimers are shown by short-yellow lines.
The orientation of the dangling-bond orbital above the Si surface and within the substrate
are shown by dash-curved lines.

better understanding of the coupling strength between DBs. Figure 5.4 shows a dangling-

bond orbital from two different perspectives: (a) the top view and (b) the view along the

dimer rows.

The dangling-bond orbital is a p-type orbital; hence it has two lobes. One lobe projects

out of the surface and is oriented away from the corresponding Si dimer. This lobe is

surrounded by the vacuum above the surface, and is mostly confined in a space less than

5 Å in radius; see Fig. 5.4 (b). The other lobe is distorted and is spread through the Si

substrate. This lobe is made of portions with two different phases, which are shown by

green and red in Fig. 5.4. Each phase is a consequence of the way the atomic orbitals are

interacting with each other in order to build the orbital associated with the DB.

The lobe of the DB orbital that is spread through the Si substrate is curved in two
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directions: (1) the direction parallel to the surface and along the corresponding row and

(2) the direction perpendicular to the surface as the lobe spreads through the substrate.

The portion of the lobe that is near the surface is extended away from the DB’s location

and is curved towards the opposite side of the corresponding row; see Fig. 5.4 (a). Also, as

Fig. 5.4 (b) shows, the lobe bends towards its corresponding dimer row, as it roots into the

Si substrate.

Figure 5.4 also demonstrates that the DB orbital is more extended along the dimer row

than across it. This is expected as each row of Si dimers is surrounded by relatively large

gullies of vacuum on both sides, which limits the spread of the DB orbital in that direction.

This also matches with experimental observations of a DB spatial extension that is reported

recently [31]. Knowing the structure of dangling-bond orbital is valuable in analyzing the

effect of the Si(100)–2×1 surface structure on the coupling of DB pair, as it will be shown

in the following sections.

5.3 Effect of cluster size and surface edges on DBP− energy splitting

The size of the cluster used for modeling our system plays a crucial role in the accuracy of

the calculated results. While the cluster size should not be too small to avoid results with

large error, it can not be too large due to resource limitations (especially the computation

time), so there is a lower and upper bound on the size of the cluster. However, between these

two bounds, as the cluster size gets larger it is expected that the value of energy splitting for

each DBP− configuration converges to its asymptotic value2, because there will be enough

space on the cluster surface to investigate a desired configuration without positioning the

DBs very close to the surface edges.

We address the effect of cluster size on energy splitting by studying each DBP− configu-

ration on different sizes of clusters and checking the variation in the calculated results. Once

2By ‘asymptotic value’ we mean the results that one would get if the desired DFT method and basis set
was applied to an infinite-size Si cluster
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the results converge and hardly change, we claim that the corresponding cluster has the

appropriate size for modeling our system. As the DBs are located on the surface, in addition

to cluster size, the edges of the surface can also affect our results. This is especially true

for those DBP− configurations in which DBs are closer to the surface edges. Thus, in this

section we develop an understanding of how much these two factors impact our calculated

results.

Among our collected data, those that meet the above condition are listed in Table 5.1.

This table contains the name of the clusters as well as the DB-pair separation and the energy

splitting associated with each cluster. There are seven sets of data in this table, each set

corresponding to a single DBP− configuration located on clusters that vary in size. Clusters

in each set are extensions of the smallest-size cluster in that set either in the number of rows

or the number of dimers per row.

The first two sets correspond to the vertical configuration. In the first set, the two DBs

are separated by one dimer spacing. The energy splitting in this set is within 15.2 meV

(i.e. 5.4%) of the average value of 322.9 meV for this configuration. For the second set, the

DBs are two dimer spacings apart, and the energy splitting is within 18.3 meV (i.e. 17.25%)

of the average value 106.1 meV for this configuration.

For the DBP− configurations in the first two sets, energy splitting increases as the size

of the cluster increases. The increase of energy splitting with respect to the cluster size

is suggesting that the overlap between the two DBs wavefunction becomes larger with the

cluster size increment. The splitting increase can be partially justified using basic quantum

physics intuition. Considering a single particle in a finite-potential well with barriers of

different widths, the particle wavefunction decays faster on the barrier side that is wider [157,

158, 159]. Thus, for the particle ground-state wavefunction it looks as if the wavefunction is

shifted towards the side of the well with narrower barrier, which implies that the particle is

more likely to tunnel through the barrier with smaller width.
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Cluster name DB-pair separation (Å) Energy splitting (meV)

3×4-V 3.78 307.7
4×4-V 3.87 329.2
5×4-V 3.87 326.7
3×6-V1 3.87 338.0

3×5-V 7.73 87.8
3×7-V1 7.74 124.4

3×5-H2 13.00 16.9
3×7-H 13.14 28.0
5×4-H1 12.88 44.4

3×4-D1 4.65 81.8
5×4-D1 4.63 83.4
3×6-D1 4.63 79.6

3×5-D1 8.16 44.3
3×7-D1 8.16 35.7

3×4-D2 13.65 35.9
5×4-D2 13.45 32.6
3×6-D3 13.68 32.4

3×5-D2 15.13 16.6
3×7-D3 15.25 15.0

Table 5.1: Seven sets of clusters, each corresponding to a particular DBP− configuration.
The sets are separated from each other by thick-black lines. This table contains the name of
the clusters, DB-pair separation in that cluster (in Å), and the corresponding energy-splitting
(in meV). The first two sets correspond to vertical configuration, the next set corresponds
to horizontal and the four other sets are diagonal configurations. The clusters are named
by n×m−Cx where n, m and C stand for rows, dimers per row, and DBP− configuration,
respectively. Some of the clusters’ name end with a number x representing the order by which
DB-pair separation increases for that particular configuration, with x = 1 corresponding to
the smallest separation.
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Analogously, each DB in a DBP− (i.e. an excess electron shared between two DBs) can be

considered as a finite potential well with barriers that can have different widths. The width

of the barriers is defined either by the separation distance between the DBs in the DBP−,

or the distance between each DB and the Si-surface edges. For a DBP− on a cluster, if the

distance between each DB and the surface edges gets larger than the separation distance

between the two DBs, the excess-electron wavefunction tends to shift towards the potential

barrier between the two DBs. Shifting of the electron wavefunction results in a larger overlap

with a concomitantly larger energy splitting for the DBP−.

We expect that there is a turning point after which any more increase in the distance

between DBs and surface edges would not have a noticeable effect on the amount of splitting.

Therefore, as the cluster continues to get larger the change in energy splitting for a particular

DBP− configuration becomes smaller and the splitting approaches an asymptotic value.

P 

(3x4-V) (4x4-V) 

P 

P 

(5x4-V) 

9.93 Å  7.68 Å  9.93 Å  15.36 Å  

15.36 Å  17.61 Å  

Figure 5.5: Separation distances of DBs from ‘left’ and ‘right’ surface edges on 3×4, 4×4,
and 5×4 clusters. The boxes represent top-down views of hydrogen-terminated Si(100)-2×1
surfaces and the horizontal short-lines represent Si dimers. The DBs are shown by red circles
and the phosphorous atom doped within the cluster is shown by a yellow circle and the letter
P. The letter ‘V’ stands for vertical configuration (of DBP−).
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The first set of data in Table 5.1 shows that there is a significant discrepancy between

energy splitting associated with the smallest cluster, i.e. 3×4-V, as compared to the splitting

of the other clusters in the set. Based on the spatial extension of the DB orbital (explained

in Sec. 5.2) and the basic explanation given above, this large discrepancy can be partially

justified by pointing out that the distance between each DB and the closest edge is compa-

rable to the DB-DB separation. This noticeable change suggests that the splitting on 3×4-V

is strongly affected by the size of the cluster and its surface edges. Similarly, we conclude

that the splitting for the smallest-size cluster in the second set, i.e. 3×5-V, also results from

the same effects.

A comparison between the results in the first set shows that increasing the number of

Si-dimers per each row has a dominant effect (as compared to increasing the number of

rows) on the splitting of DBP−s with vertical configuration. In other words, there is a larger

change in splitting when the cluster size increases from 3×4 to 3×6 compared to when the

size increases from 3×4 to 4×4 and 5×4. This implies that those surface edges perpendicular

to dimer rows have more effect on splitting than those edges parallel to the rows. This could

be an indication of greater extension of the DB wavefunction in the direction of the rows

which is consistent with the description of DB orbital given in Sec. 5.2. More data is required

to check whether the splitting value is converged for the cluster size extended along the rows.

However, comparing the splitting value for 3×6 with the ones for 4×4 and 5×4 is suggesting

that this splitting value is likely to be converged.

Also, a closer look at the first set may raise the question of why there is a large difference

between energy splitting of 3×4-V as compared to 4×4-V and 5×4-V, while in all three

cases the DBs have the same distance from their closest surface edge. Although in these

clusters the DBs have the same distance from surface edges crossing the dimer rows, their

distance from the two edges parallel to the rows are different from one cluster to the other;

see Fig. 5.5. In 3×4-V, the DBs are closer to the ‘right’ edge by 2.25 Å as compared to the
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‘left’ edge, whereas in 4×4-V, the distance between the DBs and the ‘right’ edge is doubled

by adding an extra row of Si dimers. Furthermore, in 5×4-V an extra row is added to the

left side of the DBs, but it does not affect the splitting significantly as compared to 4×4-V.

These comparisons suggest that, in the case of vertical configurations, the optimum

distance to consider between DBs and those edges parallel to the Si-dimer rows is 9.93 Å,

which is equivalent with two Si dimers separated by a vacuum gully; see Fig. 5.5. For

smaller distances the results are not converged to the asymptotic value as a consequence of

edge effects (similar to the case of 3×4-V), and for larger distances the value of splitting does

not changing significantly (similar to the case of 5×4-V). Therefore, the best cluster model

to use for vertical configurations in order to have the lowest of computational resource usage

while getting asymptotically converged results is a cluster with four rows of Si dimers.

The third set in Table 5.1 corresponds to a horizontal configuration. In this set, DBs

are one row apart; thus between the two DBs there is two vacuum gullies separated by

a Si dimer. The energy splitting for the clusters of this set is within 13.7 meV from the

average value 30.7 meV. Similar to the results for vertical configurations, we see that for

the horizontal configuration the splitting increases with cluster-size increment. Hence, the

justification given earlier is also valid for this case. As a result, the splitting for 3×5-H2 is

affected more from the crystal-size effect than 3×7-H and 5×4-H1.

We notice that in this set of data the larger change in splitting occurs when the smallest

cluster in the set gets larger by adding extra rows. This implies that splitting associated

with horizontal configurations is affected more by the number of rows while for vertical

configurations the splitting depends more on the number of dimers per row. Nonetheless, in

this set, it remains unclear whether the splitting would converge as we go to larger cluster

sizes. However, if the argument about keeping DBs 9.93 Å away from ‘left’ and ‘right’ edges

also holds for horizontal configurations, then we expect that going to clusters with more

rows would not change the splitting significantly with respect to the splitting associated
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with 5×4-H1.

Finally, the last four sets in Table 5.1 correspond to DBP−s with diagonal configurations.

In the first two sets, the DBs are on the same row but opposite dimer sides, while for the

other two sets the two DBs are located on different rows. The energy splitting associated

with each of these four sets (from the first one to the last) are within 2.5%, 10.8%, 6.8%,

and 5.1% of their average values, respectively. Thus, for diagonal configurations, the effect

of cluster size and its surface edges on the splitting of DBP−s seems insignificant, as the

results in each set are quite close to each other.

A comparison between the first (second) set of vertical and the first (second) set of

diagonal configurations shows that the energy splitting drops by ≈ 25% while there is only a

slight increase in the DB-pair separation (≈ 0.75 Å). The reason behind this dramatic drop

is due to the orientation of the DBs orbital; see Sec. 5.2. More details on this point will

be given in Sec. 5.6, but for the sake of argument here, we point out that larger splitting is

due to larger overlap between the two DBs wavefunction, which in turn is influenced by the

orientation of the DBs orbital.

5.4 Effect of phosphorous location on DBP− energy splitting

Use of explicit phosphorous (P) dopant in a cluster is another factor affecting the calculated

results. A dopant atom provides the excess electron for the coupled-DB pair. The phospho-

rous atom should not be in direct contact with the DBs to avoid any bonding. To fulfill the

former condition, we locate P a couple of Si layers below the cluster surface. The later is

not a problem for small-size clusters as the size of cluster would limit the allowed location

for the dopant.

To examine the effect of P location on the DBP− energy splitting, we choose a cluster

large enough to accommodate the dopant in three different positions. Figure 5.6, shows the

desired cluster made of 578 atoms. The two DBs on the surface are separated by two dimer
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Figure 5.6: A 3× 7 cluster made of 578 atoms. The two DBs are shown with purple balls on
the surface of the cluster. The three positions that P can be doped in this cluster are shown
by orange balls and named by Px where x ∈ {1, 2, 3}.

spacing, which results in DB-pair separation distance of ≈ 7.72 Å. For the three locations

shown in Fig. 5.6, the dopant P is 5.83 Å, 10.46 Å, and 15.66 Å away from each DB. The

energy splitting associated with these P-DB separations are 131.54 meV, 116.06 meV, and

115.75 meV, respectively. These values are within ≈ 8.6% of the average value.

We see that when P is moved from P1 to P2 in Fig. 5.6, the energy splitting drops by

≈ 15 meV, while it only changes by ≈ 0.31 meV as the dopant is moved from P2 to P3. The

change from P1 to P2 is significant and it suggests that Coulomb effects are quite large and

distort the splitting energy.

In all of our clusters, P dopant is located within 8 to 16 Å away from both DBs, so

the effect of P location on DBP− energy splitting is likely to be insignificant. It should be

noted though, while positioning P at the position P1 is not suitable for our modeling, it

does not mean that the calculated result does not have value. For instance, with the recent

experimental achievements in controlling dopant position within the Si substrate [16, 17], it
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is in principle possible to benefit from varying P location within the Si substrate in order to

control DBs coupling. Nevertheless, for our particular purpose of understanding the impact

of dopant placement, we can not rely on this location of P.

5.5 Replacing phosphorous dopant by an excess charge

In assessing the effect of P location on energy splitting, we noticed that for dopant placement

beyond certain depth, there is only a small difference between the resultant energy splittings.

This small difference can be an indication that splitting is converging to a specific value.

The little change in splitting might also suggest that for P-DB separations beyond certain

distance, dopant P looks like an electron to our system of DB pair. In this section, we put

this conjecture to the test by replacing dopant P with an extra charge and checking whether

this replacement would significantly change the energy splitting.

We choose a cluster with a surface comprised of four rows, each having four dimers, and

evaluate energy splitting for all possible DBP− configurations on this surface both in the

presence and in the absence of explicit dopant P. In the case where there is no explicit dopant

in our clusters the charge of the corresponding model is manually increased by one. The

results obtained from both approaches are given in Table 5.2.

Table 5.2 contains clusters name, DB-DB and P-DB separations, and energy splitting

associated with each DBP− configuration that is calculated in the presence of a P dopant or

an excess electron. The results show that the splitting obtained by these two approaches for

each configuration are quite close to one another. The similarity of the splittings confirms

that for dopant placement beyond certain amount (dP-DB � 8 Å) the P atom behaves as

if there is only one extra electron in our cluster model. This result also indicates that the

DBP− excess-charge, hosted by the dopant, is not bonded to P atom and is delocalized

between bonding and antibonding states of the coupled DBs.

It should be noted that for small-size clusters, using an extra charge might induce sig-

94



Cluster name DB-pair separation (Å) / Energy splitting (meV) Energy splitting (meV)
P-DB separation (Å) (in presence of P) (in presence of excess charge)

4×4-V 3.87/8.90 329.2 333.2
4×4-H1 5.19/8.92 34.9 33.4
4×4-D1 6.45/9.97 56.1 52.8
4×4-H2 10.29/13.39 37.6 31.6
4×4-D2 10.99/8.93 52.8 54.1
4×4-H3 20.65/9.96 34.1 33.3
4×4-D3 21.00/13.39 9.9 11.9

Table 5.2: Energy splitting for all possible DBP− configurations on cluster 4x4 in the presence
and in the absence of dopant P within the cluster. Separation distance between DBs in a
pair as well as the distance between P and each DB are given in the second column. The
third and fourth columns correspond to the energy splittings, calculated in the presence of
dopant P and when P in the model is replaced by a silicon atom plus an excess charge.

nificant perturbation to the system. On the other hand, for larger clusters using the charge

might help to prevent various limits that the dopant is facing (i.e. being equidistant from

both DBs, avoiding direct contact with DBs and also the cut edges). These constraints put

a lower bound on the size of a Si cluster. Therefore, as the results of these two approaches

are not significantly different, employing P is preferred for small-size clusters while an excess

charge is more compatible with large-size clusters.

5.6 Effect of the Si-surface structure on DBP− energy splitting

In this section, we elaborate on the effect of the Si(100)–2×1 surface structure on DBP−

energy splitting. For this purpose, the collected data on energy splitting is categorized into

four sets, each corresponding to a specific DBP− configuration. For some of the DBP−s

more than one result is available, corresponding to different cluster size. We only consider

those splitting values that correspond to the largest-size cluster, in the hope of minimizing

the effect of cluster size on the calculated results. The values that are not included here are

reported in Sec. 5.3 for the purpose of analyzing the effect of cluster size and surface edges

on DBP− energy splitting.
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The four sets of data, each corresponding to a specific configuration, are given in Table 5.3.

Each set is separated from the neighboring ones by thick lines. The table contains the name

of the clusters, DB-pair separation and the energy splitting associated with each cluster. The

sets are arranged in the order of vertical, horizontal, diagonal (DBs-on-same-row), diagonal

(DBs-on-different-rows) configurations, and the data in each set is sorted by increasing in

DB-pair separation.

As expected, the value of energy splitting in each set decreases as the DB-pair separation

increases. However, a more careful look at all the sets shows that for comparable DB-

separations, vertical and diagonal (DBs-on-same-row) configurations lead to higher energy

splitting than the other two configurations. Furthermore, comparing the splitting values in

the first set with the ones in the third set clearly shows that for comparable DB-pair sepa-

rations the splitting values are significantly larger for the vertical configuration as compared

to the diagonal case. In the following, we justify these behaviors based on the shape and

orientation of DB orbital and the structure of the surface.

Considering vacuum gullies between dimer rows, which separate each row from the neigh-

boring ones, we expect to see larger energy splitting when the two DBs are located on the

same dimer row as compared to the cases where the DBs are on different rows. This is due

to the larger degree of overlap between the two DBs wavefunction located on a single row.

Thus, for comparable DB-pair separations it is reasonable that the DBP− energy-splitting

for vertical and diagonal (DBs-on-same-row) configurations to be higher than horizontal and

diagonal (DBs-on-different-rows) cases.

For the two DBs located on a single row, due to the orientation of the upper-lobe of the

DB orbital (see Fig. 5.4) we expect to see larger energy splitting for vertical configuration

as compared to the diagonal (DBs-on-same-row). This is related to the degree of overlap

between the DBs wavefunction. In the case of vertical configuration, the upper-lobe of the

two DBs are oriented in the same direction, whereas for the diagonal case the lobes are
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Cluster name DB-pair separation (Å) Energy splitting (meV)

3×6-V1 3.87 338.0
3×7-V1 7.74 124.4
3×6-V2 11.64 93.8
3×7-V2 15.52 66.9

5×4-H1 12.88 44.4
5×4-H2 18.02 25.9
5×4-H3 28.38 14.8

3×6-D1 4.63 79.6
3×7-D1 8.16 35.7
3×6-D2 11.91 71.0
3×7-D2 15.73 34.9

5×4-D2 13.45 32.6
3×7-D3 15.25 15.0
3×6-D4 17.51 15.2
3×7-D4 20.29 9.9

Table 5.3: Four sets of clusters are available in this table separated from the neighboring ones
by thick-black lines. From top to down, the sets correspond to vertical, horizontal, diagonal
(DBs-on-same-row), and diagonal (DBs-on-different-rows) configurations, respectively.

pointing away from each other. Thus, we expect to have stronger bonding between the two

DBs in vertical configuration and consequently larger splitting.

For further analysis, the data in Table 5.3 is visualized by a log-line graph, shown in

Fig. 5.7. The logarithmic axis corresponds to the DBP− energy splitting and the linear

axis shows the DB-pair separation. This graph contains four plots, each corresponding to

a set of data, listed in Table 5.3. In all of the four plots, energy splitting is apparently

decreasing as a function of DBs separation, but the type of regression in these plots needs

further consideration.

We notice that the plots corresponding to both vertical and horizontal configurations

are close to linear, which implies that energy splitting for these two types of configuration

changes almost exponentially as a function of DB-pair separation. The reason for not having

completely-linear plots might be related to the shape of the dangling-bond orbital. In a

coupled-DB pair, those lobes of the orbital that are above the surface overlap in the vacuum
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Figure 5.7: Log-line graph of DBP− energy splitting (meV) as a function of DB-pair sepa-
ration (Å). Each plot corresponds to a specific DBP− configuration, i.e. vertical, horizontal,
diagonal(DBs-on-same-row), and diagonal(DBs-on-different-rows). For vertical and horizon-
tal configurations, the trend is almost linear, indicating that energy splitting for these two
configurations varies almost exponentially as a function of DB-pair separation. Diagonal
configurations behave somewhat differently than vertical and horizontal configurations. The
circle highlights the part that DB-pair separation in different configurations are comparable
with each other and indicates how configuration of DB pairs would affect their splitting.

space while the other two lobes overlap within the Si dielectric medium. Thus, although the

overlap between the surface lobes as well as the ones in the substrate might each behave

exponentially as a function of DB-pair separation, but each part has its own decay rate

due to different environments. As the coupling strength in a DBP− is a consequence of the

overall overlap between the two DBs orbital, the energy splitting is partially affected by the

Si material between the two DBs.

In Fig. 5.7, another point to notice is that the plots associated with both types of di-

agonal configuration behave somewhat similarly. This similarity is despite the fact that

surface structure between the two DBs changes significantly as we go from DB pair on the
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same dimer row to DBs on different rows. Furthermore, these two plots look different from

those corresponding to vertical and horizontal configurations, which implies that the change

of energy-splitting versus DB-pair separation can not be easily predicted for this type of

configuration.

Although for diagonal configurations the changing pattern in DBP− splitting is legitimate

in the framework of the theory we used, at this stage this behavior is not yet well understood

and requires further investigation. However, we suggest that this pattern may be related to

the overlap of different parts of the two DB orbitals and whether the overlapping parts are

in-phase or out-of-phase; see Fig. 5.4.

In general, overlap between in-phase atomic orbitals leads to constructive bonding with

an energy that is lower than that of the original orbitals. If the two overlapping orbitals are

out-of-phase, the overlap results in antibonding orbital with an energy higher than those of

the original atomic orbitals. The splitting values reflect the overall degree of overlap between

DBs.

As the last point of this section, we suggest that the changing rate of energy splitting

versus DBs separation should be different from one configuration to the other, because the

surface structure between the two DBs is different for each configuration. However, more

data is required to check this suggestion and we need to use larger clusters to accommodate

DBP−s with larger DB separation. For example, for the horizontal configuration, the next

cluster should be 7×4 which contains 200 atoms more than 5×4; see Table 5.3. This dramatic

increase in the number of atoms requires a considerable amount of computational resources

(especially time), which one needs to consider if willing to collect more data.

5.7 Further discussion on the computed results

The results presented in this chapter provide some insights into the effect of the surface

structure and the dopant position on the strength of DBs coupling. The converged results
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are indicative of what to expect in a relevant experiment. This information becomes quite

useful when dealing with DBs in more complex nano-systems such as quantum cellular

automata, DB sub-nanowires, and quantum computing schemes.

We learned that for comparable DB-pair separations, those pairs located on the same

row display significantly stronger coupling than those located on different rows. In addition,

for DBP−s with DBs located on different rows, those that are in the horizontal configuration

displays stronger coupling than those in the diagonal configuration. This is especially useful

when dealing with more complex systems built from DBs. One can benefit from this fact

by positioning DBs on different rows for reducing undesired coupling while keeping coupled

DBs on the same row. The coupling strength between the DBs in a coupled-DB pair can

then be controlled by adjusting the separation distance between them.

Furthermore, the relative orientation of DB orbitals plays a crucial role in the strength

of DBs coupling. For DBs located on the same row, there is a significant amount of change

in the splitting value depending on whether both DBs are on the same side or on different

sides of their corresponding dimer. Therefore, for more complex systems one can benefit

from this factor as it provides an alternative way for controlling DBs-coupling strength.

Based on our analysis presented in the previous chapter (in Fig. 4.2), the phonon-induced

decoherence for DBP−s with a DB separation within 3.84 to 20 Å ranges from 0.1 to 1

meV. On the other hand, our calculated results show that the minimum amount of energy

splitting is 9.9 meV, which belongs to a DBP− with diagonal configuration where DBs are

located on different rows and are 20.29 Å apart. The other values of splitting are at least

one order of magnitude larger than the range of decoherence given above. Therefore, for

quantum computation with DBP−s, the distance between DBs should not exceed 20 Å as

the decoherence induced by the crystal phonons would dominate the coherent dynamics of

the DBP−.

In addition, the spatial precision that can be achieved for implanting a P atom within
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the Si crystal is of paramount importance. The dopant P should be equidistant from both

DBs. Otherwise the excess charge will be localized in the DB that is closer to the P atom,

consequently leading to the loss of usability of the DBP−. Furthermore, the coupling strength

of the DBP−s is a function of the dopant’s depth. Therefore, any variability in the dopant

placement within the crystal results in variation of the coupling strength. The depth of

P atoms can also affect the Coulombic interaction between neighboring DBP−s, which is

important to note if one aims to generate coupling between neighboring DBP−s.

Considering the above points, the placement of a P atom with respect to a DBP−, are

especially important when dealing with complex systems that should be made of identical

DBP−s (e.g. a quantum computing architecture). Recently, it has been experimentally

shown that a P atom can be deterministically positioned within a Si crystal with a lateral

spatial accuracy of 3.8 Å, i.e. one lattice site [16, 17]. Therefore, embedding P atoms in

selective locations within the Si substrate is now feasible.

However, for a more complex system (such as a quantum computing architecture) in which

several donors (or arrays of donors) is required, perfect control over the lateral positioning

of P atom is still beyond reach. Also, the accuracy of the P location with respect to the

crystal surface (in other words dopant’s depth) is still a concern. Therefore there are some

errors resulted from imperfections associated with the process of implantation of P atoms.

5.8 Summary

In this chapter, we characterized energy splitting for a wide variety of DBP− configurations

and DB-pair separations, located on the Si(100)–2×1 surface. This surface has an anisotropic

structure; thus the energy splitting of a DBP− strongly depends on the location of the

constituent DBs. We developed an appropriate cluster for modeling a piece of Si crystal with

a coupled-DB pair on the surface that share an excess charge provided by a dopant atom.

We analyzed the structure of a DB orbital, which helped to have a better understanding of
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the effect of the surface structure on DBP− energy splitting. Our analysis showed that all

the DBP− configurations can be categorized to four groups such that each group behaves

differently from the others.

Furthermore, we developed an understanding of the impact of cluster size, its surface

edges, and P dopant position on the value of energy splitting. We analyzed the role of

cluster size as well as its surface edges by studying convergence in DBP−s energy splitting as

a function of cluster size. For the impact of dopant position, we determined where to place

the P dopant within a cluster in order to avoid strong Coulombic interaction with the DB

pair. Also, we learned that for the dopant far enough from DBs, a P atom behaves like an

excess electron in our cluster models.

It is worth noting that for a couple of the data sets presented in this chapter, they would

benefit from more data for more rigorous analysis. Specifically, for the cluster-size effect on

the value of splitting, although the convergence has been met for most of the configurations,

there were a few cases that we still need to go to larger cluster sizes and run more simulations

in order to fulfill the convergence criteria. In addition, we need more data to determine the

changing trend of energy splitting as a function of DBs separation for all four categories of

DBP− configurations. Addressing these issues are considered as near-future work, because

successful termination of each running simulation will take several months.
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Chapter 6

On Measuring Coherence in Coupled Dangling-Bond

Dynamics

In this chapter, we propose a scheme to characterize the tunneling rate and coherence of

the excess-charge shared by a coupled DB pair (DBP−). Our theoretical estimations, given

in chapter 4, indicate that the charge dynamics is highly coherent but too fast to be mea-

sured by any straightforward method. Our strategy is to measure the time-averaged charge

distribution of the DBP− by capacitively coupling the pair to an atomic force microscope

(AFM) while the pair is imposed to a DC bias and concomitantly driven by a mid-infrared

(MIR) field. When the MIR field becomes resonant with the biased DBP−, resonant peaks

appear in the AFM read-out from which the DBP− excess-charge tunneling rate as well as

the nature and rate of decoherence can be revealed.

This chapter begins with Sec. 6.1 containing a detailed description of the theory we

developed for our scheme. In this section, we first analyze the role of an applied static bias

and a mid-infrared field on the dynamics of a DBP−, as well as the combined action of both

elements on the system, thereof. Also, the effect of laser heating on our system is discussed

in this section. In Sec. 6.2, we model the capacitive coupling between an AFM tip and the

DBP− by considering all the dominant forces acting between the tip and the system. In

Sec. 6.3, we consider the effect of noise on our system and analyze the decoherence rate of

DBP− excess charge accordingly. We summarize this chapter by listing the main points.

The content of this chapter is the result of a collaborative work that is published in

Physical Review B. In this work, I devised the scheme and developed the theory. However,

in the process of improving the work, the theory was polished to a nicer and more simplified

form with the help of our collaborators. The analysis of laser heating effect in the Physical
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Review B paper was done by collaborators and it is not included in this chapter.

6.1 Dangling bond pair under static bias and driving laser field

In this section we discuss technical issues concerning each component of the proposed appa-

ratus. This apparatus is shown in Fig. 6.1 and described in detail in the figure caption.

6.1.1 Static bias

The free Hamiltonian for uncoupled DBs is given by E0,L|L��L|+E0,R|R��R|, for E0,L and E0,R

the on-site energies plus local field corrections for the left and right DBs, respectively. We

assume that E0 ≡ E0,L = E0,R (a symmetry condition). The Hamiltonian for coherently

coupled DBs is

Ĥ0 = E0 (|L��L|+ |R��R|) + �∆
2

(|R��L|+ |L��R|) . (6.1)

Diagonalizing Ĥ0 yields eigenenergies E0 ± �∆/2 with corresponding eigenstates |ψ±� =

1√
2
(|R�± |L�), respectively.

Applying a static bias Vb to DBP− enables one to control the tunneling rate in the system

by creating an energy offset eVb = E0,L−E0,R between the left and right DB while preserving

the local confinement potential characteristics at each well as depicted in Fig. 6.1. This bias

is physically implemented by local electrodes in the vicinity of the DBP−. More background

information on the applied bias can be found in Sec. 3.1.3.

The Hamiltonian of a DBP− subjected to a static bias is given by [160]

Ĥb = E �
011 +

eVb

2
(|L��L|− |R��R|) + �∆

2
(|L��R|+ |R��L|) (6.2)

with

E �
0 :=

E0,L + E0,R

2
, eVb := E0,L − E0,R, (6.3)
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DBL DBR 

Figure 6.1: The dangling-bond pair (DBL-DBR) is depicted as a double-well potential
at the silicon-vacuum interface. An excess electron shown as a red (dark) dot oscillates
between the two wells. The DB pair is subjected to a static electric bias and driven by laser
radiation. An atomic-force microscope (AFM) tip is capacitively coupled to the DB pair
due to electrostatic interaction between charges on the AFM tip (red (dark) zone on tip
apex) and the excess electron in the double-well potential. The AFM tip oscillates with a
frequency that is dependent on the location of this excess charge thereby modifying the tip
oscillation frequency in a predictable way. [reproduced from ref. [3], Fig. 1]
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and where 11 is the identity matrix. Diagonalizing the biased Hamiltonian for the DBP− (6.2)

yields

Ĥb = E �
011 +

�∆�

2
(|g��g|− |e��e|) (6.4)

and

|g� = cos
θ

2
|L�+ sin

θ

2
|R�, |e� = cos

θ

2
|R� − sin

θ

2
|L�

where

θ = tan−1

�
�∆
eVb

�
.

The resultant modified tunnelling frequency is thus

∆� =

�

∆2 +

�
eVb

�

�2

, (6.5)

and the time-averaged charge distribution on the left dot is

ρL = |�L|g�|2 = cos2
θ

2
=

∆2

∆2 +
�
∆� + eVb

�
�2 , (6.6)

which is depicted as the solid curve (in purple) in Fig. 6.2. As expected, the charge distri-

bution is equal for the two DBs when the electric potential bias is zero.

6.1.2 Mid-infrared driving field

We now add a MIR driving field with frequency ωMIR to the scheme as shown in Fig. 6.1. The

purpose of this driving field is to probe the system to discover resonance conditions whereby

the barrier between the left and right DBs effectively vanishes [47]. A tunable continuous-

wave solid-state laser or CO2 gas laser are examples of suitable MIR sources [118]. More

background material on MIR field is given in Sec. 3.1.4. The MIR beam intensity must

be weak enough to ensure that multi-photon resonances are negligible [47, 48], but strong

enough to drive the oscillation between left and right DBs.

A quantitative description of the dynamics begins by treating the biased DBP− as an

electric dipole with an approximate transition dipole moment dDBP− = −ex, which is the
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ∆ = 10 THz

(ii) ∆ = 100 THz

(iii) ∆ = 120 THz

(iv) ∆ = 133 THz

(v) ∆ = 140 THz

(vi) ∆ = 160 THz

(vii) ∆ = 180 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is

On Measuring Coherence in Coupled Dangling-Bond Dynamics

Zahra Shaterzadeh-Yazdi,1, ∗ Josh Mutus,2, 3 Lucian Livadaru,2, 3

Marco Taucer,2, 3 Robert A. Wolkow,2, 3 and Barry C. Sanders1

1Institute for Quantum Information Science, University of Calgary, Alberta T2N 1N4, Canada
2National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9, Canada

3Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada
(Dated: August 21, 2012)

We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-

Figure 6.2: Time-averaged charge probability in the left DB as a function of applied static
bias and under MIR lasers of different frequencies shown in the legend. Here, we have chosen
∆ = 133 THz and ΩMIR = 1 GHz. In the absence of a driving radiation, the result becomes
the smooth curve joining all the shown peaks. [reproduced from ref. [3], Fig. 3]

product of the electron charge e and the inter-DB separation vector x pointing from the

negative to the neutral DB. The corresponding dipole-moment operator is d̂ = dDBP− σ̂x.

The electric-dipole interaction with the MIR electric fieldEMIR is given by the interaction

Hamiltonian [161]

Ĥdipole = −d̂ ·EMIR. (6.7)

The interaction strength is quantified by the Rabi frequency

ΩMIR =
d̂ ·EMIR

� , (6.8)

and the resultant driving-field interaction Hamiltonian is [81]

Ĥd = � |ΩMIR| cosωMIRt
�
cos δ (|R��R|− |L��L|) + sin δ (|L��R|+ |R��L|)

�
(6.9)

for δ a parameter containing information about the laser beam angle and ratio of wavelength

to dipole length.
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The intensity of the radiation is related to the Rabi frequency via the electric-field am-

plitude, I = �0|E|2c with �0 the permittivity, E the electric-field amplitude, and c the speed

of light. Assuming that EMIR and dDBP− are parallel, Eq. (6.8) yields

|E| = �ΩMIR/|dDBP− |. (6.10)

For a DBP− with inter-DB distance |x| = 7.68 Å, we obtain dDBP− ≈ 10−28 Cm.

In addition to the conditions above, the Rabi frequency is low enough to avoid multi-

photon resonances, but high enough to drive the oscillation, and the choice of ΩMIR/ωMIR

offers some flexibility to tune these parameters. We therefore studied the effects of the

intensity of the applied laser in Fig. 6.3, where we varied this quantity over a few orders of

magnitude.

We can see in this figure that, as the intensity is decreased, the width of the resonance

peaks is decreased as well. Eventually the width becomes lower than the noise in the applied

bias, for a laser intensity of about 20 W/m2. The horizontal resolution was estimated by

treating the width as being due to the thermal noise in the biasing electrodes, namely the

Johnson-Nyquist noise given by the formula

VJN =
√
4kTRB (6.11)

for R = 1 MΩ, and B = 3 kHz, similar to values present in an STM instrumental setup. The

corresponding Rabi frequencies for each peak width are plotted in Fig 6.3(b) (anticipating

that this is also the range of useful Rabi frequencies for the purpose of this study, i.e. 0.1

GHz to 1 THz.)

6.1.3 The combined action of static bias and driving field

The Hamiltonian including both the static bias and the driving field is

Ĥbd = Ĥb + Ĥd. (6.12)
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?
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(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ∆ = 10 THz

(ii) ∆ = 100 THz

(iii) ∆ = 120 THz

(iv) ∆ = 133 THz

(v) ∆ = 140 THz

(vi) ∆ = 160 THz

(vii) ∆ = 180 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is

On Measuring Coherence in Coupled Dangling-Bond Dynamics

Zahra Shaterzadeh-Yazdi,1, ∗ Josh Mutus,2, 3 Lucian Livadaru,2, 3

Marco Taucer,2, 3 Robert A. Wolkow,2, 3 and Barry C. Sanders1

1Institute for Quantum Information Science, University of Calgary, Alberta T2N 1N4, Canada
2National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9, Canada

3Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada
(Dated: August 21, 2012)

We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ∆ = 10 THz

(ii) ∆ = 100 THz

(iii) ∆ = 120 THz

(iv) ∆ = 133 THz

(v) ∆ = 140 THz

(vi) ∆ = 160 THz

(vii) ∆ = 180 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is

(b) 

Figure 6.3: The effects of varying the driving field intensity on the resonance peak shapes.
(a) Here ωMIR is kept fixed at 200 THz, and as the field intensity is reduced the resonance
peaks become narrower. (b) The peak widths are extracted from the above plots and are
plotted against the corresponding Rabi frequencies. The color of each point here corresponds
to a plot in (a). The bottom-left point corresponds to the lowest measurable field intensity
as limited to the thermal noise in the biasing electrodes. [reproduced from ref. [3], Fig. 4]
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Converting to the interaction picture according to

ĤI = U †ĤbdU, U := exp

�
−i

ωMIRt

2
(|R��R|− |L��L|)

�

eliminates explicit time dependence. If the detuning η := ωMIR − ∆� is small compared to

the frequency sum ωMIR +∆�, then [81]

ĤI

� ≈ Ω

2
(|g��e|+ |e��g|) + η

2
(|g��g|− |e��e|) , (6.13)

where

Ω := |ΩMIR| sin (θ − δ) (6.14)

for a weak MIR field, namely ΩMIR � ωMIR [161].

The eigenenergies of the approximate interaction Hamiltonian ĤI in (6.13) are [81]

�± := ±�
2

�
Ω2 + η2, (6.15)

which represent the modified Rabi frequencies. The corresponding eigenstates are

|g�ϕ = cos
ϕ

2
|g� − sin

ϕ

2
|e�, |e�ϕ = cos

ϕ

2
|e�+ sin

ϕ

2
|g� (6.16)

where ϕ = tan−1
�

|Ω|
η

�
. The probability for the charge to be on the left DB is

ρL = |�L|g�ϕ|2 =
1

2
+

eVb

2�∆�
1

1 + 1
2 tan

2 ϕ
(6.17)

analogous to the undriven distribution (6.6).

In an actual experiment, for a given MIR frequency ωMIR, the potential bias Vb is adjusted

until a resonance is found whereby the charge distribution is equal on the two DBs. Thus,

one is expected to obtain curves similar to those in Fig. 6.2, where the spikes correspond

to cases that ωMIR = ∆�. Intuitively, these resonances correspond to the MIR driving

field overwhelming the biasing field, effectively making the barrier negligible and the charge

distribution equal in either DB.

Fig. 6.4 shows an extended parameter space as contour plots of loci where, for fixed

values of ∆ indicated in the legend, resonances such as those in Fig. 6.2 occur. This figure
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ∆ = 10 THz

(ii) ∆ = 100 THz

(iii) ∆ = 120 THz

(iv) ∆ = 133 THz

(v) ∆ = 140 THz

(vi) ∆ = 160 THz

(vii) ∆ = 180 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
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only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
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due to growth imperfections and decoherence mechanism.
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ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
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charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-

Figure 6.4: Contour plots of loci in the parameter space (Vb, ωMIR) where resonances occur,
i.e. spikes in Fig. 6.2 where ρL = 1

2 . Each contour corresponds to a different native DBP−

tunneling frequency ∆, indicated in the legend. [reproduced from ref. [3], Fig. 5]

illustrates a key point of our scheme, namely that the MIR frequency and potential bias can

be tuned to discover the tunneling frequency ∆ simply by measuring the probability of the

excess charge being in the left DB.

6.1.4 Effect of laser heating on the system

Excessive heating by the incident laser radiation can lead to damage of the sample. An

important detail when estimating laser damage in our sample is that we only require radiation

with sub-bandgap energy, for which the silicon absorption coefficient is relatively small.

Therefore, silicon crystals are resilient to heating and have a high thermal and optical damage

threshold[162] in the MIR range of interest due to low absorption for this spectral domain.

For the H–Si(100) substrate in our study, above-bandgap driving radiation (λ= 532 nm)

with an intensity of 2.67×1011 W/m2 suffices to cause hydrogen desorption but does not

damage the sample [163]. Given that we require sub-bandgap radiation (λ= 9-19 µm) with

two orders of magnitude lower intensity, any damage to the sample is expected to be highly

unlikely. At these greatly reduced intensity levels, hydrogen desorption is also unlikely [163].
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Therefore we expect excessive heating can be avoided by using a cooling system even in cases

with the most intense radiation required for our experimental apparatus.

6.2 AFM characterization of tunneling between coupled dangling bonds

Atomic force microscope is ideally suited to measure the spatial charge distribution in a

DBP− (Fig. 6.1) without significantly distorting the electronic landscape of the sample. The

AFM has been shown to detect single charges [164, 165]. We are interested in frequency

mode (FM) of the AFM. Details on the modeling of FM-AFM can be found in Subsec. 3.1.1.

6.2.1 Tip-sample interactions

In the limit of small oscillation amplitudes, the AFM tip motion is given by

∆ω := ω − ω0 � −ω0

2k

∂Fz

∂z

����
z0

(6.18)

which is showing the proportionality between the frequency shift and the local force gradient.

In using the AFM to measure the charge distribution at the silicon surface, all significant

tip-sample forces must be considered by our model. These can be short-range chemical forces

(less than 5 Å), long-range van der Waals forces, electrostatic forces, or magnetic forces (up

to 100 nm) [50]. However, we choose operational parameters to ensure that electrostatic

forces produced by the DBP− dominate over these other forces.

The external source potential Vt is kept constant during the interaction with the sample.

If the tip is sufficiently far from the surface, chemical forces can be ignored, and magnetic

forces are negligible if the tip is made of non-magnetic material, e.g. tungsten. An ultrasharp

nanotip [166] is employed to minimize forces arising from induced polarization of the sample.

Reducing the tip oscillation amplitude to the Ångstrom scale, for example with a quartz-

made qPlus sensor [106, 50, 107] also helps to minimize this form of interaction.

112



O x 

z 

Si 

vacuum 

AFM tip 

r 
h0 

Rt 

e 

Vt 

z0 

Figure 6.5: Schematic of AFM setup for charge sensing, illustrating the geometrical param-
eters relevant for the tip-sample interactions. The choice of the coordinate system (xOz),
the position vector of the DB charge (r), and the “boss sphere” (dashed circle) fitted to the
apex of the AFM tip are shown. [reproduced from ref. [3], Fig. 7]

6.2.2 Trapped charge in the tip-sample system

A. Electrostatic potential energy

The DBP− can be treated as a trapped charge oscillating between the left and right DBs.

This single charge is located within the plane of the Si surface (Fig. 6.5). Thus, the charge

interacts with other entities such as the space-charge layer in the semiconductor substrate

and other charges in the substrate and on the biased AFM tip, if present (see Sec. 3.1.3 for

some background information on space-charge layer). Here we analyze the problem from a

basic viewpoint in order to capture the essential electrostatic elements at play.

For an n-type Si sample with a donor concentration ND, the presence of a locally planar

electrode at a height h0 above the surface biased at a voltage Vt induces a subsurface space-
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charge layer in the semiconductor with a width w approximated by the solution of the

quadratic equation [115]

eND

2εrh0
w2 + eNDw +

ε0Vt

h0
= 0, (6.19)

where ε0 and εr are the vacuum permittivity and semiconductor dielectric constant, respec-

tively.

Correspondingly, the so-called band bending potential at a depth zd into the sample can

be written in the quadratic approximation as [115]

VSi (zd) = V0

�
1− zd

w

�2
(6.20)

where V0 is the potential at the surface given by

V0 ≈
eNDw2

2ε0εr
sign (Vt) (6.21)

where ‘sign’ gives the sign of the applied tip bias. As the AFM tip is usually not locally

planar the above equation is a coarse approximation for band bending representing an upper

limit for the real case.

In order to calculate the potential at the Si surface, we approximate the electrostatic

potential due to the biased AFM tip as being that of a biased conducting sphere with radius

Rt fitted to the apex region of the tip (or the “boss” as depicted in Fig. 6.5). In order to

reflect the contribution of the mobile charge carriers in the substrate, we apply a rescaling

of this spherical potential, namely we recalibrate the value of the potential at the Si surface

location directly under the tip apex, r0 = (0, z0), to be just V0 given above.

From this analysis, at the location r = (x , z ) of the DB, the bare potential due to the tip

is

φ (r) =
V0r0
r

(6.22)

where the coordinate origin is chosen at the center of the boss sphere. This bare potential

does not include the image charge effects, which are accounted for below. Furthermore, for
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the case when the amplitudes of the AFM cantilever are small, we can neglect the variation

of V0 with the tip height and use henceforth only its value at the equilibrium scanning height.

With the above assumptions, the effective electrostatic energy of the tip-charge system

can be written as [167]

W eff (r) = −1

2
CtV

2
t +

eV0z0
r

− 1

8πε0

e2Rt

r2 −R2
t

(6.23)

where the last term accounts for the image charge inside the tip and for the charge redistri-

bution via the voltage source as explained by Kantorovich et al. [167]Then the force exerted

on the tip in the direction normal to the surface can be calculated as

Fz (r) = −∂W eff

∂z
=

eV0z0z

r3
− 1

4πε0

e2Rtz

(r2 −R2
t )

2 · (6.24)

This expression for force can then be substituted into Eq. (24) to approximate the expected

AFM frequency shift.

B. Atomic-force-microscope frequency shift

The AFM frequency shift is obtained from the derivative of the force with respect to z, as

in Eq. (6.18)

∆ω =
1

2mω0

�
−eV0z0 (x2 − 2z20)

r5
+

1

4πε0

e2Rt (R2
t − x2 + 3z20)

(R2
t − r2)3

�
. (6.25)

In readout of a DBP− excess charge, the total AFM frequency shift is given by

∆ωAFM = ρL∆ω(L) + ρR∆ω(R)

= ρL
�
ω(L) − ω0

�
+ (1− ρL)

�
ω(R) − ω0

�
(6.26)

= ξρL +
�
ω(R) − ω0

�
,

where ∆ω(L) (∆ω(R)) is the frequency shift due to the charge localized in the left (right) DB

and each frequency shift is weighted by the corresponding time-averaged charge probability

ρL (ρR). The parameter ξ is the differential frequency shift of the cantilever caused by the

excess charge tunneling from the right to the left DB; i.e.

ξ = ω(L) − ω(R). (6.27)
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is

Figure 6.6: AFM frequency shift as the tip scans along a line coinciding with the DBP axis.
The three curves correspond to as many equilibrium heights of the AFM tip indicated in the
legend, while the other scan characteristics have the values indicated in the text. [reproduced
from ref. [3], Fig. 8]

Equation (6.26) indicates that the AFM readout ∆ωAFM is linear in ρL. Thus, we expect

to observe resonances in the AFM output signal while scanning through a range of bias

values Vb, owing to the existence of resonance features for ρL as seen in Fig. 6.2.

Note that the task of sensing the location of a single charge as in previous experimental

work [107] is different from the current task, where we attempt to obtain information about

both the location and the rates of (driven) motion of the electron. However, this does not

violate the uncertainty principle as we are not measuring the instantaneous location and

momentum of the particle, but rather time-averaged quantities, and the ultimate knowledge

we aim to obtain of the quantum system is statistical in nature.

In order to optimize the AFM read-out, we judiciously choose experimental parameters.

First, the AFM cantilever parameters should be chosen so that the noise is much lower than

the signal. Second, for a given cantilever, we choose an appropriate oscillation amplitude
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for the AFM tip. Larger amplitudes yield lower noise, whereas lower amplitudes offer better

spatial resolution. Finally, ξ should be maximized with respect to x to achieve the largest

possible frequency-shift read-out.

Although the greater sensitivity of silicon cantilevers is certainly a desirable feature for

the purpose of the current study, at present it seems unlikely that they would allow the

required atomic resolution mainly due to their inability to achieve low-amplitude oscillations

and thus perform scans very close to the sample, 1-2 nm. Attempting such tasks would likely

lead to undesired frequent jump-to-contact events and thus very poor scans.

On the other hand, the qPlus tuning-fork system, although less sensitive, has been already

proven to sense single charge with atomic spatial resolution [107] due to its robustness and

ability to scan very close to the sample at low amplitudes. (It easily avoids certain problems

such as the jump-to-contact issue [168].) It also allows combined AFM/STM studies thus

facilitating DB fabrication and precise positioning during the experiment. Therefore in this

study we choose parameters representative of the qPlus system, keeping in mind that the

optimal system may have characteristics somewhere in between those of the tuning fork and

silicon cantilevers.

As experimental values, we henceforth assume f0 = 30 kHz, k = 1800 N/m, Q = 5× 104,

Rt = 5 nm, Vt = 0 V, and operation at liquid helium temperature. Also, unless otherwise

specified, the oscillation amplitude and equilibrium height for the AFM tip are assumed to be

3 Å and 1 nm, respectively. The total noise in the frequency shift signal estimated for all the

results below is less than 5 mHz at 4 K and 9 mHz at 77 K. As the AFM experiments yield the

frequency shift in units of Hz, we present our results below in terms of ∆fAFM = ∆ωAFM/2π.

For a DBP− with separation of 7.68 Å, the AFM maximum differential-frequency shift

is obtained when the left dangling-bond is x ≈ 3 Å away from the AFM tip central axis.

Figure 6.6 depicts the AFM frequency shift ∆fAFM as a function of the lateral tip position

x. In this figure, it is clear that the effect of a trapped charge on the value of the AFM
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frequency is highly dependent on tip height. The great increase in signal for a tip height less

than 1 nm is due to the fact that image-charge forces dominate in such close proximity to

the localized charge.

Note that despite the simplicity of our model, the calculated magnitude of the signal

is commensurate with past experimental results of single-charge sensing with atomic reso-

lution [107]. Hence, this scheme is appropriately sensitive to small displacements of single

trapped charge.

Figure 6.7 shows the resonant peaks in the AFM signal. These resonant features are

reflected in the oscillation frequency of the AFM tip when the DBP− is simultaneously

exposed to a static bias and a driving radiation. In fact, the resonances can be exploited by

varying the static bias for a fixed driving frequency. For each value of driving frequency a pair

of resonant peaks appear on the AFM signal for two symmetric static-bias values. These

peaks contain information about our system and can be used to determine the tunneling

frequency ∆ of the excess charge.

More generally, Fig. 6.8 shows the AFM frequency shift as we sweep both the MIR driving

frequencies and the applied static bias Vb from a negative to a positive value. The resonance

loci appear here as ridges (trenches) when the MIR driving frequency is commensurate with

the ramped tunneling frequency. These resonance trends mirror the parabolic relationship

between the MIR driving frequency and the static bias, as shown in Fig. 6.4.

6.3 Damped dangling bond pair dynamics

Until now our analysis ignores noise causing decoherence in the two-level system. In this

section we study the effect of noise on the shape and width of the resonances used to charac-

terize electron tunneling. We show that the noise model can be tested by the measurements,

and we consider the specific model of spin-boson coupling [39] to illustrate how the model is

tested and the parameters are acquired by measurement.
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
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DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
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potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
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by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
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pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
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Furthermore the tunneling rate is a function of the ap-
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ing force is added, which pushes the excess electron back
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parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
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inter-dot tunneling frequency, the resultant force has only
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the electron-site distribution is nearly the same as the re-
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electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11
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but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
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tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
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plications to quantum computing1–3 and spin-charge con-
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charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
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is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
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but sufficiently far apart that they are not chemically
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potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
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pling to local charges12.
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by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
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pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
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the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is

On Measuring Coherence in Coupled Dangling-Bond Dynamics

Zahra Shaterzadeh-Yazdi,1, ∗ Josh Mutus,2, 3 Lucian Livadaru,2, 3

Marco Taucer,2, 3 Robert A. Wolkow,2, 3 and Barry C. Sanders1

1Institute for Quantum Information Science, University of Calgary, Alberta T2N 1N4, Canada
2National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9, Canada

3Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada
(Dated: August 19, 2012)

We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
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version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11
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sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
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tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is

Figure 6.7: AFM frequency shift (∆fAFM) as a function of static bias (Vb) for four different
values of driving radiation frequency given in the legend and ΩMIR= 1 GHz. At each fre-
quency a set of two resonant peaks appear for two symmetric static bias values. [reproduced
from ref. [3], Fig. 9]

The spin-boson model characterizes weak coupling between a two-level system and a

generic bosonic bath, such as phonons or charge fluctuations [39]. It is described by the

Hamiltonian

Ĥsb =
�

i

�ωib̂
†
i b̂i + σ̂z

�
ki
�
b̂†i + b̂i

�
(6.28)

with ωi the ith oscillator frequency, b̂†i and b̂i the corresponding creation and annihilation

operators, and ki the coupling strength between the dangling-bond pair and the bath.

The first term on the right-hand side of Eq. (6.28) is the free bath Hamiltonian, and

the second term is the system-bath interaction Hamiltonian. The interaction Hamiltonian

indicates that the coupling depends linearly on the coordinates of the dangling-bond pair

and the bath harmonic oscillators. The total Hamiltonian of the system would then be

Ĥ = Ĥb + Ĥd + Ĥsb, (6.29)

where the first two terms are given in Eqs. (6.2) and (6.9). More elaboration on spin-
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Figure 6.8: Location of the resonance peaks in ∆fAFM in the two-dimensional parameter
space of the static bias and the driving radiation frequency. The DBP− has a separation of
7.68 Å and the Rabi frequency is ΩMIR= 500 GHz. [reproduced from ref. [3], Fig. 10]

boson model can be found in Sec. 2.6. Solving the master equation for the dangling-bond

pair [169, 48], the steady-state probability for the excess charge to be in the left quantum

dot is [81]

ρL-sb =
1

2
+

eVbΓr

2�∆�

η2 + Γ2
φ�

η2Γr + Ω2
MIRΓφ� + ΓrΓ2

φ�
, (6.30)

with decoherence rate Γφ� = Γφ + Γr/2 for relaxation rate Γr and dephasing rate Γφ. For

Γφ� → 0 and tanϕ = |Ω|
η , Eq. (6.30) reduces to Eq. (6.17). In another limit, the relaxation

rate Γr and dephasing rate Γφ are equal up to second order in the limit of weak qubit-bath

coupling: Γ := Γr ≈ Γφ.

The AFM frequency shift is shown in Fig. 6.9 as a function of static bias for MIR driving

frequency ωMIR fixed to 250 THz and various decoherence rates given in the legends. As the

Rabi frequency is sampled in decreasing order over three orders of magnitude in (a), (b),

and (c), we notice a very strong narrowing of the resonance peaks, which was also seen in
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
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tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
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tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
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supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
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tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
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spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
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but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
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plications to quantum computing1–3 and spin-charge con-
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due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
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spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11
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sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-

On Measuring Coherence in Coupled Dangling-Bond Dynamics

Zahra Shaterzadeh-Yazdi,1, ∗ Josh Mutus,2, 3 Lucian Livadaru,2, 3

Marco Taucer,2, 3 Robert A. Wolkow,2, 3 and Barry C. Sanders1

1Institute for Quantum Information Science, University of Calgary, Alberta T2N 1N4, Canada
2National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9, Canada

3Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada
(Dated: August 21, 2012)

We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ∆ = 10 THz

(ii) ∆ = 100 THz

(iii) ∆ = 120 THz

(iv) ∆ = 133 THz

(v) ∆ = 140 THz

(vi) ∆ = 160 THz

(vii) ∆ = 180 THz

(1)
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supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is

On Measuring Coherence in Coupled Dangling-Bond Dynamics

Zahra Shaterzadeh-Yazdi,1, ∗ Josh Mutus,2, 3 Lucian Livadaru,2, 3

Marco Taucer,2, 3 Robert A. Wolkow,2, 3 and Barry C. Sanders1

1Institute for Quantum Information Science, University of Calgary, Alberta T2N 1N4, Canada
2National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9, Canada

3Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada
(Dated: August 19, 2012)

We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.

PACS numbers: ?

I. INTRODUCTION

(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
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and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
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spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11
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sion prevents both DBs from gaining an excess electron
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bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
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only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
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and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
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nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
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infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
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tive two-level system known as a ‘charge qubit’, with ap-
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version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
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atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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(i) ωNIR = 350 THz

(ii) ωNIR = 300 THz

(iii) ωNIR = 250 THz

(iv) ωNIR = 200 THz

(v) ωNIR = 150 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron
but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is

discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-
nances should be observable by seeing sudden changes in
the excess-electron distribution, hence sudden changes in
the AFM tip oscillation frequency, when the NIR field is
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We devise a scheme to characterize tunneling by an excess electron shared between a pair of
nearby dangling-bonds on a silicon surface. We conjecture that the tunneling will be highly coherent
but too fast to be characterized by conventional electronic techniques. Our approach is instead
to measure the time-averaged location of the excess charge by employing a capacitively-coupled
atomic-force microscope tip to create an electric-potential difference between the two dangling bonds
while simultaneously driving the dangling-bond pair with a near-infrared field. When the near-
infrared field is resonant with the tunneling frequency between the dangling bonds subject to the
biased potential, the time-averaged excess-charge location should be symmetric; otherwise the time-
averaged location is asymmetric proportional to the bias. This resonant symmetry effect should not
only reveal the tunneling rate but also the nature and rate of decoherence of this tunneling.
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(i) ∆ = 10 THz

(ii) ∆ = 100 THz

(iii) ∆ = 120 THz

(iv) ∆ = 133 THz

(v) ∆ = 140 THz

(vi) ∆ = 160 THz

(vii) ∆ = 180 THz

(1)

Two nearby quantum dots can share a single donor-
supplied excess electron thereby functioning as an effec-
tive two-level system known as a ‘charge qubit’, with ap-
plications to quantum computing1–3 and spin-charge con-
version3,4 for spin-qubit readout.5 Although solid-state
charge qubits have been demonstrated in semiconductors
and superconductors.1,6 inter-dot tunneling rates vary
due to growth imperfections and decoherence mechanism.
We have suggested overcoming these challenges by em-
ploying silicon-surface dangling bonds (DBs) as closely-
spaced quantum dots sharing a single donor-supplied
electron,7 which is predicted to be highly coherent with
a tunneling time between 10 fs and 1 ps.8,9 The disad-
vantage of our strategy is rapidity of tunneling, meaning
that direct characterization by monitoring the oscillation
is not feasible electronically. Here we propose a strat-
egy to measure the rate and coherence of tunneling by
controlling and monitoring time averaged charge distri-
butions between such dots. These measurements are in-
spired by previous experiments on double quantum dot
structures in the microwave regime.10,11

The two DBs are near enough that electrostatic repul-
sion prevents both DBs from gaining an excess electron

but sufficiently far apart that they are not chemically
bonded together. In our approach, the electron’s posi-
tion within the ‘left’ (L) or ‘right’ (R) quantum dot is
discerned by an atomic force microscope (AFM) capaci-
tively coupled to one DB in the pair, and the slow mea-
surement averages over many oscillations thereby losing
all direct information about the tunneling rate and de-
coherence. Capacitive coupling induces an anharmonic
potential on the AFM tip, and the strength of this cou-
pling, which reveals the average charge in the left dot, is
manifested in the AFM tip’s oscillation frequency. The
oscillation is harmonic in the absence of capacitive cou-
pling to local charges12.

An electric field along the two DBs can be created
by attaching leads to the surface and applying an elec-
tric potential.13? This electric potential bias will cause
the excess electron position probability distribution to
be more heavily weighted in the left or right DB de-
pending on the sign and strength of the bias. In our
scheme this site-location probability is observed by mea-
suring the AFM tip oscillation frequency. For zero bias
the electron is equally probable to be on the right or left.
Furthermore the tunneling rate is a function of the ap-
plied bias as the electric field modifies the barrier between
the L and R dots.

To determine tunneling rate and decoherence, a driv-
ing force is added, which pushes the excess electron back
and forth rapidly between the two DBs with a rate com-
parable to the tunnelling frequency. In the case of two
DBs, the driving field needs to be in the near-infrared
(NIR) regime. If the NIR field is off-resonant with the
inter-dot tunneling frequency, the resultant force has only
a small perturbative effect on the double-dot system so
the electron-site distribution is nearly the same as the re-
sult without the NIR field at all. if the NIR field is reso-
nant, then we show that the NIR field pushes the electron
into being equally likely on the left or right. Thus reso-

(c) 

Figure 6.9: AFM frequency shift as a function of static bias for different decoherence rates
shown in the legends and for three chosen values of the Rabi frequency: 1 THz in (a), 100
GHz in (b), and 10 GHz (c). The laser frequency was fixed to ωMIR= 250 THz in all cases.
Note the progressive narrowing of the range on the horizontal axis from top to the bottom
panels. [reproduced from ref. [3], Fig. 11]

Fig. 6.3 in the absence of any decoherence.

A different range of decoherence rate was sampled in each case in order to capture the

main effect: peak height decreases with increasing decoherence rate and the effect is mea-

surable when the Rabi frequency is commensurate (same order of magnitude) with the

decoherence rate. This is similar to the behavior of a critically damped driven harmonic

oscillator.

For a Rabi frequency exactly equal to the decoherence rate, the peak height is about

40% of its predicted decoherence-free value. Note that the plots in (c) are predicted to be
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applicable at low temperature (4K), while (a) and (b) could be used at higher temperatures

if the decoherence rates go up. As our proposed experiment is to take place at temperatures

of 4 K and higher, a Rabi frequency of 10 GHz seems sufficient to capture these decoherence

signatures in the low temperature regime. This corresponds to an applied laser intensity of

about 2×105 W/m2. Note however that an even smaller laser intensity (2×103 W/m2) is

sufficient if one does not seek decoherence measurements, but only the native tunneling rates

of the qubit.

Experimentally, the limiting factors in measuring these peaks are the (horizontal) reso-

lution in the voltage on the biasing electrodes, and the (vertical) resolution in the frequency

shift of the AFM. In practice, measured resonant peaks can be compared with model curves

to yield information about the decoherence rates. For a sufficiently weak MIR field, the

full-width-at-half-maximum height of each peak directly yields the decoherence rate. Even

if the coupling strength between the MIR field and the DBP− is unknown, the decoherence

rate can still be determined by extracting the resonant peak height as a function of width

for various values of the power of the incident MIR field [81].

Fig. 6.9 conveys three key points of our proposal: how the tunneling rate ∆ can be

inferred, how the decoherence model can be tested, and how the decoherence rate Γ is

obtained if the model is correct. The tunneling rate is revealed by observing resonances of the

AFM frequency shift and is obtained by choosing ωMIR and Vb judiciously. The decoherence

model is tested by seeing whether the frequency shift obeys the model-predicted dependence

on driving-field frequency and static bias. Finally, the decoherence rate is obtained by

comparing the measured resonance peak heights with those predicted for a decoherence-free

system. The plots in Fig. 6.10 serve as examples of expected behavior and can be used in

practice for extracting decoherence parameters from experimental data.

In the spin-boson decoherence model discussed here, the decoherence rate can be deter-

mined solely from the width of the peak because Γr and Γφ are equal up to second order
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(iii)

(i)
(ii)

(iii)

(i)

(ii)

Figure 6.10: Resonant peak magnitudes in the AFM frequency shift as a function of deco-
herence rate Γ for different fixed frequency ωMIR of the driving radiation shown in the legend
and for a Rabi frequency set at 10 GHz. [reproduced from ref. [3], Fig. 12]

in the limit of weak qubit-bath coupling. For a noise model with independent relaxation

and dephasing rates, Eq. (6.30) demonstrates sensitivity to changes in each of these rates

independently.

A practical concern in performing the experiment is the back-action of our detector

(AFM) on the quantum system being measured. The AFM cantilever has a frequency of 104

Hz, whereas the oscillation frequency of the dangling-bond excess-charge is estimated to be

1014 Hz. Thus, the AFM tip motion looks adiabatic to the excess charge and the back-action

of the tip on coherent electron dynamics in the dangling-bond pair is negligible.

There is, however, a static component of the tip perturbation on the qubit, which is the

flipside of the AFM sensitivity of charge location: the tip creates a static bias along the

DBP− axis. We calculated this bias for our optimized setup to have a maximum of 15.8

meV at the spatial location of maximum AFM sensitivity. Fortunately, this static bias does

not significantly alter our scheme as it just adds to the applied static bias, and the resonance
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peaks will still be obtained albeit with a horizontal shift of 15.8 meV. Therefore, correcting

for this back-action is just a simple matter of recalibrating the horizontal (Vb) axis in our

plots so the peak locations become again symmetric. Thus we have the ability to measure

this shift and compensate for it in any subsequent data processing.

6.4 Summary

We have proposed a feasible experimental scheme for characterizing the fast tunneling rate as

well as the nature and rate of decoherence of an excess charge shared between a pair of cou-

pled dangling bonds on the surface of silicon. In our scheme, the electrostatic potential across

the dangling-bond pair is ramped by external electrodes. Furthermore the dangling-bond

pair is driven by a MIR field, and the resulting resonances correspond to equal distribution

of the electron location in the dangling-bond pair despite, and independent of, the strength

of the static bias thereby revealing the desired tunneling properties.

The distribution of the excess electron between left and right dangling bonds is detected

by capacitively coupling the DB excess charge to an atomic force microscope tip. Resonances

are observed on the AFM frequency-shift signal when the MIR field matches the ramped

tunneling frequency of the excess charge.

Experimentally, charge qubit geometries must be chosen so that tunnel splittings (and

corresponding driving frequencies) should avoid undesired excitations such as the different

vibration modes of H-Si bonds [61, 62]. In practice, a control experiment would first be used

to calibrate the AFM probe in the absence of driving radiation. In order to calibrate the

vertical oscillation frequency as a function of lateral position, an AFM tip will be placed at

different positions near a single DB−. The AFM vertical oscillation frequency will exhibit

a shift that depends on the lateral position of the tip with respect to the charge and the

tip height. Oscillation amplitudes and tip height can then be adjusted to obtain maximum

signal.
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Our scheme will enable in-depth studies of quantum coherent transport of electrons be-

tween dangling bonds on the surface of silicon and enable the study of phonons and other

interactions. As dangling bond systems are promising building blocks for quantum-level

engineering of novel devices including quantum-dot cellular automata [1] and quantum com-

puting [2] a detailed quantitative analysis of electron dynamics in dangling bond assemblies

is an important step.
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Chapter 7

Summary, Conclusion and Future Work

In this thesis, I presented theories and proposed a scheme for characterizing the coherent

dynamics of a coupled dangling-bond pair (DBP−) located on a Si surface. A dangling

bond is known as a surface defect and a charge trapper in semiconductor systems. Our aim

is to change this defect to a useful tool for quantum computing and quantum engineering

purposes, at nanometer and even sub-nanometer scales.

My research project leverages on an experiment in 2009, demonstrating that Si-surface

DBs that are located close enough to each other, display a different brightness in STM

imaging of the surface, and also the level of DB-pair brightness depends on the separation

distance between them [1]. The conjecture was the DBs were coupled to each other by

sharing a single excess charge, but whether this coupling was coherent or not remained an

open question. This open question became the main focus of my PhD studies.

Dangling bonds are localized entities, have unique shape, and can be created selectively

on a Si surface by means of a nano tool such as scanning tunneling microscope tip. In

addition, they are on the surface rather than in the crystal bulk, thus enabling more direct

preparation, control, and readout. Considering these features plus their sub-nanometer size,

dangling bonds are an excellent candidate for an atomic-scale quantum dot.

Learning about the coherent dynamics of a coupled dangling-bond pair opens up op-

portunities for using the DBP− as the building block of more complex systems, such as

quantum computating architectures [2], quantum cellular automata unit cells [1], and DBs

sub-nanowires [33, 34]. Furthermore, it helps to have a better understanding of the coherence

and bonding properties of the Si surface of interest. In the following, I first summarize the

main points of our research work, and then propose future directions that can be undertaken
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from each result.

7.1 Summary and Conclusion

7.1.1 DBP− as a charge qubit

As the first objective, we showed that coupled-DB pairs, located on the phosphorous-doped

hydrogen-terminated Si(100)-2×1 surface, have excellent coherence properties. Thus, DBP−s

can be a potential candidate for a charge qubit. This feature raises from the miniaturiza-

tion of charge qubit to atomic realm, which leads to extremely high tunneling rate while

decoherence scales weakly with DBs separation.

We employed ab initio (time-dependent) density functional theory and also Wentzel-

Kramers-Brillouin approximation theory to calculate tunneling rates of DBP−s sharing the

same configuration (i.e. vertical configuration) but with different DB-pair separation dis-

tances. Also, we used the spin-boson model to calculate the effect of voltage fluctuations in

biasing electrodes and also the effect of surface and bulk phonons in the Si crystal, as the

main sources of error, on the decoherence rate of these DBP−s.

Furthermore, we developed the dynamics of a complex system that is composed of any

number of DBs. For this purpose, we employed the extended Hubbard model and modi-

fied the model by adding an extra term corresponding to time-dependent potential biases.

This term finds applications such as controlling the DBP−s tunneling rate, and generating

correlation (via Coulombic interaction) between different DBP−s.

For a well-patterned architecture of the DBs (such that DBs are in pair with a well-chosen

separation between the pairs), our model simplifies to a Hamiltonian consisting of DBP−

dynamics with controllable tunneling rates and single- and two-DBP−s operation gates. Also,

while the complete fulfillment of the DiVincenzo’s criteria is not explicitly addressed, but

initialization, gating time and readout are briefly discussed for such a QC architecture.
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7.1.2 Ab initio calculation of DBP−s energy splitting

As the second objective, we investigated the effect of the anisotropic structure of the Si

surface on energy splitting of coupled dangling-bond pairs. For this purpose, we calculated

the ground state and the first excited state of the DBP− by employing the ab initio DFT and

time-dependent DFT techniques. The DBP− energy splitting is then the energy difference

between these two energy states. The tunneling rate of a DBP− excess charge is linearly

proportional to the energy splitting of the corresponding DBP−.

For a multiparticle system, e.g. the system of our interest, finding the exact solution

to the Schrödinger equation by the wavefunction theory is impossible due to limitations

on computational resources. Density functional theory introduces a smart approach to this

obstacle by using the system’s electron density as the variable rather than using particles’ spin

and spatial coordinates. In the DFT approach, one is required to specify a theoretical method

(which determines the degree of electrons correlation in the desired system) and a basis set

in order to solve the Schrödinger equation of the system. Although some approximations

are involved with this method, this method is called ab initio as it usually provides results

that are in good agreement with experimental results.

In order to develop an understanding of the effect of the surface structure on the energy

splitting of a DBP−, we modeled a wide variety of DBP− configurations with DBs located

on pyramidal-shape Si clusters. These cluster models were then used as inputs for the DFT

calculations. In each cluster model, the two DBs of a chosen DBP−, were selected either

from the same site or opposite sites of the Si dimers, where the dimers could be from the

same row or adjacent rows of the Si-cluster surface. Also DB-pair separation could vary up

to the limit determined by the Si cluster size.

We found that although the DBP− energy splitting decreases almost exponentially as a

function of DB-pair separation, the rate of decrease depends on the type of configurations.

Based on the computed results, we could categorize DBP− configurations to four different
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types where each type reflects a particular effect of the surface structure. Learning about

the structure and the orientation of the dangling-bond orbital played an important role in

understanding and categorizing the DBP− configurations.

In addition, we analyzed the effect of the cluster size and its surface edges on the DBP−

energy splitting. This effect has been checked by choosing a particular DBP− on different

cluster sizes and looking for the convergence properties in the calculated results. We iden-

tified the minimum size that a cluster model should have for the results on DBP− energy

splitting to be reliable.

Also, we analyzed the effect of the dopant’s location within the clusters on the results of

energy-splitting calculation. The position of the phosphorous atom within a cluster is impor-

tant as the dopant P should not be very close to the DBs in order to avoid strong interaction

with them. We found a proper location for the P atom beyond which the calculated results

converged to a unique value. The results indicate that the P atom acts like an excess charge

for our system when it is positioned beyond certain distance from the DBs.

The obtained results provide good insight on the effect of our desired Si-surface on the

coherence of DBP−. As a step forward, experimental characterization of the coherent dy-

namics of these DBP− is of paramount importance. We found that the tunneling rate of the

DBP− excess-charge is extremely high, such that it cannot be detected by conventional elec-

tronic techniques. In the following section, we propose a scheme to indirectly characterize

the coherence dynamics of our DB system.

7.1.3 Proposed scheme for characterizing DBP− coherent dynamics

The extremely high tunneling-rates of the DBP− excess charge results in some practical

difficulties in monitoring the oscillation of the charge and thus directly characterizing its

dynamics by any straightforward method. As the third objective, we proposed a feasible

experimental scheme to indirectly characterize the fast tunneling rate of the DBP− excess

charge as well as the nature and rate of decoherence. The scheme is based on monitoring
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the time-averaged charge-distribution in the coupled-DB pair.

Our scheme has three components: an atomic force microscope (AFM) capacitively-

coupled to a DBP−, a DC potential-bias applied along the DBP−, and a tunable mid-

infrared (MIR) driving field that is capable of inducing Rabi frequency in our system. In

this scheme, the time-averaged charge distribution of the DBP− is monitored by the AFM

tip, while driving the DBP− by the MIR field concomitantly with sweeping the applied bias

from a negative value to its positive counterpart. When the driving field becomes resonant

with the bias-imposed DBP− tunneling rate, the time-averaged charge distribution becomes

symmetric between the two DB sites (despite the strength of the bias applied), which leads

to resonant peaks in the AFM read-out signal. From these resonant features we can extract

the tunneling and decoherence rates of the DBP− excess-charge.

We developed a theory describing the role of all the components involved in our scheme.

For a chosen DBP−, we specified the values that each component should have in an ex-

periment in order to detect the DBP− excess-charge dynamics. Also, we assumed that our

system is ideal and thus analyzed it in the absence of any sources of noise. Then, we modified

our theoretical model by including the effect of dominant sources of noise. Our scheme will

enable in-depth studies of quantum coherent transport of electrons between dangling bonds

on the silicon surface and enable the study of phonons and other interactions.

7.2 Future work

Experimental observation of coupled-DB pairs on the Si surface has provided a new and

interesting topic of study that has the potential to bridge quantum information and com-

putation with nanotechnology. I pursued three objectives during the course of my studies,

but this topic certainly has the potential to lead many short- and long-term future research

objectives. In the following, I suggest some of the future work that can branch from the

objectives summarized above.
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1. Considering that a DBP− has the potential to be employed as a charge qubit,

a logical step forward would be to further develop quantum computing im-

plementations with the need to fully address all DiVincenzo’s criteria [18] for

such architectures. Possible computing schemes suitable for our DBP− charge

qubit can be a four-rail flying qubit model analogous to the one for nuclei-spin

qubits in the bulk silicon [75], or a one-way quantum computing scheme [154],

where the qubits are stationary.

2. Addressing all DiVincenzo criteria will of course require much elaboration.

For instance, ways to introduce fresh, initialized DBP−s; schemes to ensure

that DBP− phases are properly tracked and gates are correctly applied; the

scalability of the system; how DBP− qubits can be effectively moved over

spin chains to enact interactions in a flying circuit model; and possibly incor-

porating readout during the computation for the purpose of quantum error

correction.

3. Short-term efforts can focus on developing ways to investigate a small number

of DBP−s, both theoretically and experimentally. For instance, from theoret-

ical aspects, instead of idealizing the charge qubits at the outset and using

standard quantum circuit theory, we can use the extended Hubbard model

to characterize idealized proposals for charge-qubit circuits using this second-

quantized description with short- and medium-range interactions. In partic-

ular we can study how one- and two-qubit gates would perform for realistic

systems. We can apply our theory to a three-qubit system, such as teleporta-

tion of a single charge qubit. In a further step, we can simulate non-unitary

forms of single- and two-qubit gate operations by incorporating noises in our

system.

4. Another potential direction for new investigations is to find ways to tune and
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control the potential-barrier height between DBs. This is especially important

for the purpose of controlling DBs interaction as it can facilitate and help

with turning on and off the gate operations and also controlling the qubit

measurement. Tuning the potential barrier may be achieved by changing the

doping level, applying controllable molecular attachments, or using nano-size

electrodes in order to vary the local electrostatic potential. Each of these

approaches opens up a new topic of study on its own.

5. As mentioned earlier, the scaling advantage of the DBP− qubit comes at the

price of having to achieve rapid gating control, which entails some techni-

cal obstacles such as scaling down the nanowire network required for biasing

qubits and accurate control of the amplitudes of the pulsed fields. Such a fast

and spatially precise control is beyond the current capability of standard elec-

tronics, but in principle is conceivable by placing a suitable pattern of metallic

nanowires near the surface and irradiating it with a laser pulse. The resulting

electromagnetic field, created via plasmonic action [170], can bias the surface

with a temporal control comparable to the duration of the pulse, which can

be as short as femtoseconds. Different gates could be affected by time-varying

biases achieved by controlled laser pulses. This problem of fast control by its

own can be a new subject of studies at the graduate level.

6. Ab initio DFT calculations can be applied to larger Si clusters, though at

the price of requiring more computational resources. However, it is worth

trying as it helps to collect more data (by running calculations for more DBP−

configurations) and thus providing a more accurate insight on the effect of

the Si surface on the coherence of DBP−. Furthermore, a larger cluster can

accommodate more than two DBs. Thus, one can develop new theories for

the coherence and bonding of coupled DBs with the help of the results. These
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results can be used for understanding and analyzing possible single- and two-

qubit gate operations applied to the DB-pairs. Also, it helps to develop new

theories for the quantum cellular automata unit cells.

7. Following our proposed scheme for measuring DBP− coherent dynamics, the

next step forward is to test this scheme experimentally. Based on our theo-

retical estimations one can reveal DBP− coherence rate as well as the nature

and rate of decoherence. In our studies, we assumed a weak coupling between

the DBP− and its surrounding environment and used the spin-boson model

to estimate the decoherence rate. However, if the data collected from the ex-

periment does not match the theory then we need to employ a different noise

model to test and find the nature of our system’s decoherence mechanism.

8. So far, we focused only on the hydrogen-terminated Si(100)–2×1, as this sur-

face is one of the most commonly used surface orientations in the Si-wafer

fabrication technology [36]. However, dangling bonds can reside on other Si

surfaces and other types of semiconductors, thus providing an opportunity for

investigating the properties of coupled DBs on other semiconductor surfaces

as well.

Finally, since the dangling bond systems are promising building blocks for quantum engi-

neering of novel devices, a detailed quantitative analysis of the electron dynamics in dangling

bond assemblies is an important step forward.
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Appendix A

Samples used for energy-splitting calculation

Below, we present all the Si-cluster models that we prepared for the purpose of evaluating

the energy splitting of different DBP− configurations, by means of ab initio (TD) DFT. Any

individual box is representing the hydrogen-terminated Si(100)-2×1 surface. Each horizontal

line in the box corresponds to a Si-Si dimer. Pair of red dots in each box represents a DBP−,

and the dot with letter P stands for the phosphorous atom doped within the clusters. The

cluster size is shown by n × m , where n is the number of rows and m is the number of

Si-dimers per row.

DBP− configurations are categorized based on the size of the cluster on which they are

located. The name of each sample clearly shows the corresponding cluster size and the type

of configuration, i.e. ‘V’ for vertical, ‘H’ for horizontal, and ‘D’ for diagonal. There are

thirty-six cluster samples all together, which include all possible DBP− configuration on

these cluster sizes. Furthermore, depending on the type of configuration, a cluster can have

Cs, or C2 symmetry. Clusters with Cs have a mirror-plane symmetry, whereas clusters with

C2 symmetry does not change in shape under a rotation of 180 degrees around a rotational

axis that is perpendicular to surface.
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Figure A.1: DBP− configurations on two different sizes of cluster: 3×4 (i.e. 3 rows with 4
silicon dimers per row) and 4×4 (i.e. 4 rows with 4 silicon dimers per row). The rectangular
box represents Si(100)-2×1 surface of a desired cluster model; horizontal short lines in each
box represent Si dimers, and the red and yellow small circles represent the DBs and the P
dopant, respectively. The letters V, D, and H stand for vertical, diagonal, and horizontal
DBP− configurations.
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Figure A.2: DBP− configurations on the cluster size 5×4; each cluster model has 5 rows with
4 silicon dimers per row). The rectangular box represents Si(100)-2×1 surface of a desired
cluster model; horizontal short lines in each box represent Si dimers, and the red and yellow
small circles represent the DBs and the P dopant, respectively. The letters V, D, and H
stand for vertical, diagonal, and horizontal DBP− configurations.
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Figure A.3: DBP− configurations on cluster size 3×m wherem ∈ {5, 6, 7}; each cluster model
has 3 rows and m number of dimers per row. The rectangular box represents Si(100)-2×1
surface of a desired cluster model; horizontal short lines in each box represent Si dimers,
and the red and yellow small circles represent the DBs and the P dopant, respectively. The
letters V, D, and H stand for vertical, diagonal, and horizontal DBP− configurations.
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Appendix B

From basic theory to computation

For each cluster, a Gaussian input file is prepared, in which the number of processors and the

amount of memory required for the job are allocated; desired type of calculation, basis set

and theoretical method are set; molecular structure of the cluster consisting of the atomic

coordinates and the charge and spin-multiplicity of the cluster are given, and any additional

constraint is also specified. Depending on the size of clusters, we used 4, 6, or 12 processors

and 15 to 22 GB of memory. The type of calculation was selected to be either DFT or

TDDFT. The calculations are done using B3LYP as the theoretical method and 6-31G(d) as

the basis set. The atomic coordinates of the clusters are built by a graphical interface called

GaussView, and calculations took from 15 to 30 days to be completed.

Usually, the file starts with a line defining the location of the scratch files and the amount

of memory and the number of processors allocated to the job. Then, the required sections,

known as ‘route section’, ‘title section’ and ‘molecule specification section’ are set. In the

route section, the desired functional, basis set, and the type of calculation should be specified.

The title section contains descriptive information about the job. This information would

appear in the output file and help remembering what had been pursued in that job. In the

molecule specification section, we need to specify the electronic and physical structure of the

cluster. This section begins with specifying the electronic structure including the ‘charge’

and the ‘spin multiplicity’ of the cluster and then is followed by introducing the coordinates

of the atoms in that cluster.

Charge specification corresponds to the total charge added to or subtracted from a cluster.

For a neutral cluster, the charge should be set to zero, whereas for a charged or uncharged

one, this is changed to a positive or a negative integer, respectively. Spin multiplicity of a
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cluster is given by the number of unpaired electrons plus +1, or alternatively is given by

2S + 1 where S is the total spin of the cluster. Paired charges do not contribute to this

quantity, but each unpaired charge contributes +1/2 to S. In my cluster samples, I set the

charge to 0 and the spin multiplicity to 2, because the excess charge of the dangling bond

pairs belongs to the phosphorous atom and it is obviously an unpaired charge.

Physical structure of a cluster is specified by the type of atoms it contains, and their

coordinates. Position of atoms can be set in Cartesian format, or internal format or a

mixture of both. In Cartesian format, each atom of the cluster is specified by its symbol,

and its x, y, and z coordinates, whereas in the internal coordinate the location of atoms are

specified using the bond lengths, bond angles, and dihedral (torsion) angles between an atom

and its neighboring ones. Mixture of both formats is useful when some parts of a cluster

is more easily specified in one format whereas other parts are more easily described by the

other one. I use Cartesian coordinates to specify the structure of my clusters.

For large multi-atomic systems, manual preparation of the systems’ structure is difficult.

However, there are other ways that would greatly facilitate the preparation of the cluster

structure in a desired coordinate format. For instance, we can use a graphical interface such

as GaussView or a drawing package utility such as NewZMat. Alternatively, we can obtain

this information from an experimental literature or a previous calculation. I use GaussView

to prepare the crystal structures of my interest, and then extract the atoms coordinates in

Cartesian format to use in the corresponding Gaussian input files.

The input file can contain an optional section determining values for the variables used

in the molecular-structure specification section. For instance, in my cluster samples, I freeze

in place the hydrogen atoms that are located on the edges of the clusters. For better un-

derstanding of the structure of a Gaussian input file, a (shortened) sample is given below:

%Chk=Fig3x4-V.chk

%mem=15GB
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%nprocshared=4

# opt=modredundant B3LYP 6-31G(d)

3x4 Si cluster, with DBs in vertical configuration and one dimer-spacing apart

0 2

Si 5.78322038 -8.83162745 3.45524010

.

.

.

P 0.00000000 0.00000000 -4.16545106

.

.

.

H -1.88186705 -1.63253191 4.85080865 X 165 B

.

.

.

X 237 B

X * F
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