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Abstract

Glorious victories have been achieved when quantum theory (QT) is applied to microscopic

systems. However, although there might be good reasons for us to believe that QT applies at

the macroscopic level as well, to give a definite answer ”yes” there is still a long journey. If it

does apply, a direct result is that it predicts highly counter-intuitive macroscopic quantum

superpositions and entanglements, which we never experience in our daily lives.

In this thesis we assume that QT applies to the macroscopic level, and try to find out

why we never really observe macroscopic quantum effects. The thesis contains two projects,

aiming at two reasons for the above problem. In the first project (Chapter 3 and 4), we show

that the required resolution to observe macroscopic quantum effects increases with the size

of the system, when both outcome precision and control precision are taken into account.

This means that for really large quantum effects we need a very good measuring resolution to

observe them, while what we usually do are coarse-grained measurements, whose resolutions

are much lower.

In the second project (Chapter 5), we try to deal with decoherence, another obstacle

preventing us from observing macroscopic quantum effects. We propose to create and detect

strong entanglement of micro-macro and macro-macro beams of photons with very weak cross

Kerr nonlinearities that are obtainable by current technology. We analyze the entanglement

under environmental decoherence with various methods, and show that strong entanglement

can still be created and detected under decoherence.

We hope that the above results will help to push the boundary of the realm of QT towards

the macroscopic level.
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Chapter 1

Introduction: why is it hard to observe Schrodinger’s

Cat

Glorious victories have been achieved when quantum theory (QT) is applied to microscopic

systems. Quantum superposition and entanglement, the most striking features of QT that

arise from its linear structure, have been verified experimentally in various systems. The

electron double slit experiment, the common topic of the first chapter of quantum mechan-

ics textbooks, has been realized in 1989 [4], and was voted as the most beautiful physics

experiment [5]. There is no doubt that QT correctly describes the microscopic world.

However, although there might be good reasons for us to believe that QT applies at

macroscopic level as well, to give a definite answer ”yes” there is still a long journey. The most

famous counter example is the Schrodinger’s cat gedanken experiment, raised by Schrodinger

in 1935. The main idea is very simple.

1√
2

(|0〉+ |1〉)|A〉 → 1√
2

(|0〉|D〉+ |1〉|A〉)

A quantum system (such as an atom in this case), can be in superposition of two different

states (decayed |0〉and not decayed states |1〉). These two different states would interact with

the macroscopic object (a cat) differently (decayed atom would kill the cat, not decayed

would not). After the interaction, the global system (the cat and the atom) would be in a

superposition of two states: decayed atom with a dead cat |0〉|D〉, and non-decayed atom

with a alive cat |1〉|A〉. In other words, the atomic state is entangled with the cat state.

If we put this atom and the poor cat in a black box, according to QT, before opening the

box to do the measurement, the global system would remain in superposition (entangled).

However, how can a cat be in a superposition of dead and alive states? If so, can it be ever

1



Figure 1.1: Schrodinger’s Cat

observed?

Obviously, no one has ever experienced a macro system being in a superposition of two

different states, such as a cat being dead and alive and a desk being here and there. Why is

this the case? This is a common question raised in many papers and textbooks when talking

about foundational problems of QT. In my opinion, there are mainly three reasons.

1.1 No interference experiments

The most direct answer to the questions why no one experienced a desk in superposition

of being two different positions, is the fact that no one has ever done proper interference

experiments to observe such quantum superposition. As we know, quantum superposition is

a statistical effect, which means that to observe it one has to do many rounds of experiments

and look at the statistics. We can never verify that something is in superposition of two

different states by a single shot. In electron double slit case [4], we have to send a lot of

electrons to the slits and look at the pattern on the screen behind. If there is interference

fringe we can infer that the electron was in a superposition of passing through each slit. For

2



Figure 1.2: Electron double slits experiment

the same reasons, to verify the desk is in a superposition of being two different locations, one

also needs to do proper interference experiments. However in our daily experiences, no one

has ever tried to do such experiments. In my opinion, this is the most direct reason. Although

it is true that for macroscopic systems such interference experiments are hard to realize, due

to decoherence and high requirement for measurement resolution, as discussed later, yet

a lot of literature never even mentioned that interference experiments are prerequisite for

observing quantum effects.

1.2 Decoherence

The second reason is decoherence [1], the common answer to this problem given in the liter-

ature. The main idea is that the global system is actually also interacting with the environ-
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ment, bringing the environment into entanglement. The two macroscopic states ({|A〉, |D〉})

interact with the environment differently and the corresponding two environmental states

({|E0〉, |E1〉}) become orthogonal very quickly.

1√
2

(|0〉+ |1〉)|A〉|E0〉 →
1√
2

(|0〉|D〉+ |1〉|A〉)|E0〉 →
1√
2

(|0〉|D〉|E0〉+ |1〉|A〉|E1〉)

As we cannot monitor the state of the environment, we have to average it out. The

reduced density matrix of the global system becomes:

ρsa = Tre(ρsae) =
1

2
( | 0, D〉〈0, D|+ |1, A〉〈1, A|)

The off-diagonal terms which characterize the quantum coherence of {|0, D〉, |1, A〉} van-

ish, which means that the quantum coherence is lost and the state becomes a statistical

mixture (there is no interference pattern).

Decoherence is one of the main obstacles in quantum information science. In general, the

larger the system is, the stronger it interacts with the environment, and the more sensitive

it is to decoherence. Thus the problem of observing macroscopic quantum effects becomes

how to create and detect macroscopic quantum effects before they become decohered. The

second project in this thesis is to create and detect macroscopic quantum entanglement that

is robust under decoherence via optical Kerr effect, see Chapter 5 for detail.

1.3 Measurement precision

The third reason for not observing macroscopic quantum effect is that the measurement

precision may not be high enough [6] [9]. To detect macroscopic quantum effects, there are

certain requirements in measurement precision. If such requirements are not satisfied, even

if we have macroscopic quantum superposition or entanglement, the statistics we obtain may

be similar to classical mixtures. It has been conjectured that the requirement in measurement

precision would increase as the size of the system increases. Chapter 4 deals with this issue

in detail.
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1.4 The structure of this thesis

This thesis concentrates on the topic how to create and detect macroscopic quantum ef-

fect. Our goal is to push the boundary of the realm of QT towards macroscopic level. We

mainly focus on quantum optical systems, with the help of optical Kerr effect. The thesis

contains two projects, aiming at the second and third points above respectively. The thesis

is organized as follow. Chapter 2 reviews the basis of quantum optics and quantum infor-

mation. Chapter 3 and Chapter 4 analyzed the measurement precision required to detect

macroscopic quantum effects, reconciled contradictory results from two PRL papers, gener-

alized the concept of coarse measurements, and revealed that it is increasingly difficult for

coarse measurement to reveal macroscopic quantum effect with increasing size of the system.

Chapter 5 analyzed a new class of macroscopic entangled states generated by weak cross Kerr

phase shift. We tried various methods, including developing our own entanglement witness,

to quantify and analyze the entanglement, and verified that such entanglement is robust

under decoherence.
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Chapter 2

Basics of quantum optics and quantum information

2.1 Coherent states and Cat states

2.1.1 Coherent states

Coherent states |α〉 are usually considered as the most “classical” quantum states in quantum

optics[1][2][3]. One of the reasons is that the expectation value of the electric field has the

form of the classical expression. Another reason is that the fluctuations in the electric field

operator are the same as for a vacuum states. Moreover, the states become well localized in

phase with increasing average photon number. The laser pulse generated in experiments can

usually be considered as a coherent state. It is defined as the eigenstate of the annihilation

operator â|α〉 = α|α〉. Expended in the fock basis,

|α〉 = e−|α
2|
∞∑
n=0

αn√
n!
|n〉

Let us consider the expectation value of the electric field operator Ê(r, t) = i
(

h̄ω
2ε0V

) 1
2 [âei(kr−ωt)−

â†e−i(kr−ωt)], we obtain

〈α|Ê(r, t)|α〉 = 2|α|
(

h̄ω
2ε0V

) 1
2 sin(ωt− kr − θ)

where α = |α|eiθ. Such an expectation value looks like a classical field. The fluctuations

in Ê(r, t) is∆E =
(

h̄ω
2ε0V

) 1
2 , identical to those for a vacuum state.

The fluctuations in photon number n̂ is ∆n =
√
〈n̂2〉 − 〈n̂〉2 =

√
n̄

which is the characteristic of the Poisson distribution. In fact, the probability Pn of

detecting n photons is

Pn = | 〈n|α〉 |2 = e−|α|
2 |α|2n

n!
= e−n̄

n̄n

n!
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which is a Poisson distribution with a mean of n̄.

Coherent states can also be defined as displaced vacuum states. The displacement oper-

ator is defined as

D̂(α) = exp(αâ† − α?â)

and the coherent states are given as

|α〉 = D̂(α)|0〉

The reason why it is named “displaced operator” it that the quasi-probabilistic distribu-

tions of the states would be displaced in phase space. This operator will be highly useful

later.

2.1.2 Cat states

In analogy to superposition of two different classical states (dead and alive cats), Schrodinger’s

cat states in quantum optics, often abbreviated as “cat states”, are the superposition of dif-

ferent coherent states, especially when they are quasi-orthogonal. One of the common cat

states is a superposition of two coherent states with opposite phases, which can be generated

via self Kerr effect (see below).

1√
2

(|α〉+ i| − α〉)

Actually, as long as α is large enough, coherent states with small phase difference can also

be quasi-orthogonal. For instance, for a being a large real number

|〈a|ae−iφ〉|2 = e−2a2(1−cos(iφ))e−(aφ)2

This indicates that when aφ > 1

1√
2

(|a〉+ eiθ|ae−iφ〉)

is also a good cat states (eiθ is the general quantum phase). This result would be useful

in Chapter 5 of this thesis.

8



2.2 Beam splitter model of quantum loss

In quantum optics, the main source of decoherence is photon loss. This is because that in

realistic conditions not all photons can really reach the next step, such as the detectors. The

beam splitter model of quantum loss provides the means to determine the quantum state

after it has undergone loss. The model consists of replacing the lossy channel with a beam

splitter that has the same transmission rate and with the vacuum state entering its other

channel. The reflected mode of the beam splitter is assumed to be lost.

It can be shown that a fock state passing through a beam splitter could be represented

as

B̂|n, 0〉 →
∞∑
n=0

Ank|n− k, k〉

where

Ank =

√√√√√√√
 n

k

tn−krk
here t2 and r2 is the transimisitivity and reflectivity respectively.

Thus a quantum state with a density matrix

ρ =
∞∑

m,n=0

ρmn|m〉〈n|

passing through a beam splitter will generate a two mode density matrix

ρ =
∞∑

m,n=0

m∑
j=0

n∑
k=0

ρmnAmjAnk|m− j, j〉〈n− k, k|

By taking the partial trace over the reflected mode, we obtain the density matrix of the

transmitted mode:

ρout = Tr2ρ =
∞∑

m,n=0

min(m,n)∑
k=0

ρmnAmkAnk|m− k〉〈n− k|

The above transformation is called the generalized Bernoulli transformation.

It can also be shown that a coherent state |α〉, after propagation through a loss channel

with transmissivity t2, becomes |tα〉 . This result will be highly useful in the second project

of this thesis.
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2.3 Kerr effect

The Kerr effect is a change in the refractive index of a material in response to an applied

electric field. It is one of the most frequently used nonlinear effects in quantum optics [7].

The Kerr effect can be divided into the self Kerr effect, in which the refractive index is

changed due to the response of the incoming field itself, and the cross Kerr effect, in which

the refractive index is changed due to the response of the another field. The interaction

Hamiltonian for the self Kerr non-linearity is

Hsk = K(a†a)2, (2.1)

and for the cross Kerr non-linearity is

Hck = Ka†1a1a
†
2a2. (2.2)

More details of Kerr effect will be provided in Chapter 3,4 and 5.

2.4 Quantum entanglement

Quantum Entanglement is one of the most fascinating and counter-intuitive aspects of quan-

tum theory. A state of a bipartite system is called entangled if it cannot be written as a

direct product of two states from the two subsystem Hilbert spaces. For mixed states, en-

tangled states are those that could not be written as a convex combination of product of

density matrix from the two subsystem Hilbert spaces.

How to quantify entanglement under various conditions is still an open question. To quan-

tify entanglement one needs to use entanglement monotones, which do not increase under

local operation and classical communication (LOCC), since LOCC cannot create entangle-

ment. In Table 2.1 we compares several entanglement monotones that are often used[4, 6, 5].

Unfortunately, in the second project we need to quantify non-Gaussian continuous vari-

able bipartite large entanglements, where none of the above entanglement monotones really

10



Table 2.1: comparison of entanglement monotones
Entanglement monotones mixture continuous variable non-Gaussian states experimentally detectable
von Neumman entropy no no yes hard
logarithmic negativity yes no yes hard

covariance matrix method yes yes no easy
concurrence yes no yes easy

(inverse) quantum purity no sometimes yes yes hard

apply. So we develop our own entanglement witness based on the structure of our state.

An entanglement witness is a functional which distinguishes a specific entangled state from

separable ones. When it is above some specific value, it means the states are not separable,

and thus the entanglement could be shown.
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Chapter 3

Demonstrating macroscopic entanglement based on

Kerr non-linearities requires extreme phase resolution

3.1 Preface

It has recently been conjectured that detecting quantum effects such as superposition and en-

tanglement for macroscopic systems always requires a measurement precision that increases

with the size of the system. We analyze this conjecture for the case of macroscopic superpo-

sition and entanglement of coherent states. Measurements with low outcome resolution can

be sufficient if Kerr or higher-order nonlinearities are available for basis rotation. However,

the phase of this non-linear rotation has to be controlled with a precision that increases with

the size of the system. This suggests a refined conjecture that either the outcome precision

or the control precision of the measurements has to increase with the size of the system.

This chapter is based on one proceeding “Demonstrating macroscopic entanglement based

on Kerr non-linearities requires extreme phase resolution”, Frontiers in Optics 2013, and an

unpublished paper with the same title. It could be seen as the preliminary result for the topic

”can coarse-grained measurement reveal macroscopic quantum effects”, to be continued in

the next chapter. Actually we were about to submit the paper, then we found out a better

approach for this topic, which is presented in the next chapter. This chapter mainly discusses

the precision requirement to create macroscopic quantum effects, while next chapter discusses

the precision requirement to observe macroscopic quantum effects. My contribution is that

I did the calculations, drew the graphs and helped write the paper.
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3.2 Introduction

What does it take to observe quantum effects such as superposition and entanglement for

macroscopic systems? It is nowadays well understood that it is essential to isolate the system

well from its environment in order to suppress decoherence [1]. However, there are several

results that suggest that this is not sufficient, and that the precision of the measurements

that one is able to perform on the system also plays an important role.

The first example we are aware of is Mermin’s work in 1980 [2]. He showed that in order

to obtain a Bell inequality violation for singlet states of two large spins s, the directions of the

spin measurements had to be chosen with an angular resolution that increased with the size

of the spins as 1/s. Note that here and in the following we speak of ’increasing’ resolution or

precision when the acceptable error or uncertainty decreases. The requirement of choosing

the spin direction precisely is an example for necessary control precision, a concept that will

be important for what follows.

Later Peres [3] showed that for the same singlet state of two spins the precision with which

the measurement outcomes are known is also important. He showed that if this outcome

precision is worse than O( 1√
s
) in relative terms (i.e. dividing the measurement error by the

absolute value of the spin), then a classical model can reproduce the quantum predictions

for the correlation functions. Related results for individual large spins were obtained in Ref.

[4]. Ref. [5] which studied multi-photon singlet states equivalent to Mermin’s and Peres’

spin singlets and showed that O( 1√
N

) relative outcome precision is sufficient to demonstrate

entanglement. Here the photon number N quantifies the size of the system in the same way

as s does for the spin examples.

More recently it was shown [5] for closely related multi-photon singlet states that their

entanglement can be demonstrated if photon counting measurements have a resolution better

than
√
N , where N is the total number of photons. Most recently, Ref. [6] showed that for

multi-photon states based on amplifying one half of an initial two-photon entangled state,
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micro-macro entanglement can be demonstrated only if photons can be counted with single-

photon level precision. In Ref. [6] it was conjectured that showing macroscopic quantum

effects generally requires highly precise measurements, even in the absence of decoherence.

The multi-photon states considered in Refs. [5, 6] can be created by χ2 non-linearities

with a classical pump field, or more formally by generalized squeezing transformations. The

associated Heisenberg equations of motion correspond to a linear mixing of creation and

annihilation operators. This may lead one to question the generality of a conjecture based

on such a relatively special class of states. The question is made more urgent by the results

of Ref. [9], which showed that using a Kerr (χ3) non-linearity, for which the dynamics of field

operators is also non-linear, it is possible to implement states and measurements that allow

one to violate a Bell inequality using very coarse-grained homodyne detection. Does this

mean that higher-order non-linearities make it fundamentally easier to observe macroscopic

quantum effects? Similar questions concerning the usefulness of non-linearities have been

raised in quantum metrology [7].

Here we show that in the present context there is a significant price to pay. We are

not referring to the practical difficulty of implementing strong Kerr non-linearities. While

this is still an open challenge, there are several promising recent proposals [8, 9]. In the

spirit of the above discussion, we are also not concerned with the high sensitivity of the

relevant multi-photon states to photon loss. Loss is due to the coupling of the system to its

environment, whereas here we are interested in fundamental limits to the observability of

macroscopic quantum effects even when the system is completely isolated.

We found that there is a difficulty that is - in a sense - complementary to the precision

requirements on photon number measurements discussed in Refs. [5, 6]. Namely, the phase

of unitary operations involving the Kerr non-linearity has to be extremely well defined. This

can be shown by analyzing the evolution of the cat state in Kerr medium, which has just been

experimentally acheived recently [16]. By caculating the characteristic phase (or correspond
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to characteristic time if we consider the nonlinear coefficient as perfect constant) when the

cat state collapse, we found that the required phase precision scales like N−
1
2 , where N is

the mean number of photons.

3.3 Coarse-grained measurement scheme

We will begin by describing a conceptually simple scheme based on Kerr non-linearities that

in principle allows the coarse-grained detection of macroscopic entanglement, see Fig. 1.

Our scheme can be seen as a simplified version of the proposal of Ref. [9]. It is different

from that proposal both concerning the state that is used and the final measurements that

are performed, but the phase precision requirements shown here apply to Ref. [9] as well.

We use the interaction Hamiltonian for a Kerr non-linearity,

HKNL = K(a†a)2, (3.1)

where K is the coupling constant and a is the annihilation operator for the relevant mode.

We first use the interaction for a non-linear phase Kt = π
2

to create a superposition of

coherent states from an initial coherent state |
√

2α〉 following Ref. [11],

|ψ0〉 = e−i
π
2
n2|
√

2α〉 =
e−iπ/4√

2
(|
√

2α〉+ i| −
√

2α〉), (3.2)

where we are interested in the regime α � 1 (we will take α to be real for simplicity).

Sending this state onto a 50/50 beam splitter creates an entangled superposition of coherent

states [19],

e−iπ/4√
2

(|iα〉A|α〉B + i| − iα〉A| − α〉)B, (3.3)

where we have introduced two parties A and B corresponding to the two modes after the

beam splitter. For α� 1 this can be seen as a maximally entangled state of “coherent-state

qubits” with basis states |α〉 and | − α〉 that are almost orthogonal. In order to measure

an entanglement witness such as a Bell inequality on such a state we require two more
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Figure 3.1: Scheme to observe macroscopic entanglement with very coarse-grained
measurements. The coherent state |

√
2α〉 (with α� 1) is transformed into a macroscopic

superposition of coherent states Eq. (3.2) using a Kerr non-linear operation (KNL). The
superposition is transformed into a maximally entangled state of coherent state qubits Eq.
(3.3) using a beam splitter. General single-qubit rotations (SQR) can be implemented using
the Kerr nonlinearity following Ref. [16]. Detection in the coherent state qubit basis is done
via the displacement of D(α) , followed by detectors that only need to distinguish the bright
state |

√
2α〉 from the vacuum, as shown in Fig. 3.5. This setup would in principle allow

the observation of Bell inequality violations (for example), thus demonstrating macroscopic
entanglement.
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ingredients, namely single-qubit rotations and measurements in the qubit basis. In Ref. [16]

it was shown that arbitrary single-qubit rotations can be implemented by combining the same

Kerr non-linear operation that was used to create the initial coherent state superposition

in Eq. (3.2) with small displacements in phase space, where the latter can be implemented

using a strongly asymmetric beam splitter; in particular see Eqs. (9), (10) and (5) of Ref.

[16].

The final missing ingredient is then the measurement in the qubit basis, i.e. a measure-

ment that allows one to distinguish the states |α〉 and | − α〉. Such a measurement can be

performed by implementing a displacement operator D(α). That is, for the input state |α〉

the output will be a strong coherent beam, whereas for the input state | − α〉, the output

mode will be dark, as shown in Fig.5. The two states can then easily be distinguished by

highly coarse-grained photon counting because all that is required is to distinguish a very

bright state from the vacuum. The use of a strong Kerr non-linearity thus makes it possi-

ble to avoid the high-resolution requirement discussed in Ref. [6], at least as far as photon

counting is concerned. This confirms the result of Ref. [9] that it is in principle possible to

observe a violation of Bell’s inequality with very coarse-grained measurements.

3.4 Extremely high requirement of nonlinear phase control

We now show that there is a significant difficulty with this approach. The Kerr operation of

Eq. (3.2), which also intervenes in the single-qubit rotations following Ref. [16], requires very

high phase resolution. If the phase is not precisely controlled, the cat state will collapse very

quickly for large mean photon numbers, which makes the experimental scheme unsuccessful.

3.4.1 Rotation and deformation effects of cat state evolution in Kerr medium

The dispersion of the cat state as the result of the imprecision of the phase control, can be

shown by the Husimi Q function Q(β), which is commonly used to visualize the evolution of
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the coherent state in Kerr medium. Experimental observation of the Q function evolution of

coherent state in Kerr medium has being achieved recently [16]. Q(β) is defined in a space

spanned by the expectation value of the dimension-less field quadrature Re(β) and Im(β)

as Q(β) =
|〈β|ψφ〉|2

π
. And

|ψφ〉 = e−i(
π
2

+φ)n2|
√

2α〉 (3.4)

= e−
N
2

∑
n

e−i(
π
2

+φ)n2Nn/2

√
n!
|n〉 (3.5)

Here φ is the phase error due to the imprecision of the phase control.

In Fig. 2 we plot the Q function evolution of the cat states in Kerr medium with mean

photon number N=16, 64, 256.

From the picture we can see that as the error of the non-linear phase increases, the cat

state rotates in the phase space. At the same time it is getting deformed. Eventually, the two

components merge together and is evenly distributed in a circle in the phase space, thus the

cat state “collapses. This cat state evolution is quite similar to the coherent state evolution

discussed in Ref.[17].

From Fig. 2 we can see that both the rotation and deformation occur faster with larger

mean photon number. These could be understood analytically as follows.

The rotation effect is similar to the evolution under a rotation Hamiltonian HROT =

2KNa†a. Here N is the mean photon number. Fig. 3.3 compares the cat state evolution

under HROT and the Kerr Hamiltonian HKNL. This could also be confirmed by the following

calculation:

e−iHKNLt|cat〉 = e−
N
2

∑
n

e−iφn
2

e−i
π
2
n2Nn/2

√
n!
|n〉 = e−

N
2 e−iφN

2 ∑
l

e−iφ(2Nl+l2) e
−iπ

2
(N+l)2N (N+l)/2√

(N + l)!
|N+l〉

(3.6)

e−iHROT t|cat〉 = e−
N
2

∑
n

e−iφ2Nne−i
π
2
n2Nn/2

√
n!
|n〉 = e−

N
2 e−i2φN

2 ∑
l

e−iφ2Nl e
−iπ

2
(N+l)2N (N+l)/2√

(N + l)!
|N+l〉

(3.7)
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Figure 3.2: Q function evolution of the cat states with mean photon number N=16,
64, 256 in the Kerr medium.
The Q function of ideal cat state is two Gaussian packets. As the phase error φ increases,
the two components of the cat state get deformed. When φ reaches the characteristic phase
φc(N) = π

4
√
N

Eq. (3.4.2), the two components completely merge with each and the cat
state “collapses. From the picture we can see that the cat state collapses more and more
quickly with increasing mean photon number N. When φ = 0.031π

2
, the characteristic phase

of N=256 cat state, the two components of N=16 cat state is still distinguishable, while
the two components of N=64 cat state already begins to merge, and for N=256 cat state,
the two components are evenly distributed in the whole phase, which indicates the cat state
collapse.
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Figure 3.3: Q function evolution of the cat states with mean photon number N=64
with HROT and the Kerr Hamiltonian HKNL. It could be seen that the rotation effect
of the Kerr evolution has angular speed that is the same with the the speed of the rotation
proportional to the mean photon number N.
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Here we changed the summation index n = N+ l. By the above comparison, it is obvious

that e−iφ2Nl correspond to the rotation effect, and e−iφl
2
corresponds to the deformation

effect. According to the photon number distribution of the coherent state, the majority of

the number states range from l = −
√
N to

√
N , thus the rotation would scale like N−

3
2 , and

the deformation scales like N−1. Both effect increase as mean photon number increases.

Here we define the fidelity F (φ) as the overlap between an ideal cat state and the real

state with phase error F = |〈ψ0|ψφ〉|2, and plot it in Fig. 3.5 for N=16, 64, 256 respectively.

From the picture we can see that the fidelity decreases dramatically with phase error. This

could be understood intuitively as that the real states rotate quickly away from the ideal

state in phase space, resulting the overlap approaching zero. The scaling of the fidelity can

be shown to be the same with that of the rotation effect. One has

〈ψφ|ψ0〉 = e−N
∞∑
n=0

Nn

n!
ei(φ−

π
2

)n2

. (3.8)

Using the Stirling expansion for lnn!, defining x = n − N and φ̃ = φ − π
2
, approximating

the sum over x by an integral, and keeping only the terms that are dominant in the limit of

large N , one finds that this is proportional to∫ ∞
−∞

e−
x2

2N ei2Nφ̃xdx, (3.9)

where the proportionality factor can be inferred from the fact that the overlap is equal to

one for φ̃ = 0. Performing the integral gives a Gaussian distribution for φ̃ whose width scales

like N−
3
2 , in good correspondence with the results shown in Fig. 1 [14].

We can also define another fidelity Fd which characterize the deformation effect by can-

celing the rotation effect.

Fd(φ) = |〈ψ0|e−iφ|ψφ〉|2 = |e−N
∞∑
n=0

(NeiNφ)n

n!
e−iφn

2 |2 (3.10)

In Fig. 3.5 we plot Fd(φ) for N=16, 64, 256 states so as to illustrate the deformation

effect. It is obvious that the overlap decrease more quickly with larger N.
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Figure 3.4: Fidelity F (φ) of the state |ψφ〉 of Eq. (3.5) relative to the ideal state
|ψ0〉 of Eq. (3.2) for different values of N. F (φ) is a function of the non-linear phase
errorφ. The curves correspond to mean photon numbers N = 2α2 equal to 16, 64 and 256
from top to bottom. The fidelity decays faster and faster as the mean number of photons
increases.
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Figure 3.5: Overlap Fd(φ) illustrating the deformation effect in the Kerr medium
due to the phase error. Fd(φ) is a function of φ which measures the non-linear phase
error. The curves correspond to mean photon numbers N = 2α2 equal to 16, 64 and 256
from top to bottom. The fidelity decays faster and faster as the mean number of photons
increases.
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3.4.2 Characteristic phase when the cat state “collapse due to phase error

In real experiments, although very difficult, there might still be a possibility to cancel the

rotation effect by rotating the initial state back. However, the effect of deformation which

eventually make the cat state collapse is hard to compensate. And it is this effect, which in-

creases drastically with increasing photon numbers, that makes the above scheme impossible.

This is because that the the coarse grained measurement relies on displacing the cat state in

the phase space, making the difference of the mean photon number of the two components

very large so that a very coarse grained photon number measurement is able to differentiate

them. This scheme still holds when each component of the cat state is a little deformed,

since the difference of mean photon number of the two components of the cat state is still

very large after displacement. However, if the two components completely merge with each

other and get evenly distributed in the phase space, the mean photon number difference

would be zero, thus the coarse grained measurement ceases to work, as illustrated in Fig.

3.6.

The characteristic phase φc when the two components are completely merged together is

similar to the corresponding collapse time of the coherent state in Ref. [15]. The latter can

be obtained by computing the expectation value 〈a〉 of the field operator over the coherent

state under Kerr nonlinear evolution |ψφ〉 = e−iφHKNL |
√

2α〉

〈a〉 = 〈ψφ|a|ψφ〉 = αe−N
∑
n

Nn−1

(n− 1)!
e−iφc(2n+1) (3.11)

= −αe−Neiφc
∑
n

Nn−1

(n− 1)!
e−i2nφc (3.12)

As we know, a coherent state can be expressed as a superposition of number states.

However, the phase error of the nonlinear interaction will result in the n-dependent phase

distribution of each number state, which is 2nφc. For an ideal coherent state the width of

the photon number distribution is 2
√
N . By replacing n with 2

√
N , we obtain the difference

of the phase of the two ends of the photon number distribution 4
√
Nφc, which we name
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Figure 3.6: The complete deformation would make the scheme unsuccessful. The
deformation due to the phase error, which increases drastically with increasing photon num-
bers, makes the above scheme impossible. This is because the coarse grained measurement
relies on displacing the cat state in the phase space, making the difference of the mean pho-
ton number of the two components very large so that a very coarse grained photon number
measurement is able to differentiate them, as shown in the upper pictures. This scheme
still hold when each component of the cat state is a little deformed, since the difference of
mean photon number is still very large after displacement. However, if the two components
completely merge with each other and get evenly distributed in the phase space, the mean
photon number difference would become zero, thus the coarse grained measurement ceases
to work
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as dispersion. When this phase dispersion becomes π, the state is generally considered as

collapsed, which yields the characteristic phase φc

φc =
π

4
√
N

(3.13)

For N=16, 64, 256, φc = 0.125, 0.063, 0.031 respectively.

This also indicates that the cat state collapses more and more quickly as the mean

photon number increases. As shown in Fig. 3.6, at φc/2 the two components of each cat

state already spread by more the 180◦ degree and begin to smear. At φc, each component

is evenly distributed in the phase space and we can no longer distinguish between the two

components. This clearly shows that the cat state has totally collapsed, making the coarse

grained measurement cease to work. The need for extreme phase resolution (for α � 1)

applies both to our scheme and to the scheme of Ref. [9], which uses the Kerr nonlinearities

in a similar way. It also applies to the original proposal of Ref. [11] for generating macroscopic

superpositions of coherent states.

3.5 conclusion

In conclusion, the evolution of the cat state due to the imprecision of the phase control, which

is increasingly significant with increasing mean photon number, would make it extremely

difficult to observe macroscopic entanglement, even with coarse-grained measurement. These

results show that while it is in principle possible to observe macroscopic quantum effects with

very coarse-grained photon number measurements in this system, one has to pay the price

of requiring increasingly precise (as the size of the system increases) phase control for the

operations involving the Kerr non-linearity. It should be noted that although it is possible

to make the strength of available Kerr nonlinearities extremely small, so as to have long

evolution time, which is relatively easier to control, this would help to increase the precision

of the non-linear phase control. This is because for very small nonlinearities it would be very
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difficult to distinguish between 0.00021 and 0.00022, for example. In this case, although the

evolution time may be precisely controlled, the total phase imprecision is still considerable.

The result supports the idea that there may be a general principle that makes it hard to

observe macroscopic quantum phenomena, even in the absence of environmentally induced

decoherence. The precise form of this principle remains to be discovered. Comparing the

present results to those of Ref. [6] one is tempted to conjecture the existence of a photon

number-phase trade-off (similar to an uncertainty relation), which would imply that ob-

serving quantum effects in macroscopic systems requires either very precise photon number

measurements or very precise phase control. However, it should be noted that the phase

considered here is that of a non-linear operation, which is a different concept from the phase

observable that is complementary to photon number in several respects, including the fact

that it is a control parameter and not an observable. Note that Mermin’s result in Ref. [2]

concerns a control parameter, while the results of Refs. [3, 5, 6] concerns the precision of

measurements. It may be possible to gain more insight into these questions by studying fur-

ther examples. In particular, it would be interesting to find cases where there are trade-offs

between the requirements for number and phase precision, and also between control precision

and measurement precision.
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Chapter 4

Precision requirements for observing macroscopic

quantum effects

4.1 Preface

It has recently been conjectured that detecting quantum effects such as superposition or en-

tanglement for macroscopic systems always requires high measurement precision. Analyzing

an apparent counter-example involving macroscopic coherent states and Kerr non-linearities,

we find that while measurements with coarse outcomes can be sufficient, the phase control

precision of the necessary non-linear operations has to increase with the size of the system.

This suggests a refined conjecture that either the outcome precision or the control precision

of the measurements has to increase with system size.

In this chapter we continue to discuss the topic of precision requirements to observe

macroscopic quantum effects, in a more general form. This chapter is based on the paper

“Precision requirements for observing macroscopic quantum effects” Phys. Rev. A 88, 062114

(2013). My contribution is that I did the calculations, drew the graphs, and helped write

the paper and correspond with the referees.

4.2 Introduction

What does it take to observe quantum effects such as superposition and entanglement for

macroscopic systems? It is essential to isolate the system well from its environment in order

to suppress decoherence [1]. However, there are several results that suggest that this is not

sufficient, and that the precision of the measurements that one is able to perform on the

system also plays an important role. Mermin [2] showed in 1980 that in order to obtain
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a Bell inequality violation for singlet states of two large spins s, the directions of the spin

measurements had to be chosen with an angular resolution that increased with the size of

the spins as 1/s. Note that here and in the following we speak of ’increasing’ resolution or

precision when the acceptable error or uncertainty decreases. The requirement of choosing

the direction precisely is an example for necessary measurement control precision, i.e. the

precision with which relevant physical parameters have to be controlled in order to implement

the desired measurement procedure.

Later Peres [3] showed that for the same singlet state of two spins the precision with which

the measurement outcomes are known is also important. He showed that if this measurement

outcome precision is worse than O( 1√
s
) in relative terms, then a classical model can reproduce

the quantum predictions for the correlation functions. Related results for individual large

spins were obtained in Ref. [4]. Ref. [5] studied multi-photon singlet states equivalent

to Mermin’s and Peres’ spin singlets and showed that O( 1√
N

) relative outcome precision

(where N is the photon number) is sufficient to demonstrate entanglement. Most recently

Ref. [6] studied so-called micro-macro entangled states of light that are obtained by greatly

amplifying one half of an initial entangled photon pair. These authors found that a relative

outcome precision of order 1
N

was necessary to see quantum effects in this example. Similar

results on the effect of coarse-graining on macroscopic entanglement were found in Refs.

[7, 8].

Ref. [6] also put forward the conjecture that demonstrating quantum effects in macro-

scopic systems always requires high measurement precision. In contrast, Ref. [9] proposed

a state and measurement procedure based on the use of Kerr non-linearities where a Bell

inequality violation could apparently be observed with very coarse measurements. As a first

step towards addressing this apparent contradiction, Ref. [6] pointed out that the non-linear

operations used in the proposal of Ref. [9] involve large (π) phase shifts between neighboring

Fock states and suggested that this could be seen as high resolution in a more general sense.
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Later the previous chapter showed that in order to prepare entangled states of the type

used in Ref. [9] the phase of the non-linear operations has to be controlled with a precision

that increases with system size. Chapter 3 is linked to the present work in that it already

highlighted the importance of phase precision. However, it focused on state preparation.

Here we explicitly address the question of measurement precision posed in Ref. [6]. We

show that even if one assumes that the states under consideration are ideal, measurement

precision - in particular control precision - has to increase with system size in order to be

able to demonstrate quantum effects.

This chapter is organized as follows. Section II shows how the requirement of high

outcome precision arises in the context of quadrature measurements on macroscopic super-

position states. Section III shows that this requirement can be avoided if Kerr or higher

nonlinearities are available, but also that a complementary requirement of high control pre-

cision arises in this case. Section IV shows that the same requirements apply to macroscopic

entanglement. In Sec. V we present and discuss our refined conjecture.

4.3 Macroscopic superpositions: requirement for high outcome precision

We study superpositions and entanglement involving coherent states with opposite phase,

|α〉 and |−α〉, where we will take α to be real for simplicity. We will pay particular attention

to the macroscopic limit α� 1. We study this example not only because these states lie at

the heart of the proposal of Ref. [9], but also because they are a well-known “archetype” for

macroscopic quantum superpositions [11, 12, 13]. Let us note right away that the proposal

of Ref. [9] is more complex than the simple cases considered here. However, our conclusions

concerning control precision apply to that work as well. We focus on simple states and

measurement schemes for clarity.

We begin by considering the superposition state

|α+〉 = 1√
2
(|α〉+ i| − α〉),
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focusing on the regime where α is large enough such that the overlap 〈α| − α〉 = e−2α2

is negligible. The phase factor i is chosen for convenience. This state can be created, for

example [11, 13], from an initial coherent state with the help of a Kerr nonlinearity,

e−i
π
2
N̂2|α〉 = e−i

π
4 |α+〉, (4.1)

where N̂ = a†a, and a is the bosonic annihilation operator for which the coherent state is an

eigenstate, a|α〉 = α|α〉. It was shown in Ref. [10] that the phase of the unitary operation in

Eq. (4.1) has to be precisely equal to π
2

in order to generate this state with high fidelity, with

a precision that increases with α. However, as mentioned in the introduction, this is not our

concern here. We will assume that the ideal state is given to us and focus on the question

of how to prove that we have a quantum superposition state, as opposed to a “classical”

mixture of the same two coherent states,

ρ =
1

2
(|α〉〈α|+ | − α〉〈−α|). (4.2)

Let us first consider measurements of the quadrature x̂ = 1
2
(a + a†). For the state of Eq.

(??), this will give a symmetric bimodal distribution of results corresponding to the two

components of the superposition,

P (x) = |〈x|α+〉|2 =
e−(x+α)2 + e−(x−α)2

2
√
π

, (4.3)

where x̂|x〉 = x|x〉. Note that for α � 1 one can distinguish the two components using

very coarse measurements of x̂; this point will be significant below. However, this does not

prove that one is dealing with a macroscopic superposition state, since the mixed state of

Eq. (4.2) will produce the exact same distribution of outcomes. In general, one has to

measure at least two non-commuting observables in order to prove the quantum character

of any system. One obvious choice for an observable that does not commute with x̂ is the

complementary quadrature, p̂ = −i
2

(a − a†). The probability distribution of the associated

outcomes p is

P|α+〉(p) = |〈p|α+〉|2 =
e−p

2
(1− sin(2αp))√

π
(4.4)
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Figure 4.1: Probability of outcomes for measurements of the p̂ quadrature for the superpo-
sition state |α+〉 and the mixed state of Eq. (4.2) for α = 2 (left) and α = 16 (right). The
oscillatory structure that distinguishes the two distributions becomes harder to resolve as α
increases, see also Eqs. (4.4) and (4.5).

where p̂|p〉 = p|p〉, whereas for the mixed state of Eq. (4.2) one has

Pρ(p) = 〈p|ρ|p〉 =
e−p

2

√
π

(4.5)

The two probability distributions are different, which means that the measurement of p̂

can indeed be used to discriminate |α+〉 from Eq. (4.2). However, the difference is due to

the oscillatory term in Eq. (4.4), whose oscillation frequency increases with increasing α.

Detecting this oscillation therefore requires a precision in the p̂ measurement that increases

with α, see also Fig. 4.1. In fact, this was one of the examples mentioned in Ref. [6] in

order to argue for the plausibility of the considered conjecture. The same effect can also be

discussed in terms of the Wigner function [14]. Fig. 4.1 could also be compared to Fig. 2 of

Ref. [6], which shows a similar effect for a different macroscopic quantum state.
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Figure 4.2: Outcome distributions for measurements of the x̂ quadrature for the states |α〉
(solid) and |−α〉 (dashed) for α = 8. For large enough α, the two states can be distinguished
by a very coarse measurement. Positive values (red) of x̂ can be assigned to |α〉 and negative
values (blue) to |−α〉. The overlap between the two distributions, and thus the error of this
measurement scheme, is negligible.

4.4 Nonlinear rotations of coherent-state qubits: requirement for high con-

trol precision

There is a different approach to proving the superposition character of |α+〉, which is closely

linked to the proposal of Ref. [9]. One can view the states |α〉 and |−α〉 as the computational

basis states of a “coherent state qubit” [15, 16]. Measurements in the computational basis,

which we will also refer to as σz measurements (where σz = |α〉〈α|− |−α〉〈−α|), can clearly

be done in a very coarse way, e.g. by measuring x̂. For large enough α, positive (negative)

values correspond to the state |α〉 (| − α〉) with extremely high fidelity, and coarse-graining

the x values only has a negligible effect on the measurement fidelity, see also Fig. 4.2.

As before, proving the quantum character of |α+〉 requires at least one other measurement
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that does not commute with σz. A natural choice from the qubit perspective is

σy = |α+〉〈α+| − |α−〉〈α−|, (4.6)

where |α−〉 = 1√
2
(i|α〉+ |−α〉. If σy can be measured, then it is obviously easy to prove that

a given source produces the state |α+〉 - the corresponding measurement will always give the

result +1 and never −1, whereas for the mixed state (4.2) the results would be 50/50.

The required measurement of σy can be implemented using a Kerr non-linearity, see also

Ref. [16]. Changing the sign of α in Eq. (4.1) one has e−i
π
2
N̂2 | − α〉 = e−i

π
4 |α−〉. Inverting

these relations one sees that the Kerr operation allows one to rotate the σy eigenstates into

the σz eigenstates, i.e.

U |α+〉 = |α〉, U |α−〉 = | − α〉, (4.7)

where

U = e−i
π
4 ei

π
2
N̂2

. (4.8)

This means that a measurement of σy can be done on an arbitrary state by first applying the

rotation U , followed by a measurement in the σz basis, as shown in Fig. 4.3. As mentioned

before and in Fig. 4.2, the σz measurement can be done in a very coarse way. This means

that it is possible to prove the presence of the macroscopic superposition using measurements

that are coarse in terms of outcome resolution.

However, we argue that it is physically important to also consider the necessary control

precision. The control parameter that we focus on here is the phase of the Kerr rotation U .

Suppose that instead of exactly π
2

this phase is π
2

+ φ. Then, when trying to perform the σy

measurement, the state |α+〉 will be rotated not into |α〉, but into eiφN̂
2|α〉, and |α−〉 into

eiφN̂
2| − α〉. For simplicity let us consider a Gaussian distribution for φ with a width σ � 1

(which is the relevant regime, as will become clear below). Then the final state corresponding

to |α+〉 is

Cσ(|α〉〈α|) =
1√
2πσ

∫ ∞
−∞

dφe−
1
2
φ2

σ2 eiφN̂
2 |α〉〈α|e−iφN̂2

=
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Figure 4.3: The x̂ quadrature distributions for the states |α+〉 = 1√
2
(|α〉 + i| − α〉 (top left)

and |α−〉 = 1√
2
(i|α〉 + | − α〉 (bottom left) are identical. However, application of the Kerr

rotation Eq. (4.8) transforms |α+〉 into |α〉 (top right) and |α−〉 into | − α〉 (bottom right).
These states can now be distinguished by a coarse measurement as in Fig. 4.2.
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e−α
2

√
2πσ

∫ ∞
−∞

dφe−
1
2
φ2

σ2

∞∑
n,n′=0

eiφ(n2−n′2) αn+n′

√
n!
√
n′!
|n〉〈n′|, (4.9)

where we have introduced the notation Cσ for the associated error channel, extended the

range of integration for φ to infinity (which can be done with negligible error for σ � 1),

and expanded |α〉 in terms of photon number states. Performing the integration over φ one

finds

Cσ(|α〉〈α|) = e−α
2
∞∑

n,n′=0

e−
1
2
σ2(n2−n′2)2 αn+n′

√
n!
√
n′!
|n〉〈n′|. (4.10)

The term containing σ leads to a suppression of the off-diagonal elements in the number state

basis. The key point for the present work is that this suppression happens faster for larger

values of α. This can be seen by remembering that the number distribution for a coherent

state is a Poissonian with a peak at α2 (and a corresponding width α). For large enough

α one can then approximate the factor (n2 − n′2)2 = (n + n′)2(n − n′)2 in the exponential

in Eq. (4.10) by 4α4(n − n′)2. This shows that the off-diagonal elements are suppressed

by a Gaussian factor e−2σ2α4(n−n′)2 . This means that for σα2 the state (4.10) is essentially

diagonal in the number basis. Moreover the state corresponding to |α−〉, which we denote

Cσ(| − α〉〈−α|), converges to the same diagonal form. In this regime there is therefore no

way to distinguish these two states, see also Fig. 4.4.

This means that the described procedure for measuring σy breaks down for phase errors

σ that are of order 1
α2 , or 1

N
, if N = α2 is used to denote the typical number of particles

in the system. The precision with which φ has to be controlled thus increases with system

size. The coherent state qubit approach relies on being able to confine the dynamics of

the system to the two-dimensional subspace spanned by |α〉 and | − α〉, even though the

number of Fock states that effectively contribute to the dynamics is of order α (due to the

Poisson distribution of numbers for coherent states). This becomes more and more difficult

for increasing α. The evolution of coherent states under small Kerr rotations is discussed

also in different terms in Refs. [17, 18].

This result holds no matter how the final measurement in the σz basis is performed. For
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Figure 4.4: Outcome distributions for x̂ quadrature measurements for the states Cσ(|α〉〈α|)
(solid) and Cσ(|−α〉〈−α|) (dashed) that are created from the states |α+〉 and |α−〉 by a Kerr
rotation with Gaussian phase uncertainty σ, see Eq. (4.9). We show the case N = α2 = 4
on the left and N = 36 on the right, with σ increasing from top to bottom. One sees that
the distributions overlap much faster for greater N , leading to errors in the σy measurement
of Fig. 4.3, see also Fig. 4.2. For large enough σ it becomes impossible to distinguish the
two states.
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Figure 4.5: (a) The bit-flip error ε in the σy measurement of Fig. 4.3 as a function of the
Kerr phase uncertainty σ, for the cases N = α2 = 4, 16, 64 from bottom to top. One sees
that ε approaches 1

2
for increasing σ, and this happens faster for greater N . The log-log plot

in the inset shows that the value of σ for which ε = 1
4

(i.e. half its asymptotic value) scales
like 1

N
, as expected from the analytical argument given in the text. (b) Expectation value of

the entanglement witness W of Eq. (4.12) for the state of Eq. (4.11), for N = α2 = 4, 16, 64
from top to bottom. For increasing σ the value of W approaches 1 (the bound for separable
states), due to the bit-flip errors in the σy measurement shown in (a). This happens faster
for greater values of N .
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concreteness, we show in Figs. 4.4 and 4.5(a) how the phase error σ affects the measurement

strategy described in Figs. 4.3 and 4.2. Fig. 4.4 shows that the x̂ quadrature distributions

for the states Cσ(|α〉〈α|) and Cσ(| − α〉〈−α|) begin to overlap for increasing σ, and that

this happens much faster for greater values of α. Fig. 4.5(a) shows the resulting bit-flip

error ε for the σy measurement of Fig. 4.3. This can be calculated as ε =
∫ 0
−∞ dxP (x), with

P (x) the x̂ quadrature distribution for the state Cσ(|α〉〈α|). As expected from the above

discussion, ε approaches 1
2

(corresponding to complete indistinguishability of the two states)

for increasing σ, and this happens faster for greater values of α.

4.5 Macroscopic entanglement

So far we have discussed macroscopic superposition states. We now turn to the detection of

macroscopic entanglement. Consider the state

|Φ−〉 =
1√
2

(|α〉|α〉 − | − α〉| − α〉), (4.11)

where the relative sign between the two terms is chosen for convenience. This state can be

created, for example, using a Kerr non-linearity, combined with a beam splitter and phase

space displacements [10, 16, 19]. Again our focus here is not on how to create the state, but

on whether its entanglement can be demonstrated by coarse measurements.

As before, coarse quadrature measurements alone are not sufficient, but the coherent

state qubit approach using the Kerr nonlinearity can be applied to the present case as well.

Again measurements only in the computational basis (σz) are not sufficient to distinguish

the entangled state (4.11) from a separable state, in particular from the 50/50 mixture of

the product states |α〉|α〉 and | −α〉| −α〉. However, the entanglement can be demonstrated

using the witness operator

W = σy ⊗ σy + σz ⊗ σz. (4.12)

One easily verifies that 〈Φ−|W |Φ−〉 = 2, whereas the modulus of the mean value of W for

separable states is bounded by one. This follows from the fact that for any state |χ〉 the

42



norm of the two-dimensional vector {〈χ|σy|χ〉, 〈χ|σz|χ〉} is bounded by one. For any product

state, the mean value of W is the scalar product of two such vectors, and its modulus is

therefore also bounded by one; and every separable state is a convex combination of product

states, thus satisfying the same bound, see also Ref. [20].

By performing measurements of σz and σy on each subsystem one can therefore prove

the entanglement in the state (4.11). As discussed above, a coarse measurement of the x̂

quadrature, for example, is sufficient to do the σz measurement, but the σy measurement

requires moreover the Kerr rotation (4.8). Therefore the exact same control precision re-

quirements as above apply here as well. We showed in Fig. 5(a) that for a phase error σ 1
α2 ,

the bit-flip error ε in the σy measurement approaches 1
2
. The measured mean value of W ,

which is equal to 1 + (1− 2ε)2 (as can easily be shown, assuming that the σz measurement

is perfect), therefore tends to 1, see also Fig. 4.5(b). This means that the macroscopic

entanglement becomes increasingly hard to detect as α increases. Note that as long as the

mean value is greater than one, entanglement can in principle be proven. Our main point

here is the scaling with α. Due to this scaling, for any given non-zero level of experimental

imperfection, there is a system size above which entanglement is no longer measurable.

4.6 Conjecture and discussion

We have seen that using macroscopic “coherent state qubits” one can in principle observe

macroscopic quantum features such as superposition and entanglement using measurements

that are very coarse in terms of outcome precision. However, there is a price to be paid.

The measurements rely on being able to perform a rotation of the macroscopic qubit basis.

When this rotation is implemented using a Kerr non-linearity, the control precision of the

Kerr phase shift has to increase with the size of the system. The apparent counter-example of

Ref. [9] has thus led us to a refined formulation of the conjecture of Ref. [6] that is both more

precise and more general: the measurement precision required for demonstrating macroscopic
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quantum effects seems to increase with the size of the system, provided that both outcome

precision and control precision are taken into account. This could be compared, for example,

to the results of Ref. [21], which studied the effect of coarse graining on macroscopic realism

as defined by Leggett [22] and emphasized the computational complexity (rather than the

precision) of the operations that were required to observe violations of macroscopic realism.

The above conjecture is attractive, but it is far from proven. Different parts of our argu-

ment have a different degree of generality. The requirement for a rotation from a macroscopic

superposition basis to a “computational” basis is very general in the present context. On the

one hand, for a coarse measurement approach to work there has to be one basis for which the

relevant states are easy to distinguish. On the other hand, to prove quantum characteristics

one also has to be able to measure at least one observable that corresponds to a different

basis, hence the need for a rotation between that basis and the computational basis. As a

simple extension, one might want to consider other superposition states or entangled states

using the same coherent-state qubits. Proving superpositions or entanglement then requires

slightly different rotations. More general qubit basis rotations can be constructed out of the

Hadamard-type rotation U of Eq. (4.8) and phase space displacements [16]. The same con-

trol precision requirements apply for this construction. They also apply to the measurements

proposed in Ref. [9].

But could there be other ways of performing the basic Hadamard rotation? Do they

necessarily have the same control precision requirements? In fact, it is known that the Kerr

non-linearity is not the only possible solution [11]. Higher powers of N̂2 also work. However,

by adapting the argumentation around Eqs. (4.9,4.10) to these cases one can easily show

that the control precision requirements are only increased in this case. For a Hamiltonian

proportional to N̂2k the necessary control precision scales as 1
N2k−1 . So the Kerr non-linearity

is optimal at least for this family of possible approaches.

We suggest that the basic difficulty with implementing a macroscopic basis rotation of
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the type of Eq. (4.8) stems from the fact that the underlying Hilbert space is very large.

In our case the effective Hilbert space dimension is of order α, corresponding to the range

of photon numbers that have significant weights for a coherent state. For increasing α it

requires more and more fine-tuning to perform a non-trivial operation on the states |α〉 and

| − α〉, while confining them to the two-dimensional subspace that they span. This may be

a generic difficulty for macroscopic quantum systems.

We feel that proving these conjectures and intuitions would be very interesting, as it

would significantly advance our understanding of the macroscopic limit of quantum physics.

It would possibly be even more interesting if one could find a counter-example, since the

latter might provide a promising avenue towards the demonstration of truly macroscopic

quantum effects.

This work was supported by AITF and NSERC.
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Chapter 5

Strong entanglement between macroscopic beams via

weak cross Kerr-nonlinearties

5.1 Introduction

Vigorous efforts are currently being undertaken to create large entanglement. On one hand,

people are trying to create quantum entanglement of macroscopic system. For instance, in

Ref.[2] entanglement between photonic qubit states displaced number states with 108 photons

are created. On the other hand, people are trying to increase the amount of entanglement

[1]. In this letter, we are trying to do both of them at the same time. We propose to create

strong entanglement involving macroscopic states, by using weak Kerr nonlinearities.

There have been some proposals in which weak Kerr nonlinearities have useful applica-

tions in quantum information processing [3, 15]. Weak nonlinearities can be used to build

photon-number-resolving QND detectors [14], and with the help of homodyne measurements

and classical feedforward elements, can be exploited to construct nearly deterministic cNOT

gates [16] and non-destructive Bell state detectors [17]. Recently, there has been major a

advancement in creating a cross Kerr phase shift of 10−3rad at single photon level via the

AC Stark shift [11]. One of the major advantages over previous stronger phase shifts is that

in this case the nonlinearities are not easily saturated. This makes creating high dimensional

entanglement possible.

In this Chapter, we propose to use weak cross Kerr nonlinearities to create a new class

of strong entangled states, which is robust under lossy conditions. The main idea is to

amplify the weak cross Kerr phase shift by sending two coherent states, creating macro-

macro entanglement. The state is macroscopic in that both the size of the system (mean
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Figure 5.1: Scheme to create and detect macroscopic entanglement

photon number) and the amount of entanglement are very large. Moreover, we show that

the entanglement is robust under photon loss, the main source of decoherence. This strong

entanglement also have the potential to be verified experimentally.

It should be noted that this project is still in process. What we present here is some

preliminary results. We hope the project will be finished soon.

5.2 Strong entanglement

We send two coherent states into a Cross Kerr medium,

|ψ〉 = |α〉1|β〉2 = ||α|ei|β|2φ〉1||β|ei|α|
2φ〉2, (5.1)

where the phases are defined to cancel the rotational effect of the Kerr evolution so that their

Wigner functions center at (|α|(|β|), 0) in phase space. We will omit the subscribes when

their are obvious. After cross Kerr evolution with a small phase shift θ, the state becomes

e−in̂1n̂2θ|ψ〉 =
∞∑
n=0

e−
|α|2
2
αn√
n!
|n〉1|βe−inθ〉2 =

∞∑
n=0

e−
|β|2
2
βn√
n!
|αe−inθ〉2|n〉1. (5.2)

As we know, the overlap of coherent states with different phases are

|〈βe−inθ|βe−imθ〉|2 = e−2|β|2(1−cos((m−n)θ)) ≈ e−(|β|θ(m−n))2 . (5.3)
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Figure 5.2: The structure of the state

When |β|θ ≥ 2, these coherent states with various n,m are well separated in phase space,

as shown in 5.2, so that they could be treated as quasi-orthogonal. This indicates that the

photon number on one side and phase on the other side are entangled.

In the pure case, the entanglement can be quantified by von Neumann entropy (VNE). In

Fig. (5.3) we show the von Neumann entropy for symmetric ( |α| = |β| = 5 ) and asymmetric

cases (|α| = 5, |β| = 40). It can be seen that for symmetric case the VNE increases very

fast and is peaked at around θ = 0.31 for about 2.8. And then it begins to oscillate. This

can be understood intuitively as follows. When the phase shift θ increases, coherent states

in Eqn. (5.2) with different phases begin to split towards quasi-orthogonality, so that the

entanglement increases. When θ = 0.31, adjacent coherent states are already well separated

with the overlap |〈βe−inθ|βe−i(n+1)θ〉|2 ≈ e−1.52 = 0.085, so that further separation would not
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increase entanglement very much. On the other hand, according to Gaussian distribution,

the majority of the fock states is in the range (|α|2 − |α|, |α|2 + |α|), so that the angle of

phase distribution of coherent states is about 2|α|θ. When θ ≥ 0.31 the phase distribution

is larger than 2π. This means that coherent states from the opposite ends begin to overlap,

thus the entanglement decreases. We also shows that with a larger |β|, VNE increases to

peak value much faster. This is because that the overlap of adjancent coherent states are

determined by |β|θ as shown in Eqn.5.3 . In general, the maximum of VNE is bounded by

the smaller one of |α| and |β|, since the number of the components in 5.2 is about 2|α|, and

the entanglement will not increase much after the coherent states in the second beam are

well separated. As the overlap of coherent states depends on |β|θ, increasing |β| enables us

to achieve maximum entanglement with smaller phase shift, yet it would not significantly

increase the dimension of entanglement.

It is obvious that one can in principle create very high entanglement with very small

Kerr phase shift by sending two strong coherent beam, for example |α| = |β| = 1000, θ =

1.6 ∗ 10−3 . However, to experimentally verify such entanglement would be challenging,

as discussed later. We would mainly analyze the case when |α| = 5 , which is feasible

for current technology. Here the entanglement is macroscopic in two sense. Firstly, the

amount of entanglement is large. As shown in 5.3 the VNE is 3.1 ebit, and the dimension

of entanglement is 32 (see supplementary). Secondly, the average photon number of two

entangled beams are large, one 25 and the other one can be millions of photons.

There is a better way to quantity the entanglement, the quantum purity, which can be

obtained analytically. For symmetric cases when α = β, the purity (details see Appendix)

Tr(ρ2) = e−4a2
∞∑

m,n,k,l=0

α2(m+n+k+l)

n!m!k!l!
ei(m−n)(k−l)θ (5.4)

In the limit when α � 0, the above summations can be approximated as Gaussian

integrations. After some algebra the result reduces to
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Figure 5.3: Von Neumann Entropy for symmetric (lower, |α| = |β| = 5) and asymmetric
(upper, |α| = 5, |β| = 40) cases.
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Tr(ρ2) =
1√

1 + 4a4θ2
(5.5)

We define D(ρ) = 1/Tr(ρ2) =
√

1 + 4a4θ2 , which is the lower bound of the dimension

of the entanglement. This can be understood as follows. As we know, every bipartite pure

states has a unique Schimidt decomposition

|φ〉 =
m∑
n=0

Cn|n〉|n〉 (5.6)

The dimension of the entanglement is m, the number of components in such a decompo-

sition. It can be shown that for a given purity, the smallest dimension m is obtained when

the state is maximally entangled ( all Cn are the same so that Pn = |Cn|2 = 1/m). We thus

have

D(ρ) = 1/Tr(ρ2) = 1/
m∑
n=0

|Cn|4 = 1/
m∑
n=0

Pn
2 = m (5.7)

When the state with the same dimension is not maximally entangled, it is obvious that

m > D(ρ) = 1/
∑m
n=0 Pn

2. This is why it is the lower bound of the dimension of the

entanglement.

It can be shown in Fig.5.4 that the amount entanglement is very high with a cross Kerr

phase shift as small as 10−3rad.

5.3 Robust under Decoherence

An interesting question is how such strong entanglement behaves under decoherence. Here

we show that it is robust under decoherence. The major decoherence in this case is the

photon loss during the creation and detection of the entanglement. Here we focus on the

latter, as the former can be controlled quite well [11]. Using the beam splitter model to deal

with photon loss, one have |α〉|0〉 → |tα〉|rα〉 , where t2+r2 = 1 and the second channel is the

loss channel. Since the loss after the Kerr effect is a local operation that does not influence
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Figure 5.4: D(ρ) (red) andW (ρ)/2 with no loss (blue) as the function of the size of the system
a for 10−3rad cross Kerr phase shift. It can be seen that for a = 1000 the entanglement
is about 2000 dimensions. Moreover, for a < 200 our witness matches the dimension of
entanglement very well.

the entanglement, we can treat the loss in two beams independently and significantly simplify

the calculation.

We first treat the loss in the second beam by adding a loss channel, and then expand the

coherent states in the second and third beam and recombine the terms to make the first chan-

nel a coherent state
∑∞
n=0 e

− |α|
2

2
αn√
n!
|n〉|βe−inθ〉|0〉 → ∑∞

n=0 e
− |α|

2

2
αn√
n!n
|n〉|t2βe−inθ〉|r2βe

−inθ〉

=
∑∞
m,k=0 |αe−i(m+k)θ〉e−

|β|2
2

(t2β)m√
m!
|m〉 (r2β)k√

k!
|k〉

Now we treat the loss in the first beam by adding another loss channel:

|ψ〉 →
∞∑

m,k=0

|t1αe−i(m+k)θ〉1|r1αe
−i(m+k)θ〉3e−

|β|2
2

(t2β)m√
m!
|m〉2

(r2β)k√
k!
|k〉4 (5.8)

Here the channel 3 and 4 are the loss channels. Here it is clear that the entanglement between

channel 1 and 2 leaks into channel 3 and 4. Tracing out the loss channels we obtain the

reduced density matrix

ρ =
∑∞
m,m′,n,n′

(t1α)m(t1α∗)m
′
(t2β)n(t2β∗)n

′
√
m!m′!n!n′!

exp(−i(mnm′n′)θ)

exp(−(r1|α|)2(1− e−i(m−m′)θ)− (r2|β|)2(1− e−i(n−n′)θ))|m〉〈m′| ⊗ |n〉〈n′|

It is clear that the off-diagonal terms will decrease with loss, and thus the entanglement

decreases.

We can quantify the entanglement by numerically calculating the Logarithmic Negativity
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Figure 5.5: Logarithmic Negativity (dotted) and witness (continuous) as a function
of phase shift θ for |α| = 5, |β| = 40 with various loss rate. The loss rate is
0, 1%, 5%, 10%, 20%, 40%, 50% from top to bottom.

(En)

En(ρ) = Log2||ρTA||1 (5.9)

Here ρTA means partial transpose. In Fig. 5.5we show En as a function of phase shift

θ for |α| = 5, |β| = 40 with various loss rate. Here we assumed that the loss rate of the

two modes are the same for simplicity (we analyzed the cases when they are not the same

in Appendix). In the pure case (r = 0). It can be shown that the entanglement is robust

under photon loss. However, with larger loss rate the maximum entanglement decreases,

which matches the intuition that the larger the entanglement is, the more sensitive it is to

decoherence. Moreover, the θ to achieve maximum En also turns to be smaller for larger

loss.
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Figure 5.6: Witness as a function of phase shift θ for |α| = 5, |β| = 1000 with various loss
rate.The loss rate is 0, 1%, 5%, 10%, 20%, 40%, 50% from top to bottom. It can be seen that
the maximum does not change compared to the previous case , however the θ to obtain
maximum is much smaller. With 5% loss the maximum is 2.1 at θ = 4 ∗ 10−4.
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We can in principle calculate En for much larger states, for example |β| = 1000, so that

we can get a very large entanglement, however the computational resources required are

tremendous. This means that we have to develop our own entanglement witness to prove

that our state is still entangled under lossy condition.

By looking at the structure of the original state in Eq.5.2, we found that the photon

number in mode one times θ plus the phase of the second mode is zero, and the photon

number in mode two times θ plus the phase of the first mode is zero, which is similar to the

EPR correlations

x̂1 + x̂2 = 0, p̂2 − p̂1 = 0

We can develop a similar entanglement witness to the Duan’s witness [10] if there are

well-defined phase operators. Since there are not, we have to use more complicated operators

that have similar relations. Fortunately, we found that the average value of the operator

ô = |α| sin((n̂2 − |β|2)θ) + p̂1 is zero

〈ô〉 =
∞∑
n=0

e−|β|
2 |β|2n

n!
(
〈
n||α| sin((n̂2 − |β|2)θ)|n

〉
+
〈
αe−inθ|p̂1|αe−inθ

〉
)

=
∞∑
n=0

e−|β|
2 |β|2n

n!
(|α| sin((n− |β|2)θ) + |α| sin((|β|2 − n)θ)) = 0

When there is loss, in each of the term in Eq. 5.8 |t1αe−i(m+k)θ〉1|r1αe
−i(m+k)θ〉3|m〉2|k〉4

we only have access to beam 1 and 2. Due to the photon loss, there is a discrepancy of the

photon number m in beam 2 and the phase (m+ k)θ in beam 1. To fix this, we noticed that

the average of k is (r2|β|)2, and define û = p̂1 + t1|α| sin((n̂2 − t22|β|2)θ). Now we have

〈û〉 =
∞∑

m,k=0

e−|β|
2 |t2β|2m|r2β|2k

m!k!
(〈t1αe−i(m+k)θ|p̂1|t1αe−i(m+k)θ〉+

〈
m|t1|α| sin((n̂2 − t22|β|2)θ)|m

〉
)

=
∞∑

m,k=0

e−|β|
2 |t2β|2m|r2β|2k

m!k!
(t1|α| sin((|β|2 −m− k)θ) + t1|α| sin((m− t22|β|2)θ))

which is 0 when there is no loss. Similarly, we define v̂ = p̂2 + t2|β| sin((n̂1− t21|α|2)θ). It can

be proved that for separable states (see Appendix)〈
(∆û)2

〉
+
〈
(∆v̂)2

〉
≥ |〈[p̂1, t2|β| sin((n̂1 − t21|α|2)θ)]〉|+ |〈[p̂2, t1|α| sin((n̂2 − t22|β|2)θ)]〉|
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We thus define the entanglement witness

W = Log2
|〈[p̂1, t2|β| sin((n̂1 − t21|α|2)θ)]〉|+ |〈[p̂2, t1|α| sin((n̂2 − t22|β|2)θ)]〉|

(∆û)2 + (∆v̂)2
(5.10)

It is obvious that when W ≥ 0 our state is entangled. We found that our witness matches

the En very well, and is usually a lower bound of En in lossy conditions, as shown in Fig.

5.5.

We also found that when we increasing |β| we can achieve maximum En for a smaller

phase shift θ, and this holds when there is loss. In Fig. 5.6we show En as a function of

phase shift θ for |α| = 5, |β| = 1000 with various loss rate. It can be seen that the maximum

does not change very much compared to the previous case when |α| = 5, |β| = 40, however

the required θ to obtain the maximum entanglement is much smaller. With 5% loss the

maximum is 2.1 at θ = 4 ∗ 10−4, which is achievable with current technology.

Moreover, as we know, in the pure case, when we increase |α| the entanglement will

increase. Unfortunately this does not hold when there is loss. From En and our witness we

found that the maximum amount entanglement is bounded by the loss rate. In Fig. 5.7 we

shows W as a function of |α| and θ with 10% loss when we fix |β| = 1000. It can be seen

that even though |α| rises to 1000, W is still about 1.6. We tried other loss rates and get

similar results, and for En it is the same.

In principle, this witness can be measured by optical homodyne tomography (OHD). For

the case when|α| = 5, |β| = 1000 we displace the second beam towards the origin by D(−|β|)

so that the average photon number is not too large. We then construct the Wigner function

for the displaced state by OHD. The Wigner function of the original states can be obtained

by displacing the Wigner function back, basing on which we can obtain the value of the

witness.
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Figure 5.7: Witness as a function of |α| and θ when we fix |β| = 1000 with 10% loss. It can
be seen that even though |α| rises to 1000, W is still about 1.6.

5.4 Appendix

5.4.1 Derivation of the purity

The quantum purity is defined as the trace of the square of the reduced density matrix,

Tr(ρ2
1) = e−2(a2+b2)

∞∑
m,n,k,l=0

a2(m+n)b2(k+l)

n!m!k!l!
ei(m−n)(k−l)θ (5.11)

In the limit when a, b � 0, the above summations can be approximated as Gaussian

integrations. After some algebra the result reduces to

Tr(ρ2
1) =

1√
1 + 4a2b2θ2

(5.12)

We define D(ρ) = 1/Tr(ρ2
1) =

√
1 + 4a2b2θ2 , which is the lower bound of the dimension

of the entanglement. This can be understand as follow. As we know, every bipartite pure

states has a unique Schimidt decomposition

|φ〉 =
m∑
n=0

Cn|n〉|n〉 (5.13)

The dimension of the entanglement is m, the number of components in such decompo-

sition. It can be shown that for a given purity, the smallest dimension m is obtained when
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the state is maximally entangled ( all Cn are the same so that Pn = |Cn|2 = 1/m). We thus

have

D(ρ) = 1/Tr(ρ2
1) = 1/

m∑
n=0

|Cn|4 = 1/
m∑
n=0

Pn
2 = m (5.14)

When the state with dimension m is not maximally entangled, it is obvious that m >

D(ρ) = 1/
∑m
n=0 Pn

2. This is why D(ρ) is the lower bound of the dimension of the entangle-

ment.

It can be shown in Fig.3 that the amount entanglement is very high with a cross Kerr

phase shift as small as 10−3rad.

Tr(ρ2) = e−2a2
∞∑

m,n=0

a2(m+n)

n!m!
exp(−2b2(1− exp(i(m− n)θ) + exp(i(n−m)θ)

2
))

= e−2(a2+b2)
∞∑

m,n=0

a2(m+n)

n!m!
exp(b2exp(i(m− n)θ))exp(b2exp(i(n−m)θ))

= e−2(a2+b2)
∞∑

m,n,k,l=0

a2(m+n)

n!m!

(b2exp(i(m− n)θ))k

k!

(b2exp(i(n−m)θ))l

l!

= e−2(a2+b2)
∞∑

m,n,k,l=0

a2(m+n)b2(k+l)

n!m!k!l!
ei(m−n)(k−l)θ

In the limit when a, b � 0, the above summations can be approximated as Gaussian inte-

gration

Tr(ρ2) =
1

2πa22πb2

∫
dmdndkdle

−(m−a2)2

2a2 e
−(n−a2)2

2a2 e
−(k−b2)2

2b2 e
−(l−b2)2

2b2 ei(m−n)(k−l)θ

let m− a2 = p1, n− a2 = p2, k − b2 = q1, l − b2 = q2,

T r(ρ2) =
1

2πa22πb2

∫
dp1dq1dp2dq2exp(−

p2
1 + p2

2

2a2
)exp(−q

2
1 + q2

2

2b2
)ei(p1−p2)(q1−q2)θ

let x1 = p1−p2√
2
, x2 = p1+p2√

2
, y1 = q1−q2√

2
, y2 = q1+q2√

2
, thenp2

1 + p2
2 = x2

1 + x2
2, q

2
1 + q2

2 = y2
1 + y2

2

Tr(ρ2) =
1

2πa22πb2

∫
dx1dy1dx2dy2exp(−

x2
1 + x2

2

2a2
)exp(−y

2
1 + y2

2

2b2
)e2ix1y1θ
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=
1

2πa22πb2

∫
dx2dy2exp(−

x2
2

2a2
− y2

2

2b2
)
∫
dx1dy1exp(−

x2
1

2a2
− y2

1

2b2
)e2ix1y1θ

=
1

2πa22πb2
(2abπ)

2πab√
1 + 4a2b2θ2

=
1√

1 + 4a2b2θ2

5.4.2 Proof of the witness

We define

û = p̂1 + t1|α| sin((n̂2 − t22|β|2)θ)

v̂ = p̂2 + t2|β| sin((n̂1 − t21|α|2)θ)

and we prove as follow that for separable states (∆û)2+(∆v̂)2 ≥ |〈[p̂1, t2|β| sin((n̂1 − t21|α|2)θ)]〉|+

|〈[p̂2, t1|α| sin((n̂2 − t22|β|2)θ)]〉|

〈
(∆û)2

〉
ρ

+
〈
(∆v̂)2

〉
ρ

=
∑
i

pi
(〈
û2
〉
i
+
〈
v̂2
〉
i

)
− 〈û〉2ρ − 〈v̂〉

2
ρ

=
∑
i

pi
(〈

(t1|α| sin((n̂2 − t22|β|2)θ))2
〉
i
+
〈
(t2|β| sin((n̂1 − t21|α|2)θ))2

〉
i
+
〈
p̂2

1

〉
i
+
〈
p̂2

2

〉
i

)
+2

(∑
i

pi
〈
(t1|α| sin((n̂2 − t22|β|2)θ))2

〉
i
〈p̂1〉i−

∑
i

pi
〈〈

(t2|β| sin((n̂1 − t21|α|2)θ))2
〉〉

i
〈p̂2〉i

)
−〈û〉2ρ − 〈v̂〉

2
ρ

=
∑
i

pi

(〈(
∆t1|α| sin((n̂2 − t22|β|2)θ)

)2
〉
i
+
〈
(∆p̂1)2

〉
i
+
〈(

∆t2|β| sin((n̂1 − t21|α|2)θ)
)2
〉
i
+
〈
(∆p̂2)2

〉
i

)

+
∑
i

pi 〈û〉2i −
(∑

i

pi 〈û〉i

)2

+
∑
i

pi 〈v̂〉2i −
(∑

i

pi 〈v̂〉i

)2

≥
∑
i

pi

(〈(
∆t1|α| sin((n̂2 − t22|β|2)θ)

)2
〉
i
+
〈
(∆p̂1)2

〉
i
+
〈(

∆t2|β| sin((n̂1 − t21|α|2)θ)
)2
〉
i
+
〈
(∆p̂2)2

〉
i

)
≥

∣∣∣〈[p̂1, t2|β| sin((n̂1 − t21|α|2)θ)
]〉∣∣∣+ ∣∣∣〈[p̂2, t1|α| sin((n̂2 − t22|β|2)θ)

]〉∣∣∣ .
Here the symbol 〈· · ·〉i denotes average over the product density operator ρi1⊗ ρi2. We have

used the Cauchy-Schwarz inequality
(∑

i
pi

)(∑
i
pi 〈û〉2i

)
≥
(∑

i
pi |〈û〉i|

)2

and the uncer-

tainty relation that
〈(

∆Âj
)2
〉
i
+
〈(

∆B̂j

)2
〉
i
≥
∣∣∣[Âj, B̂j

]∣∣∣ for j = 1, 2.
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We thus define the entanglement witness as follow,

W = Log2
|〈[p̂1, t2|β| sin((n̂1 − t21|α|2)θ)]〉|+ |〈[p̂2, t1|α| sin((n̂2 − t22|β|2)θ)]〉|

(∆û)2 + (∆v̂)2
(5.15)

5.4.3 Calculation of the value of the witness under decoherence

The state with loss is

|ψ〉 =
∞∑

m,k=0

|t1αe−i(m+k)θ〉1|r1αe
−i(m+k)θ〉3e−

|β|2
2

(t2β)m√
m!
|m〉2

(r2β)k√
k!
|k〉4

=
∞∑

m,k=0

|t2βe−i(m+k)θ〉1|r2βe
−i(m+k)θ〉3e−

|α|2
2

(t1α)m√
m!
|m〉2

(r1α)k√
k!
|k〉4

û = p̂1 + t1|α| sin((n̂2 − t22|β|2)θ)

v̂ = p̂2 + t2|β| sin((n̂1 − t21|α|2)θ)

We first calculate the variance
〈
(∆û)2

〉
= 〈û2〉 − 〈û〉2

〈û〉2 = (e−|β|
2
∞∑

m,k=0

(t2β)2m

m!

(r2β)2k

k!
(〈t1αe−i(m+k)θ|p̂1|t1αe−i(m+k)θ〉+

〈
m|t1|α| sin((n̂2 − t22|β|2)θ)|m

〉
)2

= (e−|β|
2
∞∑

m,k=0

(t2β)2m

m!

(r2β)2k

k!
(t1|α| sin((|β|2 −m− k)θ) + t1|α| sin((m− t22|β|2)θ)))2

〈
û2
〉

=
〈
p̂2

1 + 2p̂1t1|α| sin((n̂2 − t2b2)θ) + (t1|α|)2 sin2((n̂2 − t22|β|2)θ)
〉

= e−|β|
2
∞∑

m,k=0

(t2β)2m

m!

(r2β)2k

k!
(〈t1αe−i(m+k)θ|p̂2

1|t1αe−i(m+k)θ〉

+2t1|α| sin((|β|2 −m− k)θ)t1|α| sin((m− t22|β|2)θ) + (t1|α|)2 sin2((m2 − t22|β|2)θ))

= e−|β|
2
∞∑

m,k=0

(t2β)2m

m!

(r2β)2k

k!
(〈t1αe−i(m+k)θ|(â1 − â1

†)(â1 − â1
†)

−4
|t1αe−i(m+k)θ〉

+2t1|α| sin((|β|2 −m− k)θ)t1|α| sin((m− t22|β|2)θ) + (t1|α|)2 sin2((m2 − t22|β|2)θ))

= e−|β|
2
∞∑

m,k=0

(t2β)2m

m!

(r2β)2k

k!
(〈t1αe−i(m+k)θ| â1

2 + (â1
†)2 − 2â1

†â1 − 1)

−4
|t1αe−i(m+k)θ〉

+2t1|α| sin((|β|2 −m− k)θ)t1|α| sin((m− t22|β|2)θ) + (t1|α|)2 sin2((m− t22|β|2)θ))
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= e−|β|
2
∞∑

m,k=0

(t2β)2m

m!

(r2β)2k

k!
((t1|α| sin((|β|2 −m− k)θ))2 +

1

4

+2t1|α| sin((|β|2 −m− k)θ)t1|α| sin((m− t22|β|2)θ) + (t1|α|)2 sin2((m− t22|β|2)θ))

=
1

4
+ (t1|α|)2e−|β|

2
∞∑

m,k=0

(t2β)2m

m!

(r2β)2k

k!
((sin((|β|2 −m− k)θ)) + sin((m− t22|β|2)θ)2)

Similar results holds for v̂.

To calculate the average of the commutator |〈[p̂1, t2|β| sin((n̂1 − t21|α|2)θ)]〉| ,

∣∣∣〈[p̂1, t2|β| sin((n̂1 − t21|α|2)θ)
]〉∣∣∣

= |
〈
p̂1t2|β| sin((n̂1 − t21|α|2)θ)− t2|β| sin((n̂1 − t21|α|2)θ)p̂1

〉
|

= |e−|β|2
∞∑

m,k=0

(t2β)2m

m!

(r2β)2k

k!
(〈t1αe−i(m+k)θ| â1 − â1

†

2i
t2|β| sin((n̂1 − t21|α|2)θ)

−t2|β| sin((n̂1 − t21|α|2)θ)
â1 − â1

†

2i
|t1αe−i(m+k)θ〉|

〈t1αe−i(m+k)θ|â1t2|β| sin((n̂1 − t21|α|2)θ)|t1αe−i(m+k)θ〉

= t2|β|〈t1αe−i(m+k)θ|â1 sin((n− t21|α|2)θ)e−
|t1α|

2

2

∞∑
n=0

(t1α)2n

n!
|n〉

= t2|β|e−
|t1α|

2

2

∞∑
n=0

(t1αe
−i(m+k)θ)2n

√
n!

sin((n− t21|α|2)θ)〈t1αe−i(m+k)θ|â1|n〉

= t2|β|e−
|t1α|

2

2

∞∑
n=0

(t1αe
−i(m+k)θ)2n

√
n!

sin((n− t21|α|2)θ)〈t1αe−i(m+k)θ|
√
n|n− 1〉

= t2|β|e−
|t1α|

2

2

∞∑
n=0

(t1αe
−i(m+k)θ)2n

√
n!

sin((n− t21|α|2)θ)e−
|t1α|

2

2

∞∑
n=0

(t1α
?ei(m+k)θ)2l

√
l!

〈l|
√
n|n− 1〉

= t2t1|β|αe−i(m+k)θe−|t1α|
2
∞∑
n=0

|t1α|2n

n!
sin((n− t21|α|2)θ)

For similar reasons,

〈t1αe−i(m+k)θ|â1
†t2|β| sin((n̂1 − t21|α|2)θ)|t1αe−i(m+k)θ〉

= t2t1|β|α?ei(m+k)θe−|t1α|
2
∞∑
n=0

|t1α|2n

n!
sin((n− t21|α|2)θ)
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〈t1αe−i(m+k)θ|t2|β| sin((n̂1 − t21|α|2)θ)â1|t1αe−i(m+k)θ〉

= t2t1|β|αe−i(m+k)θe−|t1α|
2
∞∑
n=0

|t1α|2n

n!
sin((n+ 1− t21|α|2)θ)

〈t1αe−i(m+k)θ|t2|β| sin((n̂1 − t21|α|2)θ)â1
†|t1αe−i(m+k)θ〉

= t2t1|β|α?ei(m+k)θe−|t1α|
2
∞∑
n=0

|t1α|2n

n!
sin((n+ 1− t21|α|2)θ)

Thus we have

∣∣∣〈[p̂1, t2|β| sin((n̂1 − t21|α|2)θ)
]〉∣∣∣

= t2t1|β||α||e−|β|
2
∞∑

m,k=0

(t2β)2m

m!

(r2β)2k

k!
cos((|β|2 −m+ k)θ)

∗e−|t1α|2
∞∑
n=0

|t1α|2n

n!
(sin((n+ 1− t21|α|2)θ)− sin((n− t21|α|2)θ))
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Chapter 6

Conclusion and outlook

This thesis mainly discusses the topic why it is hard to observe macroscopic quantum effects.

We approach this topic from the quantum optics point of view, especially with the help of

Kerr effects. Aside from the obvious fact that no interference experiments are done in

daily experience so that quantum effect cannot be shown, we focus on two other reasons.

Chapter 3 and 4 analyze the fact that coarse graining in measurement precision makes it

hard to observe macroscopic quantum effects in two different aspects. Chapter 3 shows that

to create macroscopic quantum effect we need a precision that scales with the size of the

system. Chapter 4 shows that even if we have a perfect macroscopic quantum state, the

measurement resolution required to observe it scales with the size of the system, when both

outcome and control precision are taken into consideration. Chapter 5 tackles the problem

of decoherence, a major obstacle preventing us from creating and observing macroscopic

quantum effects. We propose to create and detect strong macroscopic entanglement via

small Kerr phase shift, which is robust under decoherence. We hope that the above results

are helpful to push the boundary of the realm of quantum theory to the macroscopic level.

In my opinion, there are several directions for future studies about the topic of macro-

scopic quantum effects.

The first one is how to define macroscopic quantum effects itself, especially macroscopic

entanglement. Intuitively, there could be several criteria of macroscopicity [1, 2, 3, 4, 5].

Firstly, the size of the state is large, such as a large coherent states with different phases

as given in the examples of Chapter 3, 4 and 5 and different states of mirrors in opto-

mechanical system, or even living and dead cats. Secondly, the amount of entanglement is

large. This is in some sense equivalent to that the dimension of entanglement is large. The
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state analyzed in Chapter 5 is just a good example. Thirdly, the number of particles involved

in the entanglements is large, for instance, a complicated cluster states with a great amount

of qubits. There is another class of large entanglement, the status of which is ambiguous.

Consider sending a single excitation into some medium, for example, sending a photon into

BEC, creating a spinwave. The BEC, a macroscopic system, is in a superposition of different

states, with the excitation in any of the atoms. Shall we consider this as a macroscopic

quantum effect? I would prefer not. In my opinion, a macroscopic effect should have a large

number of excitations, as in previous three classes discussed above.

A natural question would be, how to develop a quantitative measurement that is ap-

plicable to the above three macroscopic states? In Chapter 5, the states we proposed are

macroscopic satisfying both the first and second criterion above. We used logarithmic nega-

tivity to quantify the entanglement, which obviously scales with both the size of the system

and the amount of entanglement. However, when the size of the system becomes large, the

computation power needed would be enormous. And the logarithmic negativity could not be

applied to the third criterion. So the question of quantitative measurement of macroscopicity

still open.

Another direction is about the topic of precision requirement to observe macroscopic

quantum effects. In Chapter 4 we conjectured that the measurement precision required for

demonstrating macroscopic quantum effects seems to increase with the size of the system,

provided that both outcome precision and control precision are taken into account. The

next problem would be how to quantitatively describe the complimentary relationship of

the outcome precision and control precision. For example, we can try to find a system

and analyze if we decrease a certain amount of outcome precision, how much more control

precision is needed. Moreover, how to really prove the above conjecture is also an interesting

problem.

The third direction is about creating and detecting macroscopic entanglement that is ro-
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bust under decoherence. In chapter 5 we proposed a method to create such states, showing

that the entanglement is robust under decoherence. However, although we can in principle

quantify the entanglement by logarithmic negativity, the computational resource required

when the size of the system is very large is tremendous. A natural question is, if there some

better way to quantify this entanglement. Moreover, we propose to detect such entangle-

ment via homodyne tomography, but when the size of the system goes really large, such

tomography may be hard to realize. So another question is, are there some other ways to

detect such macroscopic entanglement?

Above are some interesting questions for future studies. We hope that the realm of

quantum theory can be further pushed towards the macroscopic level by these endeavors.
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