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Abstract

In this Thesis, I investigate two disparate topics in the fields of quantum information

processing and macromolecular biochemistry, inter-related by the underlying physics of

nonadiabatic electronic transitions (i.e., the breakdown of the Born-Oppenheimer ap-

proximation). The main body of the Thesis is divided into two Parts.

In Part I, I describe my proposal for a two-qubit quantum logic gate to be implemented

based on qubits stored using the total orbital angular momentum states of ultracold

neutral atoms. I carry out numerical analyses to evaluate gate fidelity over a range

of gate speeds, and I derive a simple criterion to ensure adiabatic gate operation. I

propose a scheme to significantly improve the gate’s fidelity without decreasing its speed.

I contribute to the development of a “loophole-free” Bell inequality test based on the use

of this gate by carrying out an order-of-magnitude feasibility analysis to assess whether

the test is viable given realistic technological limitations.

In Part II, I investigate electron transfer reaction experiments performed on native

and mutant forms of the MADH–amicyanin redox complex derived from P. denitrificans.

I implement molecular dynamics simulations of native and mutant forms of the solvated

MADH–amicyanin complex. I analyze the resulting nuclear coordinate trajectories, both

geometrically and in terms of electronic redox coupling. I find that the interprotein sol-

vent dynamics of the mutant systems differ dramatically from those of the native system,

and that the stability of an electron-transfer-mediating “water bridge” is compromised

in the mutant complexes. I conclude that the mutations disrupt a protective “molecular

breakwater” on the surface of amicyanin that stabilizes the interprotein water bridge.

I discuss parallels between the nonadiabatic effects as they manifest themselves in the

two systems, and I suggest how my findings in Part I promote technological developments

to better characterize systems like that examined in Part II.
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Preface

No storyteller has been able to dream up anything as fantastically unlikely

as what really does happen in this mad Universe.

—Robert A. Heinlein, 1973 [1]

A decade ago, while completing my Science Baccalaureate (Honours Physics) at the

University of Waterloo, I became interested in the prospect of molecular-scale engines and

the question of what fundamental physical principles would enable their operation. In an

effort to broach these questions, I wrote my undergraduate thesis, “Towards a Quantum

Carnot Engine,” under the supervision of Lucien Hardy at the Perimeter Institute. Dur-

ing that investigation, I analyzed the work performed by a quantum mechanical particle

confined to a classical infinite square potential and subjected to a thermodynamic cycle

of quantum adiabatic and isothermal expansions and compressions.

My investigation inspired more questions than it answered. What physical trait could

distinguish the “engine” from the quantum “working fluid” it contained, if the engine

too must be composed of quantum mechanical particles? In what limit could the engine

cycle be described by a time-dependent classical potential? Finally, how could a ther-

modynamic cycle be generated in the absence of explicit time-depedent control of the

Hamiltonian describing all of the particles comprising engine and fluid? Confounded, I

turned my attention to molecular biology to see what Nature had already discovered.

This Thesis represents the outcome of my search so far.

Nathan S. Babcock

Calgary, Alberta

15 March 2015
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Chapter 1

Summary of Contribution

The way life manages information involves a logical structure that differs

fundamentally from mere complex chemistry. Therefore chemistry alone will

not explain life’s origin, any more than a study of silicon, copper and plastic

will explain how a computer can execute a program.

—Paul Davies, 2013 [15]

James Watson and Francis Crick’s discovery of the double helical structure of de-

oxyribose nucleic acid (DNA) in 1953 [16] set the stage for the discovery of the genetic

code [17] and the application of information theory [18] to fundamental problems in biol-

ogy. While quantum mechanics is known to provide the underlying physical foundation of

anatomy and physiology by way of molecular biochemistry [19], the application of quan-

tum mechanics to biological systems has heretofore been limited mostly to structural

and spectroscopic studies. Recently, the role of dynamical quantum effects in biology

has become a topic of intense academic interest [20]. This development opens up the

possibility of a previously-unanticipated picture of microbiological systems as quantum

information processing (QIP) machines [21].

In this Thesis, I investigate and characterize the dynamics of two diametrically differ-

ent examples of quantum systems, drawn respectively from the areas of quantum comput-

ing and macromolecular biochemistry. Although these areas represent disparate fields of

inquiry, the two systems I study both provide examples of the same underlying physical

phenomenon: the controlled nonadiabatic breakdown of the Born-Oppenheimer approx-

imation. More precisely, these systems represent physical applications of the control and
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suppression of nonadiabatic quantum transitions that accompany the breakdown of the

quantum adiabatic assumption of the Born-Oppenheimer approximation. I contribute

solutions to existing problems in these two fields, and I discuss the physical parallels

between the quantum dynamics of these physical systems.

The main body (Chapters 3 through 8) of this Thesis is divided into two Parts,

respectively devoted to each of two separate investigations:

1. The first investigation concerns the generation of entanglement between ultracold

neutral atoms, with application to quantum computing.

2. The second investigation concerns the efficient transfer of individual electrons be-

tween enzymes, with application to biological energy transduction.

In this introductory Chapter, I briefly summarize the nature of these two scientific

contributions, with regard to their novelty, importance, limitations, and similarities.

1.1 Summary of Part I

In Part I of this Thesis, I describe my proposal for a two-qubit quantum logic gate to be

implemented using qubits stored in the orbital angular momentum states of ultracold,

Bosonic, neutral atoms. Part I of this Thesis comprises four chapters related to my

proposal. The first of these Chapters provides necessary background material, whereas

the remaining three chapters describe scientific investigations that I have carried out and

reported in three corresponding peer-reviewed journal articles that I co-authored.

These scientific investigations are as follows:

• I investigate the traditional adiabatic speed limit for the linear operation of this

gate by deriving a simple criterion to ensure its coherent operation and by running

numerical simulations to demonstrate the validity of that criterion [2].
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• I investigate the feasibility of carrying out a specific QIP application for this gate,

in the form of a “loophole-free” physical test of Einstein, Podolsky, and Rosen’s

local-realistic model of empirical experience [3].

• I investigate a means to improve the fidelity of this gate over the limit set by Born

and Fock’s adiabatic approximation, and I show how a polynomial improvement in

gate operation can be obtained using a coherent control technique [4].

I now briefly summarize the motivation, object, originality, impact, and limitations

of these investigations in order to exhibit the merit of my contributions.

1.1.1 Motivation

In May of 1981, Richard Feynman delivered a keynote address to the assembly of the First

Conference on Physics and Computation at the Massachusetts Institute of Technology

(MIT). He conjectured that concepts and methods drawn from algorithmic complexity

theory could be used to devise new tests of fundamental physical postulates [22]. During

this lecture, he developed ideas originally proposed by Benioff, Bennett, Fredkin, Toffoli

and others regarding the possibility of physically-reversible computation [23, 24]. He

elucidated the concept of a quantum computer as a “universal quantum simulator,” and

he conceived the idea of an ordered set of quantifiably-equivalent complexity classes of

quantum computing machines [22]. He expressed his belief “that with a suitable class of

quantum machines you could imitate any quantum system, including the physical world.”

Immense progress has been made in the field of quantum information science since

Feynman gave that famous address. It is now established that some classically “hard”

problems in computer science can be solved more efficiently on a quantum computer,

even exponentially-so [21]. There is now a concerted, worldwide effort to develop the

requisite physical components to construct both application-specific and universal QIP
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machines. The physical realization of a scalable, universal quantum computer would ren-

der many present-day information security technologies obsolete, with global commercial

and political ramifications [25, 26].

1.1.2 Object of Investigation

The object of this investigation is a quantum mechanical logic gate that operates on a

pair of logical qubits. The qubits are respectively stored in the internal states of a pair of

identical particles that are spatially-constrained to separate traps [27]. This logic gate is

known as a “
√

SWAP gate,” and it is implemented by way of the controlled amplification

of the exchange interaction between the two particles, as the tunneling barrier separating

the two traps is precisely lowered and raised. This two-qubit logic gate represents an

entanglement-generating class of quantum mechanical gates, analogous to the classical

“exclusive-OR” gate operating on two bits of information [21]. It is known to provide a

requisite physical component for a quantum computer built according to a “circuit-based”

quantum computing architecture [27].

The
√

SWAP gate was proposed in 1997 for quantum computing applications by Loss

and DiVincenzo, based on the use of qubits realized in the Fermionic “spin states of

coupled single-electron quantum dots” [27]. More recently, Hayes et al. adapted Loss

and DiVincenzo’s
√

SWAP gate proposal [27] to be applied to qubits stored in nuclear

spin states of Fermionic atoms constrained to the vibrational ground state of a pair of

individual optical dipole traps (“laser tweezers”) [28]. An experimental realization of a
√

SWAP gate was concurrently demonstrated using qubits stored in the Zeeman states

of an ensemble of Bosonic atoms confined to a double-well optical lattice potential [29].

In Hayes et al.’s conception of the gate, the tunneling barrier is effectively lowered and

raised by using spatial control of the optical tweezers to combine and reseparate the traps.

More specifically, gate operation is realized as a pair of initially-distant optical tweezers
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are brought into proximity to the point of complete overlap, and then re-separated to

their original positions. Precision control of the gate’s speed allows the qubits to be put

into an arbitrary superposition of “swapped” and “not-swapped” states. By definition,

a
√

SWAP gate puts an initially-unentangled pair of qubits into an equal superposition

of “swapped” and “not-swapped” states. This gate can be used to perform universal

quantum computation in concert with arbitrary single qubit rotations [27]. High-fidelity

operation is ensured by performing the gate sufficiently slowly, so that the vibrational

ground state of the atoms evolves quantum adiabatically with respect to the motion of

the tweezers (i.e., adiabatic state transfer with near-unit fidelity).

1.1.3 Originality of My Contributions

I propose, analyze, and develop a novel scientific application for

a new physical realization of the
√

SWAP quantum logic gate.

Following Hayes and coworkers [28], I adapt the exchange-based entanglement concept

of DiVincenzo’s proposal to store qubits stored in the non-magnetic total angular mo-

mentum states of the electronic configurations of Bosonic atoms [2, 3]. The novelty

of my proposal is evinced in my departure from the use of magnetic spin degrees of

freedom to store the logical qubit states, common to all three prior conceptions of the

gate [27, 28, 29]. Responding to a practical insight made by Anderlini and coworkers [29],

I propose instead to store qubits across “magnetic-field-insensitive” orbital angular mo-

mentum states of Bosonic atoms. I substantiate my proposal with a detailed quantitative

analysis of its limitations. Because qubits are stored using stable and metastable elec-

tronic states of individual atoms cooled to their vibrational centre-of-mass ground state,

I consider vibrational excitations during motion as the dominant source of gate decoher-

ence. I analyze the gate’s fidelity by deriving a criterion to ensure coherent adiabatic

transport of the atomic vibrational states. This contribution is described in Chapter 4.
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I justify the value of my proposal by elucidating a specific scientific application for it.

I collaboratively develop a novel application for the gate in the form of a “loophole-free”

test of Bell’s inequality, and I carry out a basic analysis of the feasibility of performing

this test in a single laboratory. This contribution is described in Chapter 5.

I invent a technique for improving gate fidelity beyond that implied by the standard

adiabatic approximation. I show that this technique can be used to generate asymptotic

improvements in gate operation. This contribution is described in Chapter 6.

1.1.4 Scientific Impact

The physical realization of a quantum computing architecture is made more efficiently-

scalable if it is constructed using arrays of separate registers of qubits, wherein “several

qubits can be stored for a long time and local quantum operations can be carried out

with a very high fidelity” [30]. Arrays of trapped neutral atoms provide the opportunity

to implement such architectures, if the realizations of the logical qubits are chosen to

ensure that the qubits are encoded into a direct product space of the system [30]. Qubits

stored separately in the nuclear and electronic subspaces of atoms allow for architectural

constructions of this kind, and thus proffer significant advantages to quantum computing

proposals by enabling single-atom quantum registers [30].

My proposed implementation of the
√

SWAP gate provides an essential entanglement-

generating component to atom-based QIP systems that employ hybrid registers of nuclear

and electronic qubits. Hayes et al.’s proposal to implement the
√

SWAP gate using qubits

stored in nuclear spins does not exclude my proposal to implement it using non-magnetic

orbital states. Rather, the specific choice of non-magnetic orbitals ensures that the state

of an electronic orbital qubit can be decoupled from the states of any spin qubits stored in

the atomic nuclei. The opportunity to manipulate and entangle multiple qubits that are

simulatenously stored in distinct subsystems of the same atom enables a “novel approach”
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to QIP with significant scalability advantages [30].

To this effect, my proposal [2, 3] has inspired the development of a hybrid proposal

that combines the use of electronic orbital and nuclear spin qubits, in order to produce

a quantum register of qubits stored in a single alkaline-earth atom [30]. A register of

this kind can provide an essential component to a neutral-atom quantum computing

implementation built according to either a circuit-based or a measurement-based archi-

tecture. It can also be extended to ionic quantum computing implementations [30]. This

approach holds promise for the development of prototypes of atomistic QIP implementa-

tions, where technical issues regarding scaling efficiencies may be explored experimentally

with regard to the development of optimization strategies for next generation systems.

In addition to its role in this key QIP application, my proposal for an entangling
√

SWAP gate [2, 3] has also provided explicit motivation for independent investigations in

a number of different areas of scientific inquiry. These areas include adiabatically-evolving

optical lattice potentials [31], bounds on adiabatic quantum computing [32], low-cost

multiple-trap optical-tweezer systems [33], scalable neutral atom quantum computing

schemes [34], techniques for producing Bose-Einstein condensates [35], thermodynamics

of magnetic materials [36], ultracold atomic collisions [37], and nuclear structures of

exotic elements [38].

1.1.5 Obstacles and Limitations

Whereas an adiabatic exchange gate like the one I propose has been demonstrated en

masse using an ensemble of qubit pairs trapped in an optical lattice [29], the imple-

mentation of this gate using a single pair of qubits “on-demand” [34] remains yet to be

empirically demonstrated. The limiting factor holding back the “on-demand” realiza-

tion of a two-qubit entangling gate would appear to be the difficulty associated with the

preparation of pairs of individual alkaline-earth atoms in their vibrational ground states,
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but experimental progress in this direction is proceeding rapidly [39, 40, 41, 42, 43, 44].

Although my proposal for the gate itself has inspired and motivated tangible scien-

tific developments outlined above, my schemes for improving the gate’s fidelity using

nonadiabatic interference effects [4] and for employing the gate in a “loophole-free” Bell

inequality test [3] have received less academic attention. Here, the lack of any rapid

scientific follow-up may be attributed to the nascent state of the technologies involved.

Naturally, a technique for optimizing the gate’s performance [4] will not be of practical

importance until demonstrations of the gate move beyond the proof-of-principle stage.

Likewise, the gate cannot be reliably applied as part of a larger physical investigation

(such as a Bell test [3]) until the technology has been refined to the point where it can

be realized when required, repeatedly and robustly.

1.2 Summary of Part II

In Part II of this Thesis, I describe my quantiative analysis of data produced by molecular

dynamics (MD) simulations of a metabolic redox complex, with regard to nonadiabatic

electron transfer (ET) in this system. Part II of this Thesis comprises two Chapters re-

lated to my analysis. The first of these Chapters provides necessary background material,

whereas the remaining chapter describes two of my scientific investigations as they relate

to my independent contributions to one peer-reviewed scientific article that I co-authored

on the subject. The presented contributions are as follows:

• I present statistical and geometrical analyses of classical nuclear trajectories gener-

ated by MD simulations of the solvated MADH–amicyanin complex to show that

surface residues organize solvent dynamics at the complex interface [5].

• I present a categorical analysis of data generated by tunneling pathway calcula-

tions performed on the nuclear trajectories, to show that the disruption of the
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infered solvent-organizing mechanism leads to reduced electronic coupling between

the “donor” and “acceptor” redox states of mutant forms of the ET complex [5].

I now briefly summarize the motivation, object, originality, impact, and limitations

of this scientific investigation in order to exhibit the merit of my contributions.

1.2.1 Motivation

In September of 1976, Albert Szent-Györgyi delivered a welcoming address during a

workshop devoted to the topic of “Cell-Associated Water,” at the First International

Congress on Cell Biology in Boston [45]. He expressed his fascination with the “special

place” that water occupies in biology, calling water both the “mater” and the “matrix”

of life [45]. He emphasized water’s integral role in life, declaring that there could be “no

sharp separation between solvent and solute” in living systems. He expressed his belief

that “water is not only a solvent which can separate molecules, but it is also a ‘cement’

which helps to hold the living machinery together” [45].

Scientific interest in water as an “active constituent” in cellular biology has grown

enormously since Szent-Györgyi gave that welcoming address, and water is now recog-

nized as “a substance that actively engages and interacts with biomolecules in complex,

subtle, and essential ways” [46]. The idea that water might act as an adhesive in a

metabolic complex, and even facilitate resonant charge transfer in one, gained credence

in 1994 when Chen and coworkers succeeded in crystalizing the redox triad formed by

the enzymes methylamine dehydrogenase (MADH), amicyanin, and cytochrome c551 [47].

Chen et al.’s crystal structure revealed a water molecule harboured at the interprotein

interface between MADH and amicyanin, which might enhance donor-acceptor ET cou-

pling if also present during biological ET.

The following year, Ermler and coworkers identified an analogous water molecule in

the crystal structure of flavohemoglobin [48]. They hypothesized that [48],
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A striking feature of the region between the prosthetic groups is the high

number of polar residues whose predominantly large side chains originate

from all three domains. These residues may not act as electron mediator, but

influence the electrochemical potential of the prosthetic groups, the dielectric

constant of the intervening space, and finally the kinetics of the electron

transfer process. The high electric field generated is reflected by a large

number of firmly bound solvent molecules in this region. It may be speculated

that the high electric field is mainly built up to fix the electron-transferring

water molecule between the prosthetic groups.

Interest in solvent-mediated ET intensified in 2001 when Tezcan and coworkers [49]

demonstrated that water molecules could facilitate ET in protein crystals, and again

in 2004 after Klinman and coworkers [50] demonstrated that enzymatic ET in the pro-

tein peptidylglycine α-hydroxylating monooxygenase (PHM) is most likely to occur via

solvent-mediated electronic coupling. In 2005, Lin and coworkers used MD simulations

in conjunction with semi-empirical “extended Hückel” quantum chemistry calcuations

to show that interprotein solvent organization could hypothetically play a key role in

modulating biological ET rates [51].

In 2007, de la Lande and coworkers [52] carried out MD simulations of the native PHM

enzyme alongside mutant forms of it. Their findings supported Lin et al.’s “structured wa-

ter” [51] hypothesis, because they showed that experimentally-motivated mutations [53]

were simulatenously correlated with decreased electronic couplings and decreased stabil-

ity of a bridging water molcule in the space between the redox cofactors [52]. Thus arose

a growing body of evidence indicating a key role for water as a mediator of charge and

energy transfer in biomolecular systems.
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1.2.2 Object of Investigation

The object of investigation is a nonadiabatic interprotein ET reaction carried out by

the bacterial metabolic redox complex formed by the proteins MADH and amicyanin.

Amicyanin serves as MADH’s exclusive redox partner during metabolism, and therefore

functions as a critical bottleneck during methylamine metabolism in the methylotrophic

soil bacterium Paracocous denitrificans [54]. The partner exclusivity of MADH with

amicyanin provides an essential empirical control that allows findings from in vitro site-

directed mutagenesis experiments to be compared directly to their counterparts in vivo.

Two decades ago, Chen and coworkers showed that the interprotein interface between

crystalized MADH and amicyanin held a water molecule that might enhance donor-

acceptor ET coupling if it were also present in that location during biological ET [47].

The role that water might play modulating ET from MADH to amicyanin became a

topic of empirical interest again in 2007, when Ma and coworkers (under the direction

of Victor Davidson) carried out a set of redox experiments using native and mutant

forms of amicyanin. They found that mutations performed on amicyanin’s Methionine

51 (“Met51”) surface residue had the effect of changing the kinetic mechanism governing

ET from MADH to amicyanin—without significantly affecting the dissociation constant

Kd associated with complex formation [14]. Ma et al. concluded [14],

The interactions involving the Met51 side chain are entirely responsible for the

change in ET parameters and conversion of the true ET reaction of native

amicyanin into the conformationally gated ET reaction. Since the Kd for

complex formation is not affected by the M51A mutation, it follows that

the change in the kinetic mechanism of the reaction is to reduce the rate

of a pre-existing normally rapid conformational rearrangement rather than

to introduce a new slow reaction step. . . . These results show that surface
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residues of redox proteins may not only dictate specificity for their redox

protein partners but also be critical to optimize the orientations of the redox

centers and intervening media within the protein complex for the ET event.

Methionine 51 is part of a hydrophobic patch of residues on the surface of amicyanin,

not far from the location of the purported ET-enhancing water molecule in the crystal

structure [55]. In light of Chen et al.’s findings [47]—as well as other findings indicating

the importance of structured water molecules in mediating ET [48, 51]—Ma et al.’s results

suggested that the Met51 mutation had disrupted the structure of an ET-mediating water

network at the protein–protein interface.

1.2.3 Originality of My Contribution

I analyze data from MD simulations to demonstrate that amino acid

residues at the interface of the MADH–amicyanin redox complex

organize the dynamics of interprotein water molecules in order to

facilitate nonadiabatic interprotein ET.

Following the method of de la Lande and coworkers [52], I generated computer-simulated

structures of the same mutant forms of amicyanin used by Ma and coworkers in their

MADH–amicyanin redox experiments [14]. I implemented MD simulations of the MADH–

amicyanin complex in solution using the CHARMM software package [56] with simulation

parameters provided to me directly by Aurélien de la Lande. The novelty of my scientific

contribution is found in my approach to analyzing the nuclear coordinate trajctories

generated by these simulations.

After carrying out extensive qualitative inspections of the trajectory data using the

“Visual Molecular Dynamics” (VMD) software [57], it became evident to me that the in-

terprotein solvent dynamics of the mutant complexes bore striking differences from those
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of the native complex, in terms of both the numbers of water molecules found inside the

complex and the turbulence of their motion. In order to turn this qualitative, anecdo-

tal insight into a quantitative, statistically-meaningful result, I independently conceived

three quantitative figures of merit with which to compare the solvent dynamics of the

native complex with those of the mutants. Specifically, I elected to measure

• the average number of water molecules trapped in the interprotein region,

• the probability of occupation of a particular doubly-hydrogen-bonded “water bridge”

found linking MADH to amicyanin, and

• the number of distinct water molecules found occupying the bridge position over

the course of each simulation.

Compared to the mutants, the native complex exhibited a quantitatively smaller

number of trapped water molecules, a greater probability of bridge occupation, and

a smaller number of different water molecules occupying the bridge position. These

numbers together revealed the presence of a highly-stable solvent bridge in the native

complex that was not present consistently in the mutant complexes.

In order to conclusively link the observed changes in solvent dynamics to reduced ET

efficiency, I carried out “tunneling pathway” calculations on the trajectory data to esti-

mate the strength of the electronic coupling between the “donor” and “acceptor” redox

cofactors. I conceived and implemented detailed categorical analyses on the numerical

results of those calculations. My analyses revealed that a water molecule in the sta-

ble “bridge” configuration afforded consistently superior ET coupling in comparison to

other statistically-significant solvent configurations, confirming that the destabilization

of the water bridge resulted directly in the decreased electronic coupling observed in the

simulated mutant complexes.
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1.2.4 Scientific Impact

My computational finding that surface residues organize the dynamics of interprotein

solvent molecules in order to enhance ET between MADH and amicyanin adds strong

evidence in support of a growing body of theoretical [58, 51, 59, 52, 60] and experimen-

tal [47, 50, 61] data showing that structured arrangements of water molecules play an

essential role in controlling the rates of metabolic ET reactions.

My findings provide a rare example showing explicitly how a mutation performed

on a surface residue that is not involved in ET coupling can nevertheless modulate the

ET coupling strength of a redox complex. Previous theoretical studies have shown how

protein surfaces might control the orientational structure of intervening solvent molecules

to enhance or diminish the donor–acceptor electronic coupling strength [51, 52, 59]. My

computationally-motivated explanation for how the mutation of nearby surface residues

can control ET kinetics in a metabolic redox complex provides a unique and fundamental

scientific contribution to the field of biological ET research.

My contribution is fundamentally important because it affords the opportunity for

direct comparison between different realizations of the MADH–amicyanin complex, as

it is expressed in silico, in vitro, and in vivo. Unlike the authors of studies involving

metabolically-absent prosthetic systems [62], I do not need to extrapolate to interpret

my findings with regard to their physiological relevance to actual living systems.

My physical interpretation of this data has been adopted by experimental biochemists

in Victor Davidson’s laboratory to motivate the need for novel experiments involving

surface mutations performed on enzymatic proteins [63], and to interpret the results of

new experiments that they have recently performed [64]. My findings have also motivated

the development of new empirical techniques in microscopy [65]. With regard to long-

term impact, my conclusions have helped to solidify an emerging consensus regarding

the physiological role of structured water in mediating long-range ET. My findings have
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had a direct and considerable impact on the opinion of the wider scientific community:

ET-mediating structured water is no longer passed off as a “curiosity” [66], and it is now

being seriously considered as “biochemical machinery” [67] that is “assigned a major

role” [68] in facilitating “substantially enhanced rates of ET” [69] during metabolism.

1.2.5 Obstacles and Limitations

A limitation of the tunneling pathway analysis is its neglect of quantum interference

effects between multiple pathways through the ET medium. Solvent-mediated ET sys-

tems have been shown to exhibit significant multi-pathway interference effects in model

systems for biological ET [51], and quantum chemical calculations are necessary to rigor-

ously incorporate the effects of these interferences. However, the emergence of an appar-

ent “single-pathway regime” [51] in the native system suggests that the results of these

semi-empirical pathway analyses will be reproduced by quantum chemical calculations

when they are performed on this system.

More serious obstacles are presented by computational limitations that restrict the

simulation duration to a timescale comparable to the length of the ET event itself, pre-

cluding the performance of simulations long enough to reproduce other conformational

effects that may contribute to the observed changes in the reaction kinetics. Although

simulations of the MADH–amicyanin system were able to partially explain the overall

reduction in the experimentally observed ET rates in the mutant complexes, this ex-

planation is only qualitative and it neglects the concomitant increase in the apparent

activation free energy of the ET reaction. The loss of a single, dominant coupling path-

way in the mutant complexes is consistent with a picture of the failure of ET theory due

to Condon breakdown (see Section 7.3.5), and the emergence of a new kinetic mechanism

identified by the experimentalists [14].
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Conceptual difficulties—related to the problem of how to include the experimentally-

hypothesized “previously unrecognized conformational rearrangement” into the reaction

coordinate describing the reaction’s activation step—arise in the event of the breakdown

of the Born-Oppenheimer approximation along the ET reaction coordinate, as confor-

mational motions (i.e., rotational and translational motions of the nuclei) that are not

accounted for by the Born-Oppenheimer approximation [70] begin to limit the reaction

rate. The question of how to properly account for non-Born-Oppenheimer eigenstates

that contribute to nuclear motions along the reaction coordinate of an enzymatic reac-

tions remains an unresolved problem in biochemical physics.

1.3 Perspective

The Born-Oppenheimer treatment of a chemical reaction coordinate in terms of some

electronic state(s) evolving adiabatically along with a classical ensemble of atomic centre-

of-mass degrees of freedom is essentially the same, regardless of the specific electronic

states involved or the number of atomic centre-of-mass degrees of freedom in the ensemble.

For this reason, the system quantum logic gate examined in Part I provides a miniature

analogue of the ET reaction complex examined in Part II. The total angular momentum

electronic states in Part I are replaced by charge occupation states in Part II as the

ensemble size scales from two atoms to many thousands of atoms.

In Chapter 2, I provide a brief review of the Born-Oppenheimer approximation and its

implications because this approximation lays the physical foundation for a comparative

analysis of the two systems examined in the remainder of the Thesis. In Chapter 9, I

elaborate further on the intrinsic similarities shared by these two systems and I offer my

perspective regarding chemical reactions as QIP algorithms.
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Chapter 2

Nonadiabatic Transitions

It can be said that wave mechanics is the tool for a complete understanding,

on a physical basis, of all the fundamental facts of chemistry.

—Walter Heitler, 1956 [71]

In essence, the adiabatic theorem states that a quantum mechanical system that is

prepared in an instantaneous eigenstate of its time-dependent Hamiltonian will remain

in a corresponding instantaneous eigenstate of the Hamiltonian to a good approximation,

if the Hamiltonian evolves sufficiently slowly in time [72]. Quantum adiabatic processes

are used to model systems of interest in many areas of physics and engineering [73].

The separation of timescales afforded by this approximation allows the complexity of a

model describing the system to be greatly reduced, as the motions of the system’s slowly-

evolving degrees of freedom are evaluated in an effectively time-independent limit.

The adiabatic approximation is of particular importance to the field of theoretical

chemistry, where it was implicitly employed by physicists Walter Heitler and Fritz London

in order to construct the first quantum mechanical model of the covalent bond [71, 74].

They constructed their model by considering two distant hydrogen atoms in their ground

electronic states, gradually and adiabatically approaching each other [71]. They found

that the degeneracy of the singlet and triplet states of the electrons orbiting the distant

nuclei was broken as the nuclei approached each other, resulting in an attractive potential

for antiparallel electronic spins (i.e., bonding), and a repulsive potential for parallel

electronic spins (i.e., antibonding). This adiabatic description of a molecular system

continues to provide the theoretical foundation of quantum chemistry today [70, 75].
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2.1 The Adiabatic Theorem

In 1928, Born and Fock developed the adiabatic theorem to rigorously describe the dy-

namics of a quantum mechanical system described by a time-dependent Hamiltonian Ĥ(t)

that evolves “very slowly” in time t [76]. Assuming the system to be initially prepared

at time t = t0 in an instantaneous Hamiltonian eigenstate |ψ(t0)〉 = |a(t0)〉 with energy

Ea(t0), Born and Fock estimated the probability that the system would make a transition

from the initial eigenstate |a(t0)〉 to some final (non-degenerate) eigenstate |b(t)〉 with

energy Eb(t), where 〈a(t)|b(t)〉 = 0 [76]. A summary of their derivation follows.

For a Hamiltonian evolving sufficiently-slowly in time, the probability amplitude Cb(t)

describing the occupation of eigenstate b at time t is approximately given by the equation,

Cb(t) ≈
1

h

∫ t

t0

ˆ̇Hba(t
′)

ωba(t′)
e

i
∫ t′
t0
ωba(t′′)dt′′

dt′, (2.1)

where ˆ̇Hba = 〈b(t)|(∂Ĥ(t)/∂t)|a(t)〉 by convention, hωba(t) = Eb(t) − Ea(t), and h is

Planck’s constant [76]. As a crude estimate, we may assume ωba and ∂Ĥ/∂t are approx-

imately time-independent to obtain

Pba(t) .
4| ˆ̇Hba|2
h2ω4

ba

, (2.2)

where Pba(t) is the probability of a transition occuring from the initial state |a(t0)〉 to the

final state |b(t)〉 [76]. More generally, if the time-variation of the phase factor in eq. (2.1)

evolves rapidly and independently from the time-variation of the Hamiltonian, then it is

reasonable to expect the integral (2.1) to sum incoherently. In this limit, the transition

amplitude Cb becomes proportional to ˆ̇Hba/ωba, so that the global condition

‖ ˆ̇Hba‖ � hω2
ba (2.3)

is adequate to ensure that Cb is negligibly small. For a suitably chosen eigenbasis, the

final state of the system |ψ(t)〉 at time t will be given by

|ψ(t)〉 ≈ e−i
∫ t
0 E0(t′)dt/h |a(t)〉. (2.4)
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The criterion (2.3) and the result (2.4) are widely referred to as the “adiabatic ap-

proximation” [76]. This approximation suggests the existence of an upper bound on the

probability of a transition away from an initially-prepared eigenstate of a time-depedent

Hamiltonian, if the Hamiltonian evolves sufficiently slowly in time. In other words, the

probability of transforming the initial state |a(t0)〉 into the final state |a(t)〉 can be made

arbitrarily close to unity, simply by configuring the Hamiltonian to evolve sufficiently

slowly in time. Such a time evolution is called an adiabatic evolution.

2.1.1 Adiabatic Errors

In 2004, Marzlin and Sanders brought the validity of the adiabatic approximation into

dispute by devising a counter-example to it [72], wherein the näıve neglect of the expo-

nential phase factor in eq. (2.1) resulted in the generation of a non-neglible cumulative

error. The Marzlin-Sanders counter-example motivated interest in the development of

more rigorous derivations of the adiabatic approximation and the formulation of tight

bounds to describe deviations from it (see Refs. [4, 77] and citations therein).

Strict conditions ensuring that a system will evolve approximately adiabatically are

now given in terms of the total system’s evolution time, the differences between its

instantaneous eigenvalues, and various orders of “reduced-time” derivatives of its Hamil-

tonian [77]. Asymptotic expressions of the magnitudes of nonadiabatic errors are given as

mathematical expansions in terms of the system size and the evolution duration [4, 77].

The discovery of asymptotically-tight expressions for the error in the adiabatic ap-

proximation creates opportunities for the application of algorithmic complexity theory

to the analysis of fundamental problems in fields where the adiabatic approximation is

used as a founding assumption, such as the field of quantum chemistry.
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2.2 Adiabatic Description of Atoms and Molecules

The calculation of quantifiable properties of a chemical system directly from the principles

of quantum statistical mechanics remains the central problem of theoretical chemstry.

The number of degrees of freedom required to completely describe a chemical system using

quantum mechanics grows exponentially with the number of particles (i.e., electrons and

nuclei) comprising the system [78], unlike the polynomial number of degrees of freedom

required by classical mechanics. The exponential scaling of the quantum mechanical

description of a system renders intractable the numerical treatment of sizeable quantum

systems on classical computers, thus motivating the need for quantum computers to

describe quantum chemical systems [78].

A common practice for reducing the number of degrees of freedom needed to describe

a chemical system is to neglect the system’s explicit magnetic interactions [75, 79]. When

magnetic interactions are ignored, the nonrelativistic Hamiltonian describing a chemical

system C of charged particles is reduced to the so-called Coloumb Hamiltonian ĤC, where

ĤC =
N∑

i=1

~2

2mi

∇2
i +

N∑

i<i′

qi qi′

4πε0 rii′
, (2.5)

and where i (i′) enumerates a whole number N of charged particles, qi (qi′) is the charge

of particle i (i′), ∇2
i is the Laplacian acting on the ith particle, mi is the ith particle’s

mass, π is the ratio of a circle’s circumference to its diameter, ε0 is the permittivity of

free space, and rii′ is the scalar quantifying the distance between particles i and i′ .

Another method for reducing the requisite number of degrees of freedom needed to

describe a chemical system is given in the approach initially developed by Born and

Oppenheimer in 1927 [80], by treating the nuclei as stationary point charges on the

timescale of the electronic motion. This semiclassical approach was conceptually essen-

tial to Heitler and London’s seminal treatment of the hydrogen molecule, when they

considered a system of two hydrogen nuclei adiabatically approaching one another [74].
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2.2.1 The Born-Oppenheimer Approximation

The analysis of a chemical system may be greatly simplified if the nuclei contained in

it may be regarded as slowly-moving point charges residing on an electrostatic potential

defined by a single electronic eigenstate, such that the nonadiabatic effect of nuclear

motion on the electronic state may be ignored [79, 81]. This traditional treatment is

known as the “Born-Oppenheimer” method in honour of physicists Max Born and Robert

Oppenheimer who elucidated it in German in 1927 [80].

The Born-Oppenheimer approximation is derived from two assumptions:

• Assumption 1 — Nuclear positions are treated as classical point particles, for the

purpose of evaluating the Coulomb potential terms in eq. (2.5).

• Assumption 2 — Nuclear motions are treated adiabatically with respect to the

electronic motions, for the purpose of evaluating the kinetic terms in eq. (2.5).

In the limit defined by these assumptions, it is convenient to express the Coulomb

Hamiltonian in the form,

ĤC = K̂n + K̂e + V̂ , (2.6)

where ~Kn and ~Ke each respectively comprise the sums of the nuclear and electronic kinetic

energy operators, and where ~V is the potential energy operator representing the sum of

the pairwise Coulomb interactions between all of the particles. We define the “electronic

Hamiltonian” operator Ĥe(~re, ~rn) such that Ĥe = K̂e + V̂ .

Conventional treatments of the Born-Oppenheimer theorem parametrically diagonal-

ize the electronic subspace of Ĥe by assuming that the nuclear wavefunction is well-

approximated by collection of fixed point charges, in order to define a complete set of

~rn(t)-parameterized electronic eigenfunctions {χj(~re;~rn)}, where {j} is the set of whole

numbers. These eigenfunctions obey the eigenvalue equation

Ĥe(~re, ~rn)χj(~re;~rn) = Vj(~rn)χj(~re;~rn), (2.7)
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where ~re and ~rn are vectors collectively representing the positions of all the electrons and

nuclei, respectively. According to this method, the electronic Hamiltonian Ĥe defines a

discrete manifold of potential energy hypersurfaces {Vj(~rn)} [79].

The Born-Oppenheimer theorem states that, to a “good approximation” [79], the

potential surfaces {Vj(~rn)} may be used in place of the proper electronic Hamiltonian

operator in eq. (2.6), in order to generate the nuclear eigenvalue equation

ĤC φk(~rn) ≈
(
K̂n + Vj(~rn)

)
φk(~rn) = Ejk φjk(~rn). (2.8)

To quantify the validity of the approximaton, it is convention to insert the separable

ansatz solution Ψjk(~re, ~rn) = χj(~re;~rn)φk(~rn) (where {k} is the set of whole numbers)

into the time-independent Schrödinger equation for ĤC. Doing so, we find that

ĤC Ψjk(~re, ~rn) = Ejk Ψjk(~re, ~rn) + E(~re, ~rn) . (2.9)

where the error E(~re, ~rn) in the approximation [79] is given by

E(~re, ~rn) = −
Nn∑

n=1

~2

2mi
n

3∑

i=1

(
2
∂χ

∂rin

∂φ

∂rin
+

∂2χ

∂rin
2 φ

)
, (2.10)

such that n enumerates the set {mn} of Nn nuclear masses. Likewise, n and i enumerate

the set {rin} that defines the 3Nn elements of ~rn.

In the limit where E(~re, ~rn) is negligible, the finite sets {j} and {k} approximately

define the quantum numbers that enumerate the ~rn-parameterized eigenstates of the

Coulomb Hamiltonian (2.6), such that the parameter ~rn in χj(~re;~rn) effectively describes

the centroids of the nuclear wavepackets defined by φk(~rn) [70]. According to Feynman’s

theorem [82], we may use the derivatives of the Vj(~rn) with respect to the elements of ~rn

in order to determine the net of electrostatic forces on the nuclei, and thus the classical

equations of motion of the nuclear centroids. If the error E(~re, ~rn) were to be exactly

zero, then in that case no force calculation would be necessary, as the eigenstates φjk(~rn)

would be exact and Ψjk(~re, ~rn) would truly define a stationary eigenstate of the system.
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However, in general E(~re, ~rn) is not zero, and the positions of the nuclear centroids will

evolve in time under the influence of the potential Vj(~rn).

The atomic nuclei are three orders of magnitude more massive than the electrons, and

move sluggishly in comparison; electronic velocities can approach 108 cm/s, whereas nu-

clear velocities rarely exceed 105 cm/s in chemical systems of interest [70]. The relatively

large masses and low velocities of the nuclei found in chemical systems of interest help

to ensure the validity of both assumptions of the Born-Oppenheimer approximation, so

that the system dynamics may be described by the quantum adiabatic evolution of an

electronic eigenstate χj(~re;~rn) (typically the ground state χ0) as it follows the classical

trajectory defined by the dynamics of the slowly-moving nuclear centroids.

Thus, the central result of the Born-Oppenheimer theorem is that the nuclear and elec-

tronic components of the wavefunction describing a chemical system are approximately

separable and that the time-evolution of the electronic component of the wavefunction

will follow the centroids defined by the nuclear component quantum adiabatically. In this

manner, the time-dependent dynamics of the entire system may be described in terms

of the classical trajectories of the nuclear centres. This adiabatic description [70] of a

system of atoms provides the theoretical starting point for the analysis of many systems

of interest in both physics and chemistry, including the ones examined in this Thesis.

2.3 Born-Oppenheimer Breakdown

The adiabatic description defined in Section 2.2.1 will break down when the quantum

mechanical character of the nuclear position distribution cannot be neglected when eval-

uating the Coulomb interactions, or when the coupling between the electronic eigenstates

by the nuclear momentum operator cannot be neglected. Let us consider the conditions

for the validity of each of these assumptions in order.
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2.3.1 Validity of Assumption 1 (Nuclear Classicality)

The first assumption of the Born-Oppenheimer approximation is to treat the nuclei as a

set of classical point charges—each located at the centroid of the probability distribution

describing the location of an individual nucleus [70]. The assumption is meaningful and

valid when the degree of overlap between wavefunctions describing individual nuclei are

negligible, and when the nuclear wavefunctions are tightly-localized in space compared

to the electronic wavefunction(s).

The validity of this assumption is based upon the quantum mechanical property of

cluster separability (see Section 5-4 of Ref. [83]). Strictly-speaking, the wavefunction

describing a collection of particles must be correctly symmetrized with respect to any

identical bosonic or fermionic nuclei it describes, in accordance with the Pauli exclusion

principle. This general symmetrization requirement implies that identical particles are

always entangled and cannot in general be represented separably. However, entanglement

of this kind has “no observable effect” for distantly-separated particles [83], because the

matrix elements of an operator representing a local observable vanish with respect to the

states of a remote particle. As a result, the wavefunctions describing local clusters of

particles may be treated as being separable from the wavefunctions of distant particles

with which they do not overlap. Spatially-separated identical particles are effectively

distinguishable.

Assumption 1 may be taken to be exactly fulfilled for many quantum chemical systems

of interest. Examples of its breakdown include hydrogen-tunneling and Bose-Einstein

condensation.

2.3.2 Validity of Assumption 2 (Adiabaticity)

The second assumption of the Born-Oppenheimer approximation is to assume that the

nuclei move infinitessimally slowly and thus adiabatically with respect to the motions of
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the electrons. Under this assumption, the electronic subsystem—having been prepared

in an eigenstate of the electronic Hamiltonian—will evolve quantum adiabatically along

with the nuclear dynamics. The failure of this assumption corresponds to a nonadiabatic

transition from one electronic state of the system to another.

The probability of a nonadiabatic transition remains negligible, where the energy

spacing of the electronic potential surfaces is much larger than the corresponding elec-

tronic matrix elements of the nuclear kinetic energy operator. Born-Oppenheimer break-

down tends to occur near “avoided crossings” of the potential surfaces, where electronic

eigenstates with different symmetries approach degeneracy. Evidently, the ∂2χ

∂rin
2φ terms

in eq. (2.10) couple different electronic states of the system without affecting the nuclear

configuration. Nonadiabatic transitions that arise from the ∂2χ

∂rin
2φ terms are of partic-

ular interest in chemistry because these “vertical transitions” obey the Franck-Condon

principle [84].

2.3.3 Statistical Mechanical Considerations

It is of value to reiterate that that the ~rn(t)-parameterization used to define the electronic

eigenstates assumes that the nuclear probability density is described by a set of distinct

wavepackets that are much more compact than the probability density of the electronic

eigenstate(s). This assumption allows the nuclei to be treated as an arrangement of

effectively-classical point charges [70, 75, 81]. The assumption of nuclear locality is of

little consequence to the traditional study of molecules and solids with rigid, well-defined

chemical structures. As we have discussed, this assumption is also appropriate for the

description of the dynamics of systems that do not involve nonadiabatic transitions.

In principle, however, this semiclassical assumption poses a severe complication to the

statistical mechanical analysis of molecules with significant conformational motions [70],

such as biological molecules. This is because the eigenstates χj(~re;~rn) and φk(~rn) do not
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correspond to the canonical eigenstates of a statistical mechanical ensemble, and therefore

cannot generally be used to generate the Boltzmann or Gibbs entropy functions needed to

define the free energies of the system. This caveat has fundamental implications related

to the meaningful definition of the reaction coordinate(s) used to describe nonadiabatic

physical processes, including nonadiabatic chemical reactions with large activation ener-

gies that are expected to contain contributions from higher-order non-Born-Oppenheimer

eigenstates, such as ET from MADH to amicyanin (see Section 7.5).

2.4 Controlled Nonadiabatic Dynamics

The couplings between the “external” centre-of-mass degrees of freedom and the “inter-

nal” electronic degrees of freedom that are introduced by the “error” terms in eq. (2.10)

provide effective means for controlling the dynamics of a variety of quantum mechan-

ical systems in the limit as a pair of degenerate “diabatic” (i.e., uncoupled) internal

basis states are subject to a nonadiabatic degeneracy-splitting effect when the coupling

between the diabatic states is “turned on.”

The use of adiabatic control of one degree of freedom in order to generate coherent

nonadiabatic dynamics along another degree of freedom has been implicitly proposed, as

a means of implementing an entangling gate between atomistic qubits [2, 3, 85]. Mean-

while, controlled incoherent nonadiabatic transitions are already essential to the opera-

tion of the biochemical systems that carry out cellular metabolism, where they enable

efficient, site-specific electron transfer between redox enzymes [86]. The remainder of

this Thesis provides a study revealing how the individual models used to describe the co-

herent exchange-based entangling gate examined in Part I and the incoherent biological

electron transfer system examined in Part II are related by a single underlying quantum

information theoretic resource—entanglement.
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Part I

When we get to the very, very small world—say circuits of seven atoms—

we have a lot of new things that would happen that represent completely new

opportunities for design. Atoms on a small scale behave like nothing on a large

scale, for they satisfy the laws of quantum mechanics. So, as we go down and

fiddle around with the atoms down there, we are working with different laws,

and we can expect to do different things. We can manufacture in different

ways. We can use, not just circuits, but some system involving the quantized

energy levels, or the interactions of quantized spins, etc.

—Richard P. Feynman, 1959 [87]
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Chapter 3

Quantum Information Processing

When two systems, of which we know the states by their respective represen-

tatives, enter into temporary physical interaction due to known forces between

them, and when after a time of mutual influence the systems separate again,

then they can no longer be described in the same way as before, viz. by endow-

ing each of them with a representative of its own. I would not call that one but

rather the characteristic trait of quantum mechanics, the one that enforces

its entire departure from classical lines of thought. By the interaction the two

representatives (or ψ-functions) have become entangled.

—Erwin Schrödinger, 1935 [88]

In 1935, Albert Einstein, Boris Podolsky, and Nathan Rosen wrote to the Physical

Review asking, “Can Quantum-Mechanical Description of Physical Reality Be Considered

Complete?” They proposed that [89],

In a complete theory there is an element corresponding to each element of

reality. A sufficient condition for the reality of a physical quantity is the

possibility of predicting it with certainty, without disturbing the system. In

quantum mechanics in the case of two physical quantities described by non-

commuting operators, the knowledge of one precludes the knowledge of the

other. Then either (1) the description of reality given by the wave function in

quantum mechanics is not complete or (2) these two quantities cannot have

simultaneous reality.
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According to their chosen definition of a “complete theory,” Einstein, Podolsky, and

Rosen demonstrated that “the wave function does not provide a complete description of

the physical reality” [89]. They did not answer questions of whether such a complete

description could be possible, or what specifically it would entail. Later the same year,

Erwin Schrödinger coined the term “entanglement” to measure the degree to which a

pair of spatially-separated quantum systems cannot be described by a separable pair of

wavefunctions [88]. He identified entanglement as “the characteristic trait of quantum

mechanics, the one that enforces its entire departure from classical lines of thought” [88].

According to quantum mechanics, the appropriate set of entanglement measurements

performed on a pair of entangled particles will be perfectly correlated with each other,

yet individually random and undetermined until the time of measurement. The indeter-

ministic aspect of the measurement outcome presents philosophical difficulties, because

quantum mechanics does not specify any local mechanism to enforce the correlation of

spatially-separated measurements in the absence of a predetermined outcome.

Following the publication of Einstein, Podolsky, and Rosen’s paper, considerable ef-

fort was directed towards the discovery a deeper theory containing “hidden variables”

to account for the “elements of reality” missing from quantum mechanics [90]. David

Bohm proposed a hidden variable interpretation of quantum mechanics to rationalize the

existence of nonlocal quantum correlations using nonlocal hidden variables [91, 92], but

this construction recovers Einstein, Podolksy and Rosen’s realism at the cost of locality.

The search for a local and realistic hidden variable theory came to its apparent end

in 1964, with the publication of an article by John Bell “On the Einstein Podolsky Rosen

Paradox” [90]. Bell proved that no Lorentz-invariant local hidden-variable theory could

reproduce the statistical correlations of quantum mechanics [90]. In other words, any

hidden-variable interpretation of quantum mechanics must be inherently nonlocal (such

as Bohmian mechanics [91, 92]).
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3.1 Quantum Information Theory

In the early 1930s, Paul Dirac [93] and John von Neumann [94] formalized the mathemat-

ical foundations of quantum mechanics in terms of operators acting on a Hilbert space.

Alan Turing defined a universal computing machine in 1936 [95], and Claude Shannon de-

rived the noisy channel coding theorem in his seminal work, “The Mathematical Theory

of Communication,” in 1948 [18]. These key developments laid the information theoretic

foundation for the computational implications of Bell’s theorem to be recognized over

the ensuing decades.

Academic interest in quantum information theory evolved rather quietly until 1982,

when Richard Feynman proposed his concept of a “quantum computer”—a computer that

would be uniquely capable of efficiently simulating a quantum mechanical system [22].

In 1983, Stephen Weisner proposed quantum mechanical protocols for “transmitting two

messages either but not both of which may be received” and for producing currency

that is “physically impossible to counterfeit” [96]. In 1984, Charles Bennett and Gilles

Brassard devised a scheme for using quantum entanglement to securely communicate (i.e.,

distribute) a private cryptographic key from one party to another [21]. In 1985, David

Deutsch formalized Feynman’s concept of a universal quantum computer by defining the

quantum analogue of a Turing Machine [97]. In 1989, Deutsch gave tangible significance

to this abstract result by showing that univeral quantum computation could be practically

achieved on an array of quantum bits (“qubits”) by implementing three-qubit Toffoli gates

in conjuction with single-qubit operations and measurements [98, 99].

In 1994, Peter Shor devised an algorithm to factor large integers on a quantum com-

puter exponentially faster than the fastest known classical algorithm [100]. Shor’s al-

gorithm presented a tractable scheme for factoring arbitrarily large integers, enabling

it to be used to break public key cryptosystems such as the established Rivest-Shamir-
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Adleman (RSA) encryption algorithm [100]. At that time, the construction of a practi-

cal quantum computer was considered intractable, because of the prevalent belief that

the decoherence of a single qubit would corrupt the computer’s entire memory due to

entanglement [101, 102]. The following year, Shor showed that if qubits could be as-

sumed to decohere independently, that the multi-qubit entanglement could be exploited

as a quantum error-correcting resource, in order to restore the integrity of the computer

memory [101]. This suggested the possibility of a “quantum analog” to Shannon’s noisy

channel coding theorem [21], which Seth Lloyd derived in 1997 to prove that quantum

computing could be made physically tractable [102].

Quantum computers gained strategic military importance [25] with the discovery of

Shor’s algorithm and fault-tolerant schemes to implement it. Enormous public and pri-

vate resources have since been allocated for the development of QIP technologies, and

research institutes have opened worldwide for the dedicated study of quantum infor-

mation science. Governmental and corporate investments in quantum key distribution

schemes (to enable “private-key” encryption schemes that are invulnerable to a quantum

attack) have blossomed [26]. Today, major corporate entities such as Microsoft, Google,

and Lockheed-Martin have dedicated quantum computing initiatives [103]. Programs

to develop of QIP technologies have become critical components in the economic and

political strategies of industrialized nations.

3.2 Quantum Computing Architectures

In 1994, DiVincenzo proved that combinations of two-qubit gates (along with arbitrary

one-qubit gates) could be used instead of three-qubit Toffoli gates to achieve universal

quantum computation [99]. This revelation established that quantum computations could

be efficiently performed in an operational paradigm defined by a set of one- and two-qubit
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gates acting on a separable array of qubits—analogous to the semiconductor gates that

operate on circuits of electrostatically-encoded bits in conventional computers.

This picture of a quantum computation in terms of a program of unitary one- and two-

qubit operations has come to be known as the “circuit model” of quantum computing

because quantum algorithms formulated under it can be visually represented a linear

circuits where the “wires” depict individual qubits progressing along a time axis through

an ordered sequence of quantum gates. Today, the circuit model represents one of three

dominant approaches to designing QIP architectures, discussed as follows.

3.2.1 Circuit Model Quantum Computing

According to the circuit model of quantum computing [21], quantum information is en-

coded into a separable ensemble of binary quantum mechanical elements called “qubits.”

A qubit is a mathematical object described by a unit-normalized, two-dimensional, com-

plex vector in an inner product space called a Hilbert space [21]. The two basis states of

each qubit are typically represented using Dirac notation in the logical basis {|0〉, |1〉},

where |0〉 and |1〉 represent complex, two-dimensional column vectors such that

|0〉 =

[
1

0

]
and |1〉 =

[
0

1

]
. (3.1)

The circuit model assumes that an arbitrarily large number of qubits can be initialized

in the |0〉 state and ultimately measured in the logical basis with arbitrarily-high fidelity.

It also assumes that unitary single-qubit and two-qubit operations can be performed on

specified selections of qubits with arbitrarily-high precision. The model is readily gener-

alized to account for imperfect qubit initializations and operations by way of quantum

error-correcting algorithms [21].

A quantum computer designed using the circuit-model architecture is said to perform

“universal” quantum computation if it can reproduce the effect of any specified unitary
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operation in the Hilbert space defined by an arbitrarily large number of initial qubits,

to an arbitrarily-specified precision. In practice, any actual implementation of a circuit-

model quantum computer will be built out of a finite set of pre-defined unitary operations

called “gates.” A set of gates is said to be universal if a selection of those gates can be

used to implement any overall unitary operation on a finite number of qubits to arbitrary

precision in finite time [21]. A prototypical set of univeral quantum gates are defined

using the single-qubit Pauli spin matrices [104],

σ̂x =

[
0 1

1 0

]
, σ̂y =

[
0 −i

i 0

]
, σ̂z =

[
1 0

0 −1

]
, (3.2)

and the two-qubit “controlled-phase” (matrix) operator

cẐ =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


 . (3.3)

Universal quantum computation can be achieved using an ensemble of initialized

qubits when two-qubit controlled-phase operations can be implemented in conjunction

with unitary single-qubit “rotations” of the form R̂~n(θ) such that

R̂~n(θ) = exp(−iθ ~n · ~̂σ), (3.4)

where ~n is a real, arbitrarily-chosen unit vector, and where ~̂σ = (σ̂x, σ̂y, σ̂z) [21].

A quantum algorithm is an algorithm that is to be carried out on a quantum computer.

The computational complexity of a quantum algorithm is quantified by the asymptotic

scaling of the number of gates required to carry out the algorithm with respect to the

number of input qubits [21]. Because gates are peformed with imperfect precision, and the

fidelity of the quantum information stored using the qubits decays spontaneously over

time, quantum error correction is necessary to preserve quantum information against

loss. The additional overhead, quantified in terms of the number of ancilliary qubits and
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quantum gates needed to carry out the error-corrected algorithm, can signifcantly increase

the actual complexity of an algorithm as it is carried out on a specific implementation of a

quantum computer. The threshold theorem of quantum mechanics determines whether or

not faulty implementations of quantum gates can be made robust through the recursive

application of additional gates to implement quantum error correcting codes throughout

a quantum computing circuit [21].

3.2.2 One-Way Quantum Computing

Two-qubit quantum gates are used to generate entanglement between the qubits in the

memory of a quantum computer. The interactions required to generate this entanglement

temporarily violate the assumption that the qubits are stored separably in the quantum

memory, as the entangling gate is carried out. “Nonlocal” operations of this kind are

notoriously hard to generate in practice, especially on an arbitrary pair of qubits exactly

when required (“on demand”) during a quantum computation.

In order to circumvent this practical difficulty, Robert Raußendorf and Hans Briegel

invented a new architectural modality for quantum computing which they called “one-

way” quantum computing [105, 106]. A “one-way” computation is carried out on an

entangled substrate of qubits using single-qubit measurements along with the classical

post-processing of those measurements [105]. For this reason, one-way quantum comput-

ing is also called “measurement-based” quantum computing [107]. Whereas the initial

memory state of a circuit-based quantum computer consists of an unentangled array of

qubits (each prepared in the logical |0〉 state by convention), the initial state of the mem-

ory of a measurement-based quantum computer is a highly-entangled multi-qubit state

called a “cluster state” [106]. One-way quantum computation proceeds without the need

for multi-qubit entangling gates, because the necessary entanglement has already been

generated in the initial state, before the beginning of the computation proper.
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During a one-way quantum computation, the circuit diagram of a circuit-based al-

gorithm is “imprinted” onto the cluster state through a sequence of single-qubit mea-

surements [105]. Under this architecture, it is assumed that one-qubit measurement can

be performed in an any arbitrary one-qubit measurement basis. In practice, this can

be accomplished using unitary single-qubit operations and measurements in the logical

basis. In this manner, a one-way quantum computer simulates the operation of a circuit-

based quantum computer. Because a one-way quantum computer simulates each gate

of a circuit-based quantum computer with a fixed number of measurements, a one-way

quantum computer can efficiently simulate the operation of a circuit-based quantum com-

puter, and vice versa. Standard circuit-based error-correction techniques may likewise

be applied to make a faulty implementation of a measurement-based quantum computer

fault-tolerant [107].

3.2.3 Adiabatic Quantum Computing

In 2000, Farhi, Goldstone, Gutmann, and Sipser proposed a new computational method

that they called “Quantum Computation by Adiabatic Evolution,” after they observed

that “many computationally interesting problems can be recast into an equivalent prob-

lem of finding a variable assignment that minimizes an ‘energy’ function” [108]. Based

on this observation, they conceived a computer that would operate by means of the evo-

lution of a quantum state “governed by a time-dependent Hamiltonian that interpolates

between an initial Hamiltonian, whose ground state is easy to construct, and a final

Hamiltonian, whose ground state encodes the satisfying assignment” [108].

During an adiabatic quantum computation, the computer memory is cooled to the

ground state of a “simple” Hamiltonian. The initial Hamiltonian is “simple” in the sense

that its ground state is “easy to construct” [108], such as an array of non-interacting

qubits, each prepared in its ground state. The ground state of an array of non-interacting
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qubits is “easy” to construct because each qubit can be individually cooled to its ground

state. According to the quantum “adiabatic approximation” [76], the initial Hamiltonian

is then slowly and adiabatically evolved into the final Hamiltonian. The final Hamiltonian

is assumed to have a ground state that is hard to construct, such as the entangled ground

state of a Hamiltonian describing an array of interacting qubits.

An adiabatic quantum computer can be used to compute functions that can be ex-

pressed as the ground state of a particular Hamiltonian. Universal quantum computation

can be achieved, for example, using an adiabatic quantum computer that is built from a

two-dimensional array of locally-interacting spin qubits [109].

3.3 Atomistic Implementations of Quantum Memory

One year after DiVincenzo reported his proof that “two-bit gates are universal for quan-

tum computation” [99], Monroe and coworkers at the National Institute of Standards

and Technology (Boulder, Colorado) reported “the first demonstration of a fundamental

quantum logic gate that operates on prepared quantum states” [110]. The two qubits

were respectively stored across a pair of hyperfine spin states and a pair of nuclear vi-

brational states of a single trapped ion, and the two-qubit gate was carried out by way

of a stimulated Raman transition [110]. Since then, a host of physical systems have

been proposed for the practical implementation of a quantum computer, including cavity

quantum electrodynamic systems, electromagnetically trapped atoms, solid-state quan-

tum dots, nuclear spins of molecules, photons with linear optical elements and efficient

detectors, and superconducting circuits in magnetic fields [111].

Electromagnetically trapped atoms make a natural choice for the fundamental build-

ing blocks of a quantum computer, because they are also the fundamental building blocks

of terrestrial matter. An individual qubit can be stored using the internal states states of
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an atom, such as the nuclear vibrational [112] or spin [28] states, or the electronic orbital

angular momentum [3] or spin [27] states. Atoms ejected at high velocities from a hot

oven can be slowed and trapped using electromagnetic fields [113]. Individual atoms can

then be prepared in optical microtraps with near-deterministic efficiency [114]. There are

currently three prominent schemes for constructing quantum memories out of trapped

atoms, those being ions stored in linear Paul traps, neutral atoms stored in optical lat-

tices, and neutral atoms stored in optical tweezers [34, 115].

Ions have very long trapping times and can be stored for months using radio-frequency

(RF) fields in a linear Paul trap [115]. Their net charge allows for independent control

of their nuclear motions, freeing up electronic degrees of freedom for qubit storage and

manipulation. The repulsion between ions enables the creation of a “linear crystal of

qubits, with the Coulomb repulsion balancing the external confinement force” [115].

Entangling operations can also be generated by means of the ionic Coulomb repulsion by

way of the controlled generation of state-dependent phonons in the qubit crystal [116].

The same Coulombic interaction that enables this entanglement scheme also results in

decoherence due to quartic electric-field noise [115, 117] which may hinder the asymptotic

scaling of the practical size of ionic quantum memories.

Neutral atoms are not subject to this field noise and can be stored in optical dipole

traps created using lasers by means of the alternating-current (AC) Stark shift [118]. The

AC Stark shift describes the shift in the energies of the electronic states of an atom that

occurs as it is placed in the presence of an off-resonant electromagnetic field. Red-detuned

fields produce down-shifted energies in the perturbative rotating-wave frame [104], re-

sulting in a net attraction towards regions of higher field intensity. Blue-detuned fields

produce up-shifted energies resulting in net repulsion. Spatial variations in laser in-

tensity can be created using individually-focused laser beams (optical “tweezers” [119]),

counter-propagating beams (optical “lattices” [120]), or combinations thereof [121].
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Individually-trapped atoms make excellent candidates for the implementation of quan-

tum memories, because they are prepared under vacuum (reducing exposure to environ-

mental noise) and they can be chilled to their vibrational ground states using lasers

(e.g., via Raman sideband cooling [42, 122]). Until recently, QIP implementations us-

ing optically-trapped neutral atoms have been unable to rival the control afforded by

RF-trapped ions [118]. AC Stark shifts are generally state-dependent, and this state-

dependence results in the emergence of different trapping potentials with respect to dif-

ferent electronic states of the atom. Superpositions of different qubit-encoding states

that evolve in space according to different trapping potentials are subject to decoherence

due to the state-dependent nuclear heating.

A technique was developed to generate “state-independent” optical dipole traps by

chosing detuning frequencies that exploit intercombinations of virtual transitions to pro-

duce the same AC Stark shift for two different electronic energy levels of an atom [118].

This technique allows an optically-trapped atom to reside in approximately the same con-

fining potential, regardless of which of the two states it occupies [118]. In this manner, the

internal qubit state is decoupled from the external motional state of the neutral atom.

This development obviates one of the traditional advantages that ions have had over

neutral atoms, without introducing ionic drawbacks [117]. If neutral atom storage life-

times can be improved and/or preparation schemes can be deteriministically automated,

neutral atoms will become competitive long-term candidates for the implementation of

quantum memory.

3.4 Exchanged-Based Entanglement of Neutral Atoms

Qubits stored using neutral atoms are preserved against Coulombic sources of decoherence

because these atoms lack net charge. Electrostatic interactions cannot be used to entan-
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gle qubits stored in neutral atoms. This presents a subtle technological challenge for QIP

schemes implemented using neutral atoms. Atomistic entangling gates have been pro-

posed based on dipole-dipole interactions of excited electronic states [123, 124, 125, 126],

cold collisions using state-dependent traps [85, 127, 128], and particle exchange [2, 28, 29].

Gates based on indistinguishable particle exchange generate entanglement due to the

innate symmetrization requirements of the qubit-carrying particles, rather than explicit

Hamiltonian interactions. The absense of an explicit interaction imparts an exchange-

based atomic gate with a fundamental stability advantage over other gates that use

explicit interactions and therefore introduce decoherence mechanisms [29].

The exchange-based quantum logic gate was originally introduced by Loss and DiVin-

cenzo as a
√

SWAP gate [27]. Hayes et al. adapted Loss and DiVincenzo’s proposal [27] to

use qubits stored in nuclear spin states of neutral atoms trapped in optical tweezers [28].

Meanwhile, Anderlini et al. demonstrated the gate using qubits encoded in the Zeeman

states of an ensemble of atoms stored in a double-well optical lattice [29]. In Hayes et

al.’s model of the exchange gate, the strength of the exchange interaction is modulated

using spatial control of the degree of overlap between the centre-of-mass wavefunctions

describing the pair of trapped atoms. A phase difference arises between the symmetric

and antisymmetric states of the qubit pair as the trapping potentials combine and re-

separate [28]. High fidelity operation is ensured by performing the gate sufficiently slowly,

so vibrational states evolve quantum adiabatically with respect to tweezer motion.

The protocol proposed by Hayes et al. remains open to elaboration and improvement.

Hayes et al. focused primarily on nuclear spin-1/2 encoded qubits stored using Fermionic

atoms for the purposes of their analysis. Their result “generalizes for an arbitrary spin,

qubits or qudits, Bose or Fermi, and is not restricted to elements with electron and nuclear

spin decoupled” [28]. Given the important advantages afforded to neutral atom QIP

architectures by the recent development of state-insensitive trapping technologies [118],
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it is natural and essential to extend Hayes et al.’s protocol to a system of electronically-

encoded qubits stored using state-independent traps. Chapters 4 through 6 provide such

a detailed elaboration of Hayes et al.’s protocol, including adiabatic gate-speed limits,

QIP applications, and nonadiabatic error correction methods.
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Chapter 4

Entangling Identical Bosons via Exchange

I found myself wondering about the dispersive nature of the “dipole force.”

The force is attractive when the frequency of light is tuned below the resonance,

repulsive when tuned above the resonance, and vanishes when tuned directly

on the atomic resonance.

—Steven Chu, 1997 [129]

My six main contributions to the work described in Chapter 4 are summarized as follows:

1. I define the Hamiltonian for a two-particle system, describing a pair of identical

atoms in one dimension and translated along that dimension by a time-dependent

potential comprising a pair of mobile Gaussian-shaped traps (Section 4.2).

2. I construct a computational representation of the two-particle Hamiltonian using

MATLABTM and I use it to solve the time-independent Schrödinger equation for

different trap-separation distances and particle interaction strengths (Section 4.3).

3. I show how time-dependent control of the two-particle Hamiltonian can be used to

perform an entangling operation on qubits stored in the internal states of the atoms,

via the exchange interaction (Section 4.4).

4. I investigate how two conserved quantities of the Hamiltonian, namely the spatial

symmetry and parity, may be exploited to enhance operation fidelity (Section 4.5).

5. I derive an “adiabaticity criterion,” mathematically expressing the limit in which

operation times are sufficiently slow to ensure operation fidelity, and I perform

numerical simulations to verify the accuracy of that limit (Section 4.6).
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6. I numerically solve the time-dependent Schrödinger equation for several relevant

Hamiltonian parameters and initial conditions, verifying the accuracy of the adia-

baticity criterion for operation fidelity (Section 4.7).

4.1 Introduction: Coherent Control of Neutral Atoms

Techniques for trapping and cooling neutral atoms to their vibrational ground states

have afforded experimentalists with new opportunities “to place atoms and photons into

a well-defined set of quantum states and to manipulate these states coherently” [130].

Techniques for coherently controlling ensembles of neutral atoms have important appli-

cations in QIP, including precision time-keeping [131], quantum computation [121], and

simulations of chemical systems [132]. Experiments that are being performed in this area

are currently focused on the development of the individual “building blocks” that will be

needed to construct sophisticated QIP systems.

The ability to coherently prepare and manipulate a quantum system relies on the

power to control the numbers of particles contained in the system, their internal and po-

sitional states, and the character of their interactions [41]. The functional building blocks

needed to realize coherently controlled atomic systems will include such technologies as

those for deterministically preparing small [41, 43] and large numbers [133] of atoms,

efficiently cooling individual atoms [42], coherently manipulating the nuclear [134] and

electronic [135, 136] states of atoms, entangling pairs of atoms both individually [137] and

collectively [29], and transporting atoms both individually [119] and collectively [138].

Practical QIP systems will rely on varying combinations of different building blocks in

order to maximize their advantages. For example, the electronic or nuclear subsystems

of divalent (e.g., alkaline earth) atoms offer different advantages related to the differing

physical characteristics of these subsystems [139].
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Divalent atoms such as strontium (Sr) and ytterbium (Yb) have ground state elec-

tronic configurations of [Kr] 5s2 and [Xe] 4f 14 6s2 respectively. Alkaline earth elements

carry advantages over the alkali atoms used traditionally in neutral atoms experiments

[122, 123, 138, 140, 141], because they exhibit an especially narrow “clock transition”

coupling their 1S0 and 3P0 valence states [139]. This narrowness is due to the restrictive

set of momentum selection rules that govern the transition.

The transfer of angular momentum to the electronic subsystem of a divalent atom

during the 1S0 → 3P0 transition along a non-azimuthal direction, without the transfer of

complementary information about its non-azimuthal direction, marks a unique curiosity

of quantum theory. One quantum of angular momentum can be added probablistically

to (1S0 → 3P0) or removed from (3P0 → 1S0) the total angular momentum of the elec-

tronic subsystem of the atom, according to the directions of the circular polarizations of

the absorbed and emitted photons that mediate the virtual transitions. The transfered

momentum is known not to be transfered along the azimuthal direction defined by the

3P0 state, but complementary information about the direction of the angular momentum

remains absent (because the laser beams stimulating the transition are unpolarized). Co-

herent rotations of this kind are possible because the entropy change in the (bosonic)

laser beam due to angular momentum transfer is negligibly small compared to the energy

transfer, so virtually no heat is transfered between the atom and the spectral bath of the

laser, making the operation practically reversible. The correct choice of laser geometry

assures that no quanta of linear momenta are imparted to the system, coherently or as

heat. As Benioff [23] and Feynman [24] have critically identified, the physical reversibility

of the operation corresponds to its quantum mechanical unitarity.

Fermionic (odd) isotopes of alkaline earths have non-zero nuclear spins, and these

spin magnetic states can be decoupled from the non-magnetic 1S0 ↔ 3P0 clock transition,

allowing them to be separately exploited for distinct applications within the same atomic
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system [139]. The “ultranarrow” 1S0 ↔ 3P0 transition of bosonic (even) isotopes of

alkaline earths make them “metrologically superior” [136] to fermionic isotopes, due to

complications that arise from Zeeman shifts in the clock transitions of the fermionic

species [142].

Entanglement provides a resource for applications in quantum metrology [131], com-

putation [121], and simulation [132]. Schemes for entangling neutral atoms have been

proposed based on qubit-qubit interactions via high-finesse cavity radiation [143], nonlo-

cal state-dependent qubit transport [127], dipole coupling of alkali atoms [123, 124, 141],

the Rydberg blockade [144], cold collisions [85, 112, 145], and identical particle ex-

change [2, 28]. Forms of the proposals given in Ref. [127] and Refs. [2, 28] have been exper-

imentally realized using ensembles of neutral atoms trapped in optical lattices [29, 146].

The entanglement of an individual pair of neutral atoms has been experimentally realized

using Rubidium atoms trapped in optical tweezers [137].

Although entanglement schemes based on Rydberg interactions [144] appear promis-

ing [137], they can suffer from decoherence effects due to momentum transfer from the

Rydberg-excited electrons to the nuclei [147]. Entanglement schemes based on nonlocal,

state-dependent transport [127, 146] suffer from innate decoherence due to the presence

of inhomogeneous magnetic field noise [29]. On the other hand, entanglement schemes

that rely on adiabatic exchange [2, 28] are not subject to these decoherence effects [3, 29]

and can even have nonadiabatic errors corrected [4], making exchange-based schemes es-

pecially promising candidates for the realization of precision entangling gates for neutral

atoms. Technologies developed to enable exchange-based entanglement schemes are also

directly applicable to quantum simulations of chemical interactions [132] that relate to

fundamental problems in materials physics, magnetism, and thermodynamics [148].

By employing a QIP architecture based on exchange-based two-qubit gates and ultra-

narrow one-qubit clock state transitions of alkaline earth atoms, one enjoys the advantage
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of a fundamentally decoherence-resistant design. This design describes an exceptional

candidate for long-term scalability, with an eye toward the realization of a full-scale

quantum computer containing many millions of qubits.

The one-dimensional model Hamiltonian that I employ here describes a pair of iden-

tical particles confined by moveable traps. It captures the essential physics of a pair of

qubits that are stored in the non-magnetic states of neutral atoms and are entangled using

the adiabatic exchange mechanism. I examine the dynamics of this model Hamiltonian,

and I develop a criterion to ensure the adiabaticity of the entangling operation.

4.2 Two-Particle Tweezer Hamiltonian

In this Section, I define the Hamiltonian describing a pair of identical composite particles

in one dimension and translated along that dimension by a time-dependent potential

comprising a pair of spatially-symmetric, Gaussian-shaped traps.

The Hamiltonian represents a pair of identical atoms confined to one dimension by

a trapping laser beam, and translated along that dimension by a pair of focused laser

tweezers. It is accurately modeled using a two-particle Hamiltonian of the form,

Ĥ =
∑

i,j=0,1

{
p̂2

a

2m
+ V (xa, d) +

p̂2
b

2m
+ V (xb, d) + 2aij~ω⊥δ(xa − xb)

}
⊗ |ij〉〈ij|, (4.1)

where xa and xb are the respective positions of particles labeled “a” and “b,” pa and pb

are their momentum operators, aij is the state-dependent scattering length that depends

on internal atomic states |i〉a and |j〉b (using |ij〉 ≡ |i〉a⊗ |j〉b), ω⊥ is the harmonic

oscillation frequency due to transverse confinement [128], and d is the time-dependent

centre-to-centre distance between the traps.
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When the traps are independent of the internal states of the particles, each particle

experiences a spatially-symmetric double-well potential with a Gaussian profile,

V (x, d) = −V0 exp

[−(x− d/2)2

2σ2

]
− V0 exp

[−(x+ d/2)2

2σ2

]
, (4.2)

where V0 > 0 is the depth of each Gaussian trap and σ2 is its variance. The Gaussian

shape of each trap reflects the profile of a focused laser beam [149].

4.3 Adiabatic Eigenstates

In this Section, I use MATLABTM to solve the time-independent Schrödinger equation

for a system containing one or two particles trapped by the potential (4.2), over a range

of trap-separation distances, for both positive and negative scattering lengths. I generalize

these results to describe the states of the composite particle Hamiltonian given by eq. (4.1).

The ground state (i.e., lowest-energy eigenstate) of a particle in one dimension con-

fined to a single potential well, such as V (x, d)|d=0, is an approximately Gaussian wave-

function centred at the trap centre. As such a potential well is adiabatically and symmet-

rically split into two twin wells, the ground state wavefunction likewise splits into a pair of

approximately Gaussian wavefunctions, each reproducing the shape of the original well’s

wavefunction as the well-separation distance becomes large compared to the diameter σ

of each trap. Thus, the ground state of particle confined to a pair of distantly-separated

potential wells is closely-approximated as the normalized, symmetric (i.e. even parity),

superposition of the individual ground states of the wells in isolation (Fig. 4.1).

The first excited eigenstate of a particle in a single well is an antisymmetric state.

Although this state has a significantly larger energy than that of the ground state of a

single well, these first two eigenstates approach degeneracy as the original well is adia-

batically split into two separate wells, and the shape of the first nonlocal excited state
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evolves into an antisymmetric “mirror image” of the ground state (Fig. 4.1). In the limit

of distantly-separated wells, the energies of these two lowest states differ only because the

wavefunction describing the spatially-antisymmetric excited state is exactly zero at the

position equidistant between the two wells, whereas the spatially-symmetric wavefunction

approaches a value arbitrarily close to zero at that location. A particle initialized locally

in one of the two distant wells is described by an equal superposition of both states,

and the energy difference between the states produces a phase evolution that leads to

tunneling back and forth between the two wells.

The first three bound eigenstates of a single particle confined by the double-well poten-

tial (4.2) are shown in Fig. 4.1 for varying d. In general, the single-particle eigenstates are

nonlocal and may be defined by the adiabatic eigenbasis {|ψA(d)〉, |ψB(d)〉, |ψC(d)〉, . . .}.

To simplify our notation, we shall consider the d-dependence of these states to be im-

plicit (e.g., |ψA〉 ≡ |ψA(d)〉). Take note that as d increases, the ground state |ψA〉 and the

excited state |ψB〉 become spatially delocalized and energetically degenerate, such that

||ψB〉| → |ψA〉. When |d| � σ we can write |ψL〉 ≡ (|ψA〉−|ψB〉)/
√

2 to represent a single

particle localized in the ground state of the left well, and likewise |ψR〉 ≡ (|ψA〉+|ψB〉)/
√

2

for the right well. The local states |ψL〉 and |ψR〉 allow for an intuitive description of the

one-particle system in the limit as σ/d→∞.

Figure 4.1: The first three eigenstates of a single particle in a double-well potential for
different trap separation distances d, reproduced from Ref. [2] with permission.
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The situation becomes more complicated when a second particle is added to the

system. In the limit where d = 0 and aij = 0 for all i and j, the first six eigenstates

are, in order of increasing energy, |ψAψA〉, 1√
2

(
|ψAψB〉 − |ψBψA〉

)
, 1√

2

(
|ψAψB〉+ |ψBψA〉

)
,

1√
2

(
|ψAψB〉 − |ψBψA〉

)
, 1√

2

(
|ψAψC〉 − |ψCψA〉

)
, 1√

2

(
|ψAψC〉+ |ψCψA〉

)
, and |ψBψB〉.

When the interaction term is “turned on” (aij 6= 0), it may be treated as a perturba-

tion to the interactionless two-particle states. Accordingly, the new two-particle eigen-

states may be written as a sum of “perturbed” tensor products of one-particle states. Let

us use a tilde to denote the perturbation to the terms composing the new symmetrized

eigenstates. States that are antisymmetric under particle exchange are not affected by

the interaction at any separation and the tildes have been accordingly omitted from these

states.

For a repulsive interaction between atoms (aij > 0) the first six two-particle eigen-

states are as follows:

d = 0 d � σ

|ψ̃BψB〉 ←→ 1
2
(|ψ̃AψC〉+ |ψ̃CψA〉 − |ψ̃BψD〉 − |ψ̃DψB〉) (4.3a)

1√
2
(|ψAψC〉 − |ψCψA〉) ←→ 1√

2
(|ψAψC〉 − |ψCψA〉) (4.3b)

1√
2
(|ψ̃AψC〉+ |ψ̃CψA〉) ←→ 1√

2
(|ψ̃LψL〉+ |ψ̃RψR〉) (4.3c)

1√
2
(|ψ̃AψB〉+ |ψ̃BψA〉) ←→ 1√

2
(|ψ̃LψL〉 − |ψ̃RψR〉) (4.3d)

1√
2
(|ψAψB〉 − |ψBψA〉) ←→ 1√

2
(|ψLψR〉 − |ψRψL〉) (4.3e)

|ψ̃AψA〉 ←→ 1√
2
(|ψ̃LψR〉+ |ψ̃RψL〉). (4.3f)
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In case of attractive interaction (aij < 0), the eigenstates are as follows:

d = 0 d � σ

1√
2
(|ψAψC〉 − |ψCψA〉) ←→ 1√

2
(|ψAψC〉 − |ψCψA〉) (4.4a)

|ψ̃BψB〉 ←→ 1
2
(|ψ̃AψC〉+ |ψ̃CψA〉+ |ψ̃BψD〉+ |ψ̃DψB〉) (4.4b)

1√
2
(|ψ̃AψC〉+ |ψ̃CψA〉) ←→ 1√

2
(|ψ̃LψR〉+ |ψ̃RψL〉) (4.4c)

1√
2
(|ψAψB〉 − |ψBψA〉) ←→ 1√

2
(|ψLψR〉 − |ψRψL〉) (4.4d)

1√
2
(|ψ̃AψB〉+ |ψ̃BψA〉) ←→ 1√

2
(|ψ̃LψL〉 − |ψ̃RψR〉) (4.4e)

|ψ̃AψA〉 ←→ 1√
2
(|ψ̃LψL〉+ |ψ̃RψR〉). (4.4f)

The eigenstates of the full Hamiltonian (4.1) are described by tensor products of

the vibrational wavefunctions and the symmetrized qubit states. For bosonic particles,

permissible eigenstates are tensor products of external (i.e., vibrational) and internal

(i.e., qubit) states of the same symmetry. Thus, antisymmetrized spatial wavefunctions

are permitted for a pair of composite bosons, so long as their internal structure is also

antisymmetric, resulting in an overall symmetric wavefunction.

Figure 4.2: Adiabatic energy levels as a function of well separation d for (a) eqs. (4.3)
with aij = 0.1σ and (b) eqs. (4.4) with aij = −0.1σ, reproduced from Ref. [2] with
permission. Well separation is in units of σ. Energies are in units of ~ω◦, where ω◦
is the harmonic oscillation frequency of one atom in the ground state of a single well.
The energies of symmetric vibrational eigenstates are shown in blue, whereas those of
antisymmetric states are shown in red. The crossings between oppositely symmetrized
states are unavoided because the Hamiltonian does not couple these states.
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4.4 Gate Operation

In this Section, I describe a two-qubit entangling gate carried out on a pair of qubits, each

stored in the internal states of a neutral boson confined to one-dimension and controlled

using optical tweezers.

Each of the two particles is assumed to be initialized in the ground state of one of

the two spatially-separated tweezers. Gate operation occurs as the two tweezers are

adiabatically approached until they completely overlap, and then are reseparated.

When the qubits are separate, the logical states of this quantum memory identify the

states of the qubits on the left and the right, and are defined by the basis {|0L0R〉, |0L1R〉,

|1L0R〉, |1L1R〉}. Analoguous to the fermionic case described by Hayes et al. [28], these

logical states represent the bosonic eigenstates of the Hamiltonian,

|0L0R〉 = |Ψ+〉 ⊗ |00〉, (4.5a)

|0L1R〉 = 1√
2

(|Ψ+〉 ⊗ |χ+〉+ |Ψ−〉 ⊗ |χ−〉) , (4.5b)

|1L0R〉 = 1√
2

(|Ψ+〉 ⊗ |χ+〉 − |Ψ−〉 ⊗ |χ−〉) , (4.5c)

|1L1R〉 = |Ψ+〉 ⊗ |11〉, (4.5d)

where |Ψ±〉 = 1√
2
(|ψLψR〉 ± |ψRψL〉) and |χ±〉 = 1√

2
(|01〉 ± |10〉). Evidently, “swapping”

the logical qubits, such that |0L1R〉 ⇔ |1L0R〉, amounts to a 180◦ phase shift between the

symmetric and antisymmetric components of the odd logical states (3.5b) and (3.5c). A

maximally-entangled state can be prepared from either odd logical state, by performing

a 90◦ rotation in this subspace. Such a 90◦ rotation is widely referred to as a
√

SWAP

gate [28]. For example, a 90◦ rotation applied around the symmetry axis of the state rep-

resented by eq. (4.5) generates 1√
2

(|Ψ+〉⊗|χ+〉+ i |Ψ−〉⊗|χ−〉) = 1+i
2

(|0L1R〉 − i |1L0R〉).

For two particles that are in stationary, spatially-separated traps, all four logical states

are degenerate and acquire the same (global) phase. If these logical states are re-expressed
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in the Hamiltonian eigenbasis {|Ψ+〉 ⊗ |00〉, |Ψ+〉 ⊗ |χ+〉, |Ψ−〉 ⊗ |χ−〉, |Ψ+〉 ⊗ |11〉}, then

an adiabatic evolution of the system becomes straightforward to describe. As the traps

are adiabatically combined, each eigenstate will acquire a local phase consistent with the

evolution of its energy. Entangling operation is achieved by setting the trap-separation

profile to ensure that the phase acquired by the |Ψ+〉 ⊗ |χ+〉 state differs from that of

the |Ψ−〉 ⊗ |χ−〉 state by 90◦. Entangling operation can always be achieved because the

singlet state |Ψ−〉⊗ |χ−〉 always picks up a different phase than the triplet states, except

in the extreme (“Tonks” [150]) limit as aij → ±∞.

During adiabatic gate operation, particles that begin in opposite wells will end up

in opposite wells. This is true even when the interaction is “turned-off” (aij = 0) and

the 1√
2
(|ψLψR〉 ± |ψRψL〉 states become degenerate with the 1√

2
(|ψLψL〉 ± |ψRψR〉 states,

because the first four eigenstates of the Hamiltonian (4.1) all have distinct symmetries

and parities, leading to selection rules that forbid several nonadiabatic transitions.

4.5 Excitations to Non-Logical States

In this Section, I discuss how the innate symmetries of the Hamiltonian (exchange sym-

metry and spatial parity) forbid certain nonadiabatic excitations, enhancing gate fidelity.

The two-particle eigenstates may be visualized as a contour map in three dimen-

sions by plotting the amplitudes of particle “a” on one horizontal axis against the am-

plitude of particle “b” along the other horizontal axis, so the amplitude of the (real)

joint two-particle eigenfunction is expressed vertically (see Fig. 4.9a). Equivalently, two-

dimensional plots can use colour-coding to depict the joint amplitude; these visualiza-

tions are plotted in Figs. 4.3 to 4.8. Each state has its own distinct set of symmetries.

These symmetries must be preserved as the value of d is adiabatically varied, because the

Hamiltonian (4.2) conserves both the particles’ exchange symmetry and spatial parity.
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Eigenstate Symmetry Parity
|ψAψA〉 even even

1√
2
(|ψAψB〉 − |ψBψA〉) odd odd

1√
2
(|ψAψB〉+ |ψBψA〉) even odd

1√
2
(|ψAψC〉 − |ψCψA〉) odd even

1√
2
(|ψAψC〉+ |ψCψA〉) even even

|ψBψB〉 even even

Table 4.1: Symmetries and parities of the first six eigenstates of the Hamiltonian (4.1).

When d becomes a function d(t) of time t such that time-dependent changes in d(t)

are not perfectly adiabatic, some nonadiabatic vibrational transitions are still suppressed

because the symmetry and parity conservation properties of the Hamiltonian result in

selection rules that forbid transitions between states that do not share both the same

symmetry and parity. This property of the Hamiltonian promotes gate fidelity, because

it automatically prevents the occurence of some undesirable nonadiabatic transitions

during realistic gate operation.

Figure 4.3: Two-dimensional contour visualization of the state |ψAψA〉 for non-interacting
particles for d = 0. This state has even symmetry and even parity. The conditional
amplitude of each particle is plotted along each axis. Red is positive and blue is zero.
Axes are measured in units of σ.
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Figure 4.4: Two-dimensional contour visualization of the state 1√
2

(
|ψAψB〉 − |ψBψA〉

)
for

non-interacting particles for d = 0. This state has odd symmetry and odd parity. The
conditional amplitude of each particle is plotted along each axis. Red is positive and blue
is negative. Axes are in units of σ.

Figure 4.5: Two-dimensional contour visualization of the state 1√
2

(
|ψAψB〉+ |ψBψA〉

)
for

non-interacting particles for d = 0. This state has even symmetry and odd parity. The
conditional amplitude of each particle is plotted along each axis. Red is positive and blue
is negative. Axes are in units of σ.
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Figure 4.6: Two-dimensional contour visualization of the state 1√
2

(
|ψAψC〉 − |ψCψA〉

)
for

non-interacting particles for d = 0. This state has odd symmetry and even parity. The
conditional amplitude of each particle is plotted along each axis. Red is positive and blue
is negative. Axes are in units of σ.

Figure 4.7: Two-dimensional contour visualization of the state 1√
2

(
|ψAψC〉+ |ψCψA〉

)
for

non-interacting particles for d = 0. This state has even symmetry and even parity. The
conditional amplitude of each particle is plotted along each axis. Red is positive and blue
is negative. Axes are in units of σ.
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Figure 4.8: Two-dimensional contour visualization of the state |ψBψB〉 for non-interacting
particles for d = 0. The conditional amplitude of each particle is plotted along each axis.
This state has even symmetry and even parity. Red is positive and blue is negative. Axes
are in units of σ.

4.6 Derivation of Adiabaticity Criterion

In this Section, I derive a simple criterion to ensure the adiabaticity and thus the high-

fidelity operation of the entangling gate defined in the previous section.

The general criterion for ensuring the validity of the adiabatic approximation with

respect to a particular nonadiabatic transition |a〉 → |b〉 is given in Ref. [76] to be

max
t

∣∣∣〈a| ∂Ĥ∂t |b〉
∣∣∣� ~ω2

ab ∀ |a〉 6= |b〉 , (4.6)

where ωab = mint(|Eb(t)− Ea(t)| /~) and where |a〉 and |b〉 are instantaneous eigenstates

of the Hamiltonian. Since the Hamiltonian in question is invariant under exchanges of

both symmetry and parity, transitions between vibrational states of different symmetry

or parity are suppressed. Thus, in our case ωab is determined by the energy gap of the
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two closest states having both equal symmetry and parity. This restriction contributes

significantly to the robustness of this gate.

The left side of eq. (4.6) reduces to maxt |〈a|dV (x,d(t))
dt

|b〉| because only the double-well

potential is time-dependent. In general, we may replace |〈a|dV (x,d(t))
dt

|b〉| in eq. (4.6) with

the term maxx |dV (x, d(t))/dt|, because

∣∣∣∣〈a|
dV (x, d(t))

dt
|b〉
∣∣∣∣ ≤ max

x

∣∣∣∣
dV (x, d(t))

dt

∣∣∣∣ . (4.7)

Let us consider the simple case of gate operation carried out via the linear translation

of the wells at constant velocity v, such that d(t) = vt. We may once again exploit the

symmetries of the Hamiltonian to maximize |dV (x, d(t))/dt| simultaneously with respect

to both x and t, identifying the maximum at x = 0 by inspection, because time-dependent

changes in the potential occur at the front “crest” and rear “tail” of each trap as the

two traps approach each other. The maximum rate of change occuring at x = 0 as the

two crests collide. Solving dV (x, t)/dt|x=0, and using differential calculus to maximize

the result for t, we obtain

max
x, t

∣∣∣∣
dV (x, t)

dt

∣∣∣∣ =
V0v

σ
e−1/2 ≈ V0v

σ
. (4.8)

Inserting this result into eq. (4.6), we obtain an adiabaticity criterion to limit the

overall gate speed,

v � ~σω2
ab

V0

. (4.9)

Adherence to this criterion ensures that gate operation is carried out within the

adiabatic limit. Errors due to nonadiabatic transitions can be further reduced (within

the adiabatic limit) by using the techniques discussed in Chapter 6. Gate tolerances,

with respect to experimental imprecision, are discussed in detail in Ref. [4].
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4.7 Time-Dependent Simulations of Gate Operation

In this Section, I present computer simulations of the two-qubit entangling gate carried

out on a pair of qubits, each stored in the internal states of a neutral boson confined to

one-dimension and controlled using optical tweezers, to show that the gate operates as

expected in the adiabatic limit.

I used MATLABTM to numerically express each spatial subsystem of the Hamilto-

nian (4.1) (one for each joint two-qubit state), using a 128×128 dimensional Hilbert space.

I solved these Hamiltonians over a range of separation distances spanning 0 ≤ d ≤ 5σ, for

a variety of trap depths and scattering lengths. Representative plots chosen to highlight

essential features of Hamiltonian’s adiabatic energy curves are shown in Fig. 4.2.

To test the validity of eq. (4.9), I simulated evolutions of the time-dependent Schrödinger

equation for the separation profile d(t) = vt over a wide variety of gate speeds and values

of V0 and aij (including aij < 0), using each of the degenerate ground-state eigenstates as

the initial state of the simulation. I performed these simulations in MATLABTM using

a “split-operator” formalism to iteratively propagate the position and momentum com-

ponents of the Schrödinger equation describing the time-evolution of the system [151].

Defining v0 = ~σω2
ab/V0 according to eq. (4.9), I found that the average gate fidelity

decreased steadily as gate speed was increased from 0.01v0 to v0.

Representative figures showing the change-over from adiabatic to nonadiabatic gate

operation are shown in Fig. 4.9. These figures depict two-dimensional visualizations of

the two-particle wavefunction, in order to compare adiabatic and nonadiabatic evolu-

tions. Under adiabatic conditions, both atoms are recovered in separate wells. Under

nonadiabatic conditions both atoms may end up in the same well or escape entirely, re-

sulting in an erroneous gate. As the gate speed increases, the average probability that

the particle escapes also increases.
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Figure 4.9: Representative figures of the magnitude of the two-atom vibrational wave-
function (||ψ〉| ≡ ||ψ(xa, xb, t)〉|) as a two-dimensional function of the position of each
particle, reproduced with permission from Ref. [2] with permission. Plot (a) shows the

initial wavefunction, |ψinit〉 = (|ψ̃LψR〉+ |ψ̃RψL〉)/
√

2. Plots (b-d) show the wavefunction
after the wells have been brought together and separated. Initial conditions are the same
for all figures, and only the speed is varied (in units of v0 = ~σω2

ab/V0). The resulting
vibrational state fidelities f = |〈ψinit|ψ〉|2 are as follows: (b) v ≈ 0.01v0, f = 0.9997. (c)
v ≈ 0.1v0, f = 0.491. (d) v ≈ v0, f = 0.002.

The local phase acquired by each eigenstate during gate operation is proportional

to the time-integral of the energy of that state and is predetermined by the separation

profile d(t). Although the phases are acquired due to the distinct energies of the different

vibrational states of the system, upon reseparation these phases are effectively “kicked
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back” onto the qubit states. The phases acquired by the |00〉, |χ+〉, |χ−〉, and |11〉 states

may be respectively denoted as φ00, φ+, φ−, and φ11. Using this notation, the entangling

gate may be written as a unitary operation Û of the form,

Û = e−iφ00|00〉〈00|+ e−iφ+ |χ+〉〈χ+|+ e−iφ−|χ−〉〈χ−|+ e−iφ11|11〉〈11|. (4.10)

The separation profile d(t) may be suitably tuned to produce phase values that are

optimized to a given application. To generate a maximally entangling gate, it is only

required that φ+ − φ− = 2πn± π
2

for arbitrary integer n.

4.8 Concluding Remarks

In conclusion, I have presented computer simulations of a time-dependent Hamiltonian

representing a pair of identical composite atoms, confined by a pair of optical dipole

traps (“laser tweezers”) and translated along one dimension representing an additional

confining beamline. I showed how the control of the physical system represented by this

Hamiltonian may be used to carry out an entangling operation on the qubits stored in the

internal states of the atoms by way of the exchange interaction. I showed how the spatial

symmetry and parity of the system may be exploited to achieve operation fidelities better

than those anticipated using the standard adiabatic criterion [76]. I used this finding to

derive an operation-specific adiabatic criterion for this system under constant-velocity

conditions, and I performed simulations to verify the accuracy of this criterion.

This work provides a preliminary analysis of an entangling two-qubit gate, and an

example of an essential component for neutral atom-based quantum information process-

ing technologies. While the collisional exchange-gate modeled here is based on a design

employing optical tweezers and tight-confinement along one dimension, my findings re-

garding the symmetries of the Hamiltonian (Section 4.5) and the adiabaticity criterion

(4.6) are generalizable to other implementations of exchange-based gates. Furthermore,



60

my anecdotal finding that certain gate speeds produced better-than-expected gate fideli-

ties (ground state “revivals”) suggests that gate quality may be enhanced by strategies

to optimize gate timing, as I examine in Chapter 6.

This gate provides a conceptually simple example of a nonadiabatic transition be-

tween two degenerate electronic states defined by the logical qubit basis states |0L1R〉

and |1L0R〉. At large well separations, the concept of cluster separability [83] allows the

neglect of the identical character of the two systems, so that the atoms (and the qubits

they store) become effectively distinguishable. The separability of the two atoms implies

that the underlying symmetric and antisymmetric states of the joint two-particle wave-

function are degenerate, as shown in Fig. 4.2. Qubit distinguishability is essential to the

design and characterization of a quantum computing architecture, because it allows the

quantification of the complexity of an algorithm in terms of classical input bits.

The breakdown of atomic separability (see Section 2.3.1) provides the mechanism

for gate operation, as the degeneracy is broken between the adiabatic (symmetric and

antisymmetric) vibrational eigenstates of the system. The phase evolution that arises be-

tween the adiabatic vibrational eigenstates presents itself in the form of time-dependent

nonadiabatic dynamics of the “diabatic” electronic potential surfaces, effectively swap-

ping them to exchange |0L1R〉 with |1L0R〉. The coherent nonadiabatic transition from

|0L1R〉 to |1L0R〉 defines the logical operation of the gate. In this manner, it also provides

a prototype system for investigations into the complex interplay between adiabatic and

nonadiabatic dynamics of approximatately-adiabatic evolutions.

My results were published in the article, “Entangling identical bosons in optical tweez-

ers via exchange interaction,” in the Canadian Journal of Physics and have been cited in

six (6) distinct peer-reviewed scientific articles [31, 3, 32, 34, 4, 33] since the time of the

article’s publication. The article is reproduced in the Appendix with written permission

from the publisher.
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Chapter 5

Atomistic Bell Test Without Loopholes

It is the requirement of locality, or more precisely that the result of a mea-

surement on one system be unaffected by operations on a distant system with

which it has interacted in the past, that creates the essential difficulty.

—John Bell, 1964 [90]

My three main contributions to the work described in Chapter 5 are summarized as fol-

lows:

1. I present the design, on which I collaborated, for an experimental scheme to perform

a loophole-free Bell-inequality test in a single laboratory (Section 5.2).

2. I analyze criteria necessary to ensure the feasibility of the spatial separation of an

atomic Bell pair in a single laboratory using optical tweezers (Section 5.3).

3. I identify conditions to ensure that the selection of the measurement basis and the

measurement of the Bell pair can be performed both rapidly and efficiently enough

to violate Bell’s inequality under spacelike-separated conditions (Section 5.4).

5.1 Introduction: Completeness of Quantum Mechanics

The question of whether quantum mechanics can provide a “complete” description of

reality has provided a steady topic of debate for eight decades [89]. Upon the publication

of Bell’s inequality in 1964 [90], it became possible, at least in principle, to quantitatively

test the validity of the “nonlocal” quantum mechanical description of physical experi-

ence [91]. Clauser, Horn, Shimony, and Holt (CHSH) later distilled Bell’s essential result
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into a form that remains widely used today [152, 153], and emphasized the concepts of

“signalling” and “detection” loopholes that might render the results of these experiments

invalid.

Clauser et al. showed [152, 153] that if the states of a pair of spacelike-separated

spin qubits labeled “a” and “b” are observed along axes respectively identified by the

measurement operators Qa, Ra, Sb, Tb, that the expectation values of these observables

are bounded from above and below by the relationship

−2 ≤ 〈QaSb〉+ 〈RaSb〉+ 〈RaTb〉 − 〈QaTb〉 ≤ 2 (5.1)

for any local and realistic theory of empirical experience. This result is in contrast with

the quantum mechanical result given by Cirel’son [154],

| 〈QaSb〉+ 〈RaSb〉+ 〈RaTb〉 − 〈QaTb〉 | ≤ 2
√

2. (5.2)

Cirel’son’s quantum upper bound (5.2) is saturated by pairs of entangled qubits that

are prepared in the 1√
2
(|00〉+ |11〉) state and observed using the measurement operators

Qa = σz, Ra = σz, Sb = (σx − σz)/
√

2, and Tb = (σx + σz)/
√

2, where {σx, σy, σz},

are the Pauli operators [3]. Quantum mechanics can be shown to be an experientially

reproducable (if not “complete”) description of reality by any Bell-inequality experiment

that generates a statistical outcome between 2 and 2
√

2 for eq. (5.1) using the set-up

described above, granted that it is unimpinged by either the signalling or detection

loopholes, described as follows.

To close the “signalling” loophole, it is required that the selection of the measurement

axes and the measurements performed on each qubit be spacelike-separated from each

other, in order to ensure that the result of one measurement cannot be signalled to

the other measurement apparatus in time to affect the measurement outcome of that

apparatus. To close the “detection” loophole, it is required that all pairs of entangled

qubits that are prepared be measured, and the results of those measurements included
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in the statistical average, in order to ensure that an apparently quantum mechanical

result is not artificially fabricated by “pathological detectors” [152]. Although both the

signalling [155] and detection [156] loopholes have each been separately closed during

independent experiments, no single Bell inequality experiment has yet been carried out

to close both loopholes simultaneously [26].

Regardless of the outcome of the experiment, the execution of a “loophole-free” test

of local realism would mark an important milestone in the history of science, definitively

answering a fundamental question about the nature of experience. Recently, loophole-

free tests of quantum mechanics have also gained commercial and military importance,

because the security of quantum cryptography depends on the validity of quantum me-

chanics. A quantum key distribution scheme might be compromised by an attacker

exploiting an open loophole, even if it is possible to close the loophole in principle [26].

While experts have claimed that a loophole-free Bell-inequality test may be just a

few years away using photonic entanglement-distribution schemes [26], these predictions

may not anticipate all the technical obstructions hindering such an endeavor, either for a

specific implementation or in general. According to Emilio Santos [157], “the validity of

local realism may be either refuted by a single loophole-free experiment or increasingly

confirmed by the passage of time without such an experiment.” As-of-yet undiscovered

physical laws may prohit the closure of both loopholes during a single experiment. For

example, the loopholes themselves could obey a kind of complementary principle—akin

to the uncertainty principle itself [158]—fundamentally preventing their simultaneous

closure. For this reason, it is valuable to explore multiple avenues of attacking the

problem, until both loopholes have been simultaneously closed. If both loopholes cannot

be simultaneously closed, an exhaustive exploration of the problem will be necessary

to determine why not [157], because the simultaneous closure of both loopholes is not

presently understood to be prohibited by any laws of physics [26].
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The atomic Bell test scheme that my collaborators and I propose elucidates how the

entanglement and coherent long-range transport of a single-qubit may in principle be

combined with existing technologies in order to perform a “loophole-free” Bell inequality

test in a single laboratory. I worked closely with my collaborators René Stock, Mark

Raizen, and Barry Sanders on all aspects of the conceptual design of this experiment. In

addition to my design and analysis of the entangling gate (discussed in Chapter 4), my

independent and essential contribution to this work was the analysis of reasonable con-

ditions that will be necessary to achieve spacelike-separated measurements of entangled

particles in a single laboratory. In addition to presenting a novel challenge to laboratory

equipment that is intended to demonstrate high-precision quantum control, we offer an

important alternative route to performing such a Bell test, should current approaches

based on photonic entanglement distribution schemes prove insufficient.

5.2 Design of Test Scheme

In this Section, I describe a proposal for a scheme to perform a “loophole-free” test of

local realism in a single laboratory that I developed in collaboration with René Stock,

Barry Sanders, and Mark Raizen.

The scheme consists of multiple iterations of cycles of atomic Bell-pair preparations

and measurements, in order to generate reliable statistics. Each iteration of the cycle

consists of six distinct components:

• Atomic Qubit Preparation by the deterministic extraction of individual atoms

from a Bose-Einstein condensate,

• Qubit Encoding as atoms are cooled into encoded logical states,

• Single Qubit Operations to prepare the atomic qubits in superposition states,
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• Entangling Operation to create the Bell pair from two qubits,

• Qubit Transport to opposite ends of the laboratory, and

• Rapid Measurement of the qubits in randomly-selected measurement bases.

Detailed descriptions of each of these components follow.

5.2.1 Atomic Qubit Preparation

We propose to prepare atomic qubits using a scheme developed by Diener et al. [159]

to deterministically extract individual bosonic atoms from Bose-Einstein condensate

(BEC). Although experimental investigations into this atom-extraction scheme [159] and

some others [39, 40] have been delayed [160], these proposals remain in principle viable.

The development of high-fidelity methods for preparing individual continues to advance

rapidly [114, 41, 43, 44].

Once each individual atom has been prepared, residual nuclear vibrations may be

eliminated by cooling the atom down to its quantum ground state using Raman (“re-

solved”) sideband cooling techniques [42].

5.2.2 Qubit Encoding

We propose to encode qubits in long-lived, spin-0 electronic states of divalent (“group-

II-like”) atoms. These “optical clock states” correspond to very narrow transitions to

long-lived (metastable) electronic states. For example, group-II atoms such as strontium

(Sr) exhibit a long-lived 3P0 state with a lifetime of approximately 30 s, while the lifetime

of the 3P2 state is “longer still” [139]. To preserve coherence, it is crucial to store each

atom in a state-independent trap via the use of a “magic wavelength,” at which the AC

Stark shifts of the encoded states become equal.
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5.2.3 Single Qubit Operations

We propose to employ multiphoton stimulated absorption and emission processes using

virtual states in order to encode qubits across metastable “forbidden” transitions, such

as the 3S0 ↔ 3P0 transition that is common to group-II atoms. One- and two-photon

transitions between 3S0 and 3P0 are respectively dipole- and parity-forbidden. Thus,

state transfer from 3S0 to 3P0 requires at least two intermediary (virtual) states, such as

3P1 and 3S1. We propose to carry out single qubit rotations between 3S0 and 3P0 based

on the three-photon sequence,

3S0 → 3P1 → 3S1 → 3P0. (5.3)

A “Raman” type transition between 3S0 and 3P0 can be achieved using off-resonant

“virtual” transitions through the 3P1 and 3S1 states [118]. Because this is a three-photon

stimulated transition, the lasers involved can be arranged geometrically to ensure that

no net momentum is imparted to the atom. This enhances the fidelity of the single-qubit

gate by making it recoil-free [161]. Gate fidelities of 99.99% can in principle be achieved

using laser intensities on the order of 106 W/cm2 [3].

5.2.4 Entangling Operation

We propose to use the exchange-based gate described in the last chapter in order to

entangle pairs of trapped atomic qubits. This gate is inherently robust because the

entangling phase is acquired in the nonlocal (“Bell”) basis and thus is not prone to

spatially-inhomogeneous field effects. The gate speed can be made as slow as is necessary

to ensure high-fidelity adiabatic operation, because the milliseconds-timescale of the gate

is orders of magnitude shorter than the seconds-timescale of the qubit lifetime.
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5.2.5 Qubit Transport

We propose to transport each qubit a distance on the order of a few metres in order

to ensure that the ensuing Bell-test measurements are spacelike-separated. Researchers

in Paris have demonstrated two-dimensional spatial transport of a single atomic qubit a

distance of a few hundred microns using a micron-scale optical tweezer [119]. Transport

of the tweezer (i.e., the focal point of the laser) was accomplished by way of a piezo-

electrically actuated mirror. The researchers used spin-echo techniques to preserve qubit

coherence during transport. They detected no noticable coherence-loss [119], suggesting

that their method may be scaled up to much longer distances.

Using comparable technology, researchers at MIT used optical tweezers to successfully

transport a BEC approximately half a meter, a distance which was limited by the size

of their vacuum chamber [138]. Tweezer transport was accomplished by directing the

collimated laser beam through a lens mounted on a linear translation stage running

parallel to the beam, allowing for translation of the beam’s 24µm-radius focal point.

The MIT researchers found that a maximum acceleration of 200 mm/s and a maximum

speed of 80 mm/s were possible, given the limitations of their apparatus [138]. They

expected that signficant improvements could still be made to further increase transport

rates by addressing known sources of error [138].

The use of optimal control techniques [73, 162] and other commercial advances [163]

promise further enhancements to transport speeds and fidelities. The strategic com-

bination of the technologies developed both in Paris and at MIT will enable coherent

transport of qubits to a separation distance of several meters with present-day or near-

future technologies.
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5.2.6 Rapid Measurement

We propose to measure the qubits using resonant multiphoton ionization and detection.

Separation distances on the order of a few meters require that the Bell test measurement

(including random basis selection) be performed on a timescale on the order of 10 ns.

This time-window includes the time necessary to randomly select the measurement basis

(i.e., the angle of rotation, as represented on the Bloch sphere) and to perform the mea-

surement itself. Random measurement basis selection can be achieved on a nanosecond

timescale using a light-emitting diode (LED) in conjunction with a photomultiplier array

as described in Ref. [164], coupled to an electro-optical modulator controlling the lasers

that comprise the single-qubit gating mechanism. The measurements need to be tightly

synchronized to guarantee they occur simultaneously in the laboratory reference frame.

We define the measurement to span the time necessary to perform the random basis

selection, single qubit rotation, and ionization. Measurement is initiated with the initial-

ization of the random basis selection and is completed with the irreversible transfer of the

electron from a bound atomic state to an unbound state of the continuum. The result

of the observation, namely the detection of an ion or the lack thereof, is then amplified

and recorded using ionization spectroscopy.

5.3 Spacelike-Separated Qubits

In this Section, I describe my independent analysis of the feasibility of transporting the

qubits to a separation distance sufficient to ensure that the qubit measurements are space-

like separated.

Simulations performed by Stock indicate that the one-qubit gates can be performed

with near-unit fidelity [3]. Simulations performed independently by myself [2] and by

Hayes et al. [28] indicate that the two qubit entangling gate can be peformed with near-
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unit fidelity. Timescales for qubit preparation and entanglement are fractions of a second,

and qubit lifetimes are on the order of at least seconds. Transport techniques discussed

in Section 5.2.5 indicate that high-fidelity transport of qubits over a distance of several

meters can itself be achieved, so the main hurdle to overcome is the transport of the

qubits to a sufficiently-large separation distance within their coherence time.

Given a coherence time of 10 s [3], and a translation speed of about 0.1 m/s for each

qubit, a separation distance of 2 m may be achieved—affording about 7 ns in which to

perform the measurements. Lifetimes of the 3P0 states in isotopes of ytterbium have

been recorded at 20 s, and lifetimes of the 3P0 states in isotopes of strontium around

30 s, suggesting that substantially-larger distances and longer measurement windows may

be achieved by the optimal choice of atomic species. Much longer lifetimes may become

available, as research in this field continues to develop. For example, the 3P2 state of

magnesium has recently been attributed a lifetime of more than half an hour [165]. These

numbers suggest that it is feasible to separate entangled pairs of qubits by distances of

several meters, ensuring tens of nanoseconds (or longer) in which to complete synchronous

Bell test measurements once they have been initiated.

5.4 Rapid Bell Measurements

In this Section, I describe my independent analysis of the feasibility of performing random

Bell test measurements with sufficient speed to ensure that they are spacelike separated.

Once adequate spatial separation of the qubits has been achieved, the observation

is carried out via ultra-fast basis selection, single-qubit rotations, and measurement via

“resonantly enhanced multiphoton ionization” (REMPI) and detection [166, 167]. The

analysis that I performed in the preceding section indicates that a measurement window

on the order of 10 ns will be adequate to ensure spacelike separation of the measurements.
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The random binary decision necessary to select the measurement basis for each qubit

can be implemented using a dimly-lit LED attached to a photomultiplier, the output

of which is channelled to an electro-optical modulator controlling the degree of rotation

performed on each qubit. Experimenters found that random numbers could be generated

in this way on a 2 ns timescale [164]. The lengths of the signaling pathways between the

random number generators and their corresponding single-qubit-rotation lasers will need

to be minimized in order to reduce the total observation time. The necessary single qubit

rotations can be carried out in about 2 ns or less with high fidelity [3].

REMPI techniques can then be used to selectively ionize the atom, depending on

its logical state. For example, if logical |0〉 corresponds to the 1S0 state and logical |1〉

corresponds to the 3P0 state, then the atom might be selectively ionized exclusively from

the 3P0 state. This can be accomplished by performing a rapid on-resonant transition

from 3P0 to 3S1 followed by the ionization step, ejecting the electron. These on-resonant

transitions can be extremely fast, occuring on timescales of nanoseconds or even pi-

coseconds [3]. The ejected ion and/or electron may then be detected using standard

ionization spectroscopy techniques [166, 167]. Assuming electron velocities on the order

of 109 mm/s [70] and detector distance scales on the order of 1 mm [167], nanosecond

electron detection timescales are easily achieved.

I have assumed the irreversible dephasing of the qubit state that occurs upon ioniza-

tion to demarcate the end of the observation. A purist’s demand for the complete reso-

lution of the measurement into a macroscopic electric current in the electron multiplier

would necessitate the use of spatially-compact detectors with nanosecond-scale latencies,

further increasing the minimum required separation distance. Even under these more

exacting conditions, measurement timescales on the order of tens of nanoseconds may be

achieved.
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5.5 Concluding Remarks

In conclusion, I have presented my feasibility analysis of a loophole-free test of local real-

ism based on the CHSH inequality. I collaborated on the design of the test and provided

the design for the entangling gate it employs (see Chapter 4). I provided an order-of-

magnitude assessment of the feasibility of achieving spacelike-separated conditions for

the measurements employed in the test, based on reasonable hardware specifications.

There are two essential physical variables relevant to my feasibility assessment, the

qubit separation distance and the measurement time. I found the separation distance to

be limited by the lifetimes of the logical states employed and the precision of the transport

apparatus. The measurement time is limited by the basis-selection time, measurement

time, and measurement fidelity. I found that all of the limiting criteria related to the fun-

damental requirement of spacelike separation can be satisfied under realistic conditions,

given known or expected technical specifications of the corresponding apparatus.

The atomic Bell test experiment proposed here represents an essential contribution

to the investigation of fundamental limits determined by scientific methods, because

the leading photonic proposals may yet encounter insurmountable hurdles [157]. Fur-

thermore, the implementation of successful Bell tests using various different forms of

entangled media would provide fundamental verification that the underlying physical

principles that generate expressions like Bell’s inequality and Tsirelson’s bound are uni-

form across nature. These kinds of tests also provide hard benchmarks for assessing the

development of emerging quantum technologies.

John Bell has stated that, “it is hard for me to believe that quantum mechanics works

so nicely for inefficient practical set-ups and is yet going to fail badly when sufficient

refinements are made” [164]. This statement relies on the implicit assumption that

“sufficient refinements” can fundamentally be made. The simultaneous closure of both



72

loopholes defines a significant and unprecedented technical hurdle, in terms of precision

quantum state transport, synchronization, and measurement. It is conceivable that as-

of-yet undiscovered physical laws limit the collective precision of these operations, so to

fundamentally prohibit the simultaneous closure of both loopholes. Uncertainty relations,

akin to those already innate to quantum mechanics, may collectively govern fundamental

limits on the simultaneous precision of these laboratory operations.

This work was published in the article, “Entanglement of group-II-like atoms with

fast measurement for quantum information processing,” in the Physical Review A. It has

been cited in ten (10) different peer-reviewed scientific articles [4, 30, 34, 35, 36, 37, 38,

168, 169, 170] since the time of its publication. The article is reproduced in the Appendix

with written permission from the publisher.
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Chapter 6

Improved Error-Scaling for Two-Qubit Entanglement

A physical system remains in its instantaneous eigenstate when a given pertur-

bation is acting on it slowly enough and if there is a gap between the eigenvalue

and the rest of the Hamiltonian’s spectrum.

—Max Born and Vladimir Fock (transl.), 1928 [171]

My four main contributions to the work described in Chapter 6 are summarized as follows:

1. I develop a first-order numerical technique to efficiently simulate approximately-

adiabatic quantum evolution (Section 6.2).

2. I adapt Nathan Wiebe’s zeroth-order boundary cancellation technique to enhance

the operation of the adiabatic gate beyond the limit set by the standard adiabatic

approximation (Section 6.3).

3. I show that this technique can be used to asymptotically suppress error amplitudes,

by performing extensive numerical simulations (Section 6.4).

4. I show that gate fidelity can be improved by about two orders of magnitude by syn-

chronizing the suppression of multiple errors (Section 6.5).

6.1 Introduction: Enhanced Adiabatic Evolutions

Adiabatic processes are essential to several components of atomic quantum computing

schemes, including adiabatic transport, cooling, state preparation and manipulation. For

example, adiabatic quantum computation gained prominence as a promising quantum
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computing architecture, following the discovery that a “local adiabatic evolution” could

be used to reduce the complexity of an adiabatic quantum search of an unstructured

N -element database from order O(N) to order O(
√
N) [172]—the same computational

speedup achieved by Grover’s quantum algorithm over an optimal classical algorithm to

search an unstructured database [21].

Because processes that are based on adiabatic control are inherently slow, it is advan-

tageous to employ schemes to increase adiabatic process speeds without loss of fidelity in

time-sensitive applications. Methods for enhancing the speed or fidelity of an adiabatic

quantum evolution beyond the limit set by eq. (2.2) represent a key area of research

toward the development of practical QIP technologies, because adiabatic processes are

“ubiquitous” to technological applications across physical disciplines ranging from atomic

physics to semiconductor physics and spintronics [171].

Several atomic entanglement generation schemes rely on the adiabatic control of the

motional state of trapped atoms [2, 28, 29, 112, 127]. For example, small differences in

gate fidelities can determine whether a scalable quantum computing scheme can achieve

its threshold for fault tolerance [173]. In the case of a scheme that is already fault

tolerant, improvements to tolerable gate fidelities will still reduce the required amount

of error correction resources. For this reason, methods to optimize entangling gates for

fidelity and speed will be critical for their practical application of these gates to problems

in computing [121] and metrology [131]. Yet, very few schemes to optimize these gates

have so far been proposed [4, 174, 175].

Collision-based entangling gates rely on adiabatic state transfer to ensure that atoms

are not excited to non-logical states during transport as they are brought together to

interact. In this respect, these two-qubit entangling gates represent elementary examples

of adiabatic quantum algorithms, because they carry out the adiabatic transformation

of an “easy to construct” (unentangled) initial quantum state into a hard to construct
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(entangled) final quantum state [108]. Thus, existing techniques for optimizing adiabatic

quantum algorithms can in principle be applied to optimize the operation of adiabatic

entangling gates. I provide a prototype example showing how to apply one such technique

to improve the atomic two-qubit gate that was presented in Chapter 4.

6.2 Efficient Simulation of Approximately Adiabatic Evolutions

In this Section, I described simulation techniques that I developed in order to perform a

statistically comprehensive set of simulations needed to demonstrate an asymptotic im-

provement in the operation of a two-qubit entangling gate.

Over the course of performing simulations of the two-qubit exchange gate described

in Chapter 4, I noticed that some “magic” simulation speeds generated significant ground

state revivals [2], opening the possibility of enhancing gate operation beyond the standard

limit set by the adiabatic approximation [76]. This interference effect was previously

noted by Charron and coworkers [174], in regard to a two-qubit gate wherein qubits

were encoded in the motional states of neutral atoms. In that Letter [174], the authors

provided a proof-of-principle example showing that fidelity of gate operation could be

improved by more than two orders of magnitude under certain circumstances, but they

did not provide a general equation to predict these fidelity enhancements or to estimate

any asymptotic limits governing their result.

Inspired by discussions with Nathan Wiebe, I hypothesized that it would be possible

to produce a general fidelity enhancement for gates of this kind. I realized that I would

need to perform large numbers of simulations in order to carry out the comprehensive

statistical sampling necessary for an asymtotic analysis. However, the simulations I de-

veloped previously in MATLABTM using the “split operator” method required several

hours to perform on a typical desktop computer (precluding the completion of several
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hundreds of simulations in a reasonable time), and efforts to transfer them onto a super-

computing platform proved fiscally intractable (due to licensing restrictions). I ultimately

overcame this difficulty by transforming the representation of the Hamiltonian describing

the system from the local position basis to its nonlocal instantaneous eigenstate basis.

Informed by insight I gained while considering the orbital contributions to “Franck-

Condon” overlap factors during my study of nonadiabatic chemical reactions, I realized

that the computational cost of a single simulation could be dramatically reduced by car-

rying out the simulation in the system’s instantaneous eigenbasis (rather than iterations

of the position and momentum bases), by calculating the instantaneous “overlap” factors

coupling different eigenstates for each step of the simulation, and then by propagating

the wavefunction in time according to the corrsponding nonadiabatic transition ampli-

tudes. Specifically, I found that the computational cost-per-timestep could be reduced

from 1282 × log(1282) ≈ 70 000 operations to about 402 = 1600 operations.

The simulation method that I developed relied upon the use of an index file storing

the instantaneous eigenenergies and inter-eigenstate transition amplitudes for a discrete

set of trap-separation distances, and the use of a spline fitting in order to interpolate

between elements of that set. Although the initial diagonalization of the Hamiltonian

for 1200 separation distances was numerically costly, it was nevertheless a one-time (i.e.,

constant order) cost to generate a resource that could be reused indefinitely to greatly

reduce the durations of hundreds of simulations. Each simulation time-step consisted of

the propagation of each instantaneous eigenstate’s time-dependent phase, followed by the

transformation of the wavefunction expression from one instantaneous eigenbasis to the

next. In essence, this method is like the “split operator” method in which the system is

transformed between position and momentum bases at each computational step, but the

tranformation between conjugate bases [158] is inherently more computationally costly

than the transformation between nearly-identical eigenbases. Because each simulation
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differed from the next only by the time-dependent profile of the separation distance, a

single set of eigenenergies and (trivially-rescaled) transition matrix elements could be

reused for every simulation.

The “adiabatic-overlap” simulation technique that I devised may be readily applied

to more complex systems in higher dimensions (e.g., collisional gates modeled in three

dimensions), with the possibility for even greater numerical speedups. This simulation

technique therefore has particular value when applied to more sophisticated simulations

of quantum gates, modeled in three dimensions with nonlinear separation profiles.

6.3 Boundary Cancellation Technique

In this Section, I describe the “boundary cancellation technique” developed by Nathan

Wiebe in order to use quantum interferences to deterministically predict and suppress

nonadiabatic transitions during the approximately-adiabatic quantum evolution.

The standard adiabatic approximation (originally derived by Born and Fock in 1928)

states that, during an approximately adiabatic evolution of a quantum system initialized

in the state |a〉, the maximum probability of a nonadiabatic transition between non-

degenerate states |a(t)〉 = |a〉 and |b(t)〉 = |b〉 is Pba ≈ |Eba|2, where

Eba = max
t

2~ 〈b| ˆ̇H(t)|a〉
(Eb(t)− Ea(t))2 (6.1)

and where the dot denotes the time-derivative, and where Eb(t) and Ea(t) are the energies

of the time-dependent eigenstates |b〉 and |a〉, respectively [76]. Introducing the change

of variables t→ s to the “reduced time” s such that s = t/T , where 0 ≤ s ≤ 1 and T is

the total duration of the adiabatic evolution, we may reformulate (6.3) as

Eba =
1

T
max
s

2~ 〈b| ˆ̇H(s)|a〉
(Eb(s)− Ea(s))2 . (6.2)
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As a general estimate, the overall adiabatic error |E| may be estimated as roughly no

more than the “worst” individual error, such that

|E| . 1

T
max
s

2~ 〈b| ˆ̇H(s)|a〉
minb |Eb(s)− Ea(s)|2

. (6.3)

Evidently, the overall error |E| scales with order O(T−1) in the asymptotic limit.

While “local adiabatic” methods of enhancing adiabatic algorithms have generated im-

provements in asymptotic error-scalings with respect to the Hilbert space dimension 2N

(reflected by the size N of the quantum memory), these methods do not improve the

error-scaling with respect to the evolution duration [4]. For individual adiabatically-

operating components of a QIP system, such as an adiabatic two-qubit gate, it is neither

necessary nor desirable to improve operation fidelity with respect to the scale of the op-

eration. Instead, it is important to improve the operation fidelity with respect to the

characteristics limiting its efficient operation, such as its duration.

A number of “boundary cancellation methods” [176, 177] have been developed to

enhance the fidelity of quantum adiabatic algorithms. These methods have relied on the

capacity to set one or more of the time-derivatives of the Hamiltonian to zero at the

temporal boundaries of the algorithm (i.e., s = 0, 1). Wiebe has shown that even in the

limit where none of the Hamiltonian’s derivatives are zero at the simulation boundaries,

that another criterion can be used to perform an asymptotic fidelity-enhancement on the

algorithm with respect to its duration T [4].

Specifically, Wiebe found that the error due to a particular transition |0〉 ↔ |ν〉 could

be reduced from order O(T−1) to order O(T−2) by chosing the reduced Hamiltonian Ĥ(s)

to obey the criterion,

〈ν(s)| ˆ̇H(s)|0(s)〉
(Eν(s)− E0(s))2

∣∣∣∣∣
s=1

= eiθ 〈ν(s)| ˆ̇H(s)|0(s)〉
(Eν(s)− E0(s))2

∣∣∣∣∣
s=0

, (6.4)

where (for completeness) θ is an arbitrary phase factor. This condition is automatically

met for time-symmetric Hamiltonians like the two-qubit exchange gate in question. Given
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that eq. (6.5) is met, transitions from |0(s)〉|s=0 → |ν(s)〉|s=1 can be reduced from order

O(T−1) to order O(T−2) by chosing the total duration of the gate to obey,

Tn, ν =
nπ − θ∫ 1

0
[Eν(s)− E0(s)] ds

, (6.5)

for even positive integers n. Errors due to nonadiabatic transitions are exacerbated for

odd positive integers.

6.4 Fidelity-Enhanced Adiabatic Exchange Gate

In this Section, I describe the results of my simulations of the adiabatic exchange gate

described in the last chapter, and demonstrate how the fidelity of the gate can be substan-

tially improved without increasing its duration.

In order to integrate eq. (6.5), I diagonalized the two-particle Hamiltonian (4.1) over a

set range of distances (as described in Section 6.2), and used a spline fitting to produce a

smooth, integrable curve. The values predicted by eq. (6.5) for Tn, ν using this method did

not produce consistent improvements in the simulated gate fidelity, and instead produced

predictable periodic improvements. I was able to eliminate these beat frequencies by

refining the estimate for Tn, ν according to the relationship |Tn, ν −T | ≈ T/∆n, where ∆n

counts the number of beats between the inverse of the actual duration of the simuation

T−1 and the optimal inverse-duration T−1
n, ν . This calibration method reveals that the

nonadiabatic error correcting technique can be applied to realistic experimental apparatus

with systematic imperfections.

Figure 6.1 shows the results of the the simulations that were performed based on the

refined estimates of T−1
n, 5 . The set of durations {T−1

n, 5} were chosen to suppress because the

fifth excited state of the Hamiltonian is actually the first excited state to couple strongly

to the ground state. The inset of Fig. 6.1 was chosen to show the beat frequency between
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Figure 6.1: Transition amplitudes and bounds for T = Tn,5 over the range
200 ≤ n ≤ 2000, reproduced from Ref. [4] with permission. The main figure shows
|〈ψ+

n|5〉| ≈ |E5 0| for even n (solid) and odd n (dashed). Odd simulations are are closely
bounded by maxs[2

∥∥ d
ds
H(x, p, s)

∥∥ /(E5(s)−E0(s))2] (dotted), as expected. The inset
shows |〈ψ−n|6〉| bounded by maxs[2

∥∥ d
ds
H(x, p, s)

∥∥ /(E7(s)−E1(s))2].

the simulation durations that suppress the symmetric |0〉 → |5〉 transition and those that

suppress the antisymmetric |1〉 → |6〉 transition.

6.5 Suppresion of Multiple Transitions

In this Section, I show how the judicious choice of gate duration can be used to suppress

multiple nonadiabatic transitions simultaneously, substantially improving gate fidelity.

As Fig. 6.1 shows, certain gate durations satisfy eq. (6.5) for multiple values of n.

By carefully chosing gate times that simultaneously suppress nonadiabatic transitions

in both the symmetric and antisymmetric subspaces of the Hamiltonian, the overall

fidelity of the gate can be dramatically improved. Table 6.1 shows the nonadiabatic
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transition probabilities, for simulation durations that approximately suppress the three

most deleterious transitions. Specifically, these are the three nonadibatic vibrational

transitions that couple most strongly to the logical subspace of the Hamiltonian during

the overall operation of the gate. These findings indicate that the overall probability

of an error occuring can be suppressed by two orders of magnitude using the boundary

cancellation technique.

Int. Error Probabilities (× 10−4) Phase
n |〈0|5〉|2 |〈1|6〉|2 |〈1|7〉|2 |E+|2 |E−|2 α

456 0.024 0.012 0.245 0.988 0.535 1.645
458 0.022 0.007 0.180 0.771 0.433 −0.186
460 0.021 0.003 0.124 0.648 0.316 4.266
462 0.021 0.001 0.078 0.764 0.275 −3.849
464 0.023 <0.0001 0.043 0.980 0.249 0.603
466 0.023 <0.0003 0.018 1.010 1.201 −1.228
468 0.023 0.002 0.003 0.925 0.292 −3.059
470 0.023 0.004 <0.0001 0.763 0.452 1.392
472 0.022 0.007 0.006 0.721 0.502 −0.438
474 0.021 0.012 0.021 0.803 0.654 4.014

Table 6.1: Error probabilities and the phase gap α (radians) that is generated between
symmetric and antisymmetric states, obtained from simulations of durations {Tn,5} for
456 ≤ n ≤ 474. The |0〉 → |5〉, |1〉 → |6〉, and |1〉 → |7〉 transitions are all suppressed
for simulations of these durations. The total error probability for the symmetric ground
state |0〉 is |E+|2, whereas the total error probability for the antisymmetric metastable
state |1〉 is denoted as |E−|2. These values are to be compared with those predicted by
eq. (6.3), which are |E+|2 ≤ 0.46× 10−1 and |E−|2 ≤ 0.62× 10−3 at n = 460.

6.6 Concluding Remarks

In conclusion, I have presented my contributions to the development of a method to poly-

nomially improve the fidelity of the exchange-based two-qubit gate discussed in Chapter

4, beyond the limit set by the standard adiabatic approximation (6.3). I developed

an algorithm to improve the computational efficiency of the simulations of the gate by

carrying out simulations in the time-dependent eigenbasis of the system Hamiltonian
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rather than the position (or momentum) basis used initially to define the Hamiltonian.

I adapted Wiebe’s zeroth-order boundary cancellation technique to predict maximally

optimal (and non-optimal) gate times, and I performed extensive simulations to demon-

strate an asymptotic reduction in the error-rate for a particular nonadiabatic transition.

I showed that multiple transitions could be suppressed simultaneously, resulting in an

overall improvement in gate fidelity of two orders of magnitude.

These results demonstrate that it is feasible to use interference effects to optimize

the two-qubit entangling gate examined here, by dynamically correcting nonadiabatic

errors. Although I considered a simple one-dimensional model of the gate using a linear

translation profile, the optimization technique itself may be applied to more sophisti-

cated model systems, and may readily be combined with other adiabatic optimization

techniques including “local adiabatic” evolutions and higher-order “boundary cancella-

tion” techniques. The development and characterization of these optimization techniques

will provide fundamental engineering principles to guide the design and optimization of

practical QIP schemes using ultracold neutral atoms and other related implementations.

My results were published in an article I co-wrote with Nathan Wiebe, titled “Im-

proved error-scaling for adiabatic quantum evolutions,” in the New Journal of Physics [4].

This article has been cited in nine (9) different peer-reviewed scientific articles [77, 178,

179, 180, 181, 182, 183, 184, 185] since the time of its publication. The most notable

and exciting take-up of my work in this area has been by Kieferová and Wiebe, who

were inspired by my findings with Wiebe [4] to invent a new type of quantum computing

architecture, “directly equivalent neither to the circuit model of quantum computing nor

to adiabatic quantum computing” [77].

Inspired by the use of interference effects due to Hamiltonian symmetries and preci-

sion timing in order to correct nonadiabatic errors [4], Kieferová and Wiebe conceived

that it would be possible to correct nonadiabatic errors by instead using interferences
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between superpositions of multiple time-depedent adiabatic evolutions [77]. Curiously,

their generalization of the adiabatic approximation to allow the adiabatic subsystem to

“evolve under a superposition of different adiabatic evolutions” [77] is equivalent to the

relaxation of the first assumption of the Born-Oppenheimer approximation (i.e., nuclear

classicality) to allow the nuclei to follow multiple superpositions of time-dependent paths

through phase space. Evidently, the introduction of nonadiabatic effects into a com-

puting system alters the algorithmic complexity of that system. The discovery that the

computational power of a quantum mechanical system can in principle be increased by

the controlled relaxation of the Born-Oppenehimer approximation has fundamental im-

plications for the quantitative bounds limiting the efficiency and specificity of a molecular

recognition system.

My article with Wiebe [4] is reproduced in the Appendix with written permission

from the publisher.
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Part II

It is one of the most remarkable things that in all of the biological sciences

there is no clue as to the necessity of death. If you say we want to make

perpetual motion, we have discovered enough laws as we studied physics to

see that it is either absolutely impossible or else the laws are wrong. But there

is nothing in biology yet found that indicates the inevitability of death. This

suggests to me that it is not at all inevitable, and that it is only a matter

of time before the biologists discover what is the trouble and that that terrible

universal disease or temporariness of the human’s body will be cured. Anyhow,

you can see that there will be problems of a fantastic magnitude coming from

biology.

—Richard P. Feynman, 1964 [186]
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Chapter 7

Biological Electron Transfer

The study of electron transfer processes has thus increased very greatly in

scope and taken on an entirely new emphasis since the Faraday Society last

considered this subject at the Discussion on Oxidation in 1945.

—J. Halpern and L. E. Orgel, 1960 [187]

In 1941, Albert Szent-Györgyi suggested that a model of delocalized “common en-

ergy levels” might explain the unique and mysterious catalytic properties of biological

molecules [188]. In particular, he suggested that such an energetic band structure might

explain the specificity and efficiency of biological electron transfer systems. He compared

his hypothetical model to the one already in use to explain the conductive and semicon-

ductive properties of crystals and metals, in which “a great number of atoms is arranged

with regularity in close proximity, as for instance in a crystal lattice,” so that “the terms

of the single valency electrons may fuse into common bands” [188].

In 1949, Evans and Gergely followed up on Szent-Györgyi’s considerations by ana-

lyzing the band-structures of a number of prototypical polypepide molecules with regard

to their conductive aspects. They concluded that in general a protein structure “pos-

sesses ‘semiconductive’ properties, but these could never be realized by thermal excita-

tion” [189]. Among their concluding remarks, Evans and Gergely noted that [189],

Judging from the width of the energy bands in a protein structure the elec-

trons are much more localized than in a metal or a graphite structure. The

narrowness of these bands suggests that in order to transfer electrons to or
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from [an] empty or full level of another system the energy levels of the struc-

tures must be closely matched. This may indeed have a bearing on specificity

of reactions between coupled resonating systems.

In 1956, Chance and Williams [190] examined and compared a number of then-

competing conjectures about electron transport mechanisms, but did not consider tunnel-

ing among those possibilities. Ten years later, De Vault and Chance [191] found that the

oxidation of cytochrome was essentially temperature-independent below 100 K, inferring

that

The slowness of the temperature-independent part of the light-induced cy-

tochrome oxidation in Chromatium observed in the present work indicates

that some kind of barrier to electron transfer is present, but the lack of ac-

tivation energy indicates that the electron does not jump over the barrier.

Tunneling is surely the simplest explanation.

De Vault and Chance’s electron tunneling hypothesis remained untested for nearly

two decades. In 1982, Winkler et al. observed rapid intramolecular charge transfer over a

distance of 15 Å in horse heart cytochrome c, conclusively identifying tunneling-mediated

electron transfer as a viable biological charge transport mechanism. Academic interest

in biological electron transfer kinetics dramatically intensified in the wake of this discov-

ery [192]. In 1982, Winkler et al. [193] provided more conclusive evidence of this sort,

finding the rate of electron transfer across 15 Å to be temperature-independent between

0◦C and 37◦C in prosthetically-ruthenated horse heart cytochrome c. They concluded

that redox enzymes could conceivably transport electrons via site-to-site tunneling, and

that “the most significant aspect of this type of intramolecular fixed-site experiment is

that as more data are gathered it will provide a means of critically assessing the factors

that control the rates of biological electron-transfer processes” [193].
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Several of the most rigorous empirical confirmations of biological electron transfer

theory have come from the study of ruthenium-modified redox proteins [62, 192, 194].

These experiments have provided essential characterizations of the exponential decay fac-

tors that describe nonadiabatic electron transfer [62, 192], providing consistent empirical

verification of the original studies [62]. Controlled measurements of the exponential de-

cay factors are carried out by artificially attaching a ruthenium (Ru) atom at a specified

location on a metalloprotein (such as azurin [194]), and then measuring the rate of elec-

tron transfer from the metalloprotein’s native metal centre to the artificial Ru-cofactor

over a range of attachment locations.

7.1 The Electron Transfer Integral

In biological ET systems, the tunneling rate is determined not by the direct donor-

acceptor coupling element HDA per se, but rather by the transfer integral TDA. The

integral TDA describes a phase-weighted sum of all possible transition amplitudes that

couple the donor state into the acceptor state. The instantaneous value of TDA may be

formulated using molecular orbital theory as a composite of various orbital interactions

mediated by virtual exchange through intervening “bridge” orbitals.

Until the late 1950s, investigations of oxidation-reduction reactions were limited al-

most exclusively to “considerations of stoichiometry and thermodynamics” [187], with

little attention paid to the intrinsic ET mechanisms. In 1960, Harden McConnell de-

veloped a model of resonantly-coupled charge transfer between a pair of aromatic rings

linked by an alkane bridge, after noticing that the rate of spin-magnetization transfer

in aromatic free radicals was “essentially identical” to the rate of intramolecular charge

transfer. He used the energy splitting between the symmetric and antisymmetric spatial

eigenfunctions of the transient electron in order to calculate the charge transfer rate,
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finding that it decayed exponentially with the charge transfer distance. He did not relate

his finding to studies of electron transfer in biological molecules.

In 1974, J. J. Hopfield addressed de Vault and Chance’s biological electron-tunneling

hypothesis explicitly, calculating the electron transfer “tunneling matrix element” TDA

between a pair of atomic “sites” by assuming that the intervening medium could be

treated as a square dielectric barrier [195]. Naturally, the early models of McConnell [196]

and Hopfield [195] have proliferated into a variety of treatments. Nowadays, two semi-

empirical models of superexchange-mediated ET dominate the relevant literature [197],

the atomically-detailed “pathway” model [198, 199, 200, 201] and the coarse-grained

“packing density” model [202, 203].

7.1.1 McConnell’s Model

Harden McConnell originally treated tunneling-mediated charge transfer through alkane

bridges in 1961 [196]. He showed that if a pair of degenerate, spatially-separated elec-

tronic spin-orbitals (|χD〉, |χA〉) are connected through a series of NB identical, tightly-

bound bridging orbitals (|χB
j 〉, j = 1 . . . NB) then the degeneracy will be lifted with a

corresponding energy gap g of approximate magnitude

g = |HDB1|
|HBB|N−1

|∆EDB|NB
|HBNA|, (7.1)

where HDB1 = 〈χD|H|χB
1 〉, HBNA = 〈χB

N |H|χA〉, and HBB � ∆EDB. Also, for all j,

HBB = HBjBj+1
= 〈χB

j |H|χB
j+1〉 and

∆EDB = ∆EDBj
= 〈χD|H|χD〉 − 〈χB

j |H|χB
j 〉.

McConnell’s result emerges as the highest-order approximation to the donor-acceptor

coupling after carrying out the recursive perturbation of the donor orbital by each of the

bridging orbitals in sequence. For a sequence of NB non-identical bridging orbitals (i.e.,
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|HBjBj+1
| 6= |HBkBk+1

| and |∆EDBj
| 6= |∆EDBk

| for all j, k), McConnell’s result naturally

generalizes to the form that decays exponentially with the donor-acceptor separation

distance via the number of intervening bridge orbitals,

|TDA| =
|HDB1||HBNA|
|∆EDB1|

NB−1∏

j

|HBjBj+1
|

|∆EDBj
| . (7.2)

7.1.2 Hopfield’s Model

In 1974, J. J. Hopfield treated electron transfer as a tunneling event across a square barrier

in one-dimension. This homogenous dielectric model implies that the electronic coupling

strength should decay exponentially with increasing donor-to-acceptor separation r [195].

The distance-dependent transfer function TDA(r) thus takes the generic form

TDA(r) = TDA(r◦) · e−β(r−r◦)/2, (7.3)

where TDA(r◦) is the donor-acceptor coupling at the van der Waals contact distance r◦,

and β is a decay factor parameterized by the barrier height. By construction, Hopfield’s

simplistic model is inadequate to account for electron tunneling through inhomogeneous

(i.e., topologically-detailed) media.

The similarity between Hopfield’s model (7.3) and McConnell’s model (7.1) model is

evident. Both formulae consist of a close-contact coupling energy T 0
DA multiplied by a

unitless decay term ε, i.e.,

TDA = T 0
DA · εDA. (7.4)

The generic form of TDA given by eq. (7.4) is valid so long as the donor, acceptor, and

intermediary “bridge” orbitals are distinct (i.e., approximately orthonormal). Because

the close-contact term T 0
DA is independent of the medium structure by definition, the

modeling of long-distance electron transfer through inhomogeneous media essentially

reduces to the description of the tunneling wavefuction through the transfer medium and

the corresponding analysis of the medium-dependent decay factor εDA.
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7.1.3 The Pathway Model

Throughout the 1980s, David Beratan, J. J. Hopfield, José Onuchic, and coworkers devel-

oped a semi-empirical model to account for the inhomogeneity of biological media. At the

suggestion of Rudolf Marcus, they performed extensive investigations to determine how

electronic coupling terms might arise from a combination of (covalent) “through-bond”

interactions and non-bonded “through-space” interactions [198, 199, 200, 201].

Following McConnell’s original treatment, Beratan et al. defined a “tunneling path-

way” linking the donor and acceptor as a sequence of N non-identical, coupled molec-

ular orbitals [204, 205, 206, 207]. The net tunneling amplitude (7.4) is proportional to

the product of the decay factors εi connecting the orbitals in the sequence, such that

EDA =
∏

i εi. In the tunneling pathway model, the decay factors are individually cate-

gorized as covalently-bonded (εC), hydrogen-bonded (εH), and through-space (εS) decay

factors, such that

εDA =

NC∏

i=1

εCi

NS∏

i=1

εSj

NH∏

k=1

εHk (7.5)

where NC, NH, and NS are respectively the numbers of covalently-bonded, hydrogen-

bonded, and through-space links making up a particular pathway. The individual decay

factors εC, εH, and εS are parametrized in the following way [206]:

εCi = 0.6, (7.6)

εHj (rj) = 0.36 e−1.7(rj−2.8Å)/Å, (7.7)

εSk(rk) = 0.6 e−1.7(rk−1.4Å)/Å. (7.8)

This parameterization was developed semi-empirically, after Beratan and Hopfield no-

ticed that the through-bond decay across covalent bonds was approximately 0.6/bond in

the protein backbone [198]. Hydrogen-bonds contribute a decay factor of that of approx-

imately two covalent bonds at an atom-to-atom distance of rj = 2.8Å [208]. Through
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space jumps fall off exponentially from the covalent value εCi with an exponential decay

factor of −1.7Å
−1

in vacuum [208].

Multiple tunneling pathways may be constructed through the structurally-complex

protein environment. The task of finding the optimal “donor to acceptor” pathway is

mathematically equivalent to solving the graph-theoretic “shortest path” problem on a

weighted, complete graph. For system comprising a configuration of bridging orbitals,

there will be a combinatorial number Nε of possible decay factors forming the set {εn}

where n = 1 . . . Nε. In the tunneling-pathway model, the largest term in the set is

taken as the decay factor representing the entire configuration (i.e., εDA = max{εn}).

According to the pathway model, the single strongest pathway determines the magnitude

of the coupling and all other pathways are neglected.

The pathway model achieves simplicity at the cost of ignoring possible interference ef-

fects between multiple pathways. Thus, the model can be expected to provide an accurate

measure of the coupling strength when a single pathway (or a collection of equally-strong,

constructively-interfering pathways) dominates over all of the other possible pathways in

terms of the magnitude of its coupling strength. The model fails to describe the coupling

for molecular configurations with multiple interfering pathways of comparable ampli-

tude and non-uniform phase. Despite this limitation, the tunneling-pathway model has

accurately predicted coupling decay factors for a variety of ruthenated proteins [208].

7.1.4 The Packing Density Model

During the 1990s, Christopher Moser, Leslie Dutton and coworkers suggested that the

Beratan and coworkers’ pathway formulation might be further simplified [202, 203]. Not-

ing that the logarithms of ET rates decay roughly linearly with respect to donor-acceptor

separation across a wide variety of biological and semi-synthetic systems, Dutton et al. hy-

pothesized that biological ET couplings might be modeled entirely in terms of the distance
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between the donor and acceptor cofactors [202]. Dutton et al. later expanded this model

to include as a variable the overall structural density of the intervening medium [203].

The packing density model assumes that the transfer medium may be treated as

an inhomogeneous dielectric medium, taking a density-weighted average between the

(optimal) coupling amplitude of a covalently-bridged ET (β ≈ 0.9Å) with that of vacuum-

mediated transfer (β ≈ 2.8Å). Thus, the decay constant in eq. (7.4) is taken as

εDA(r) = e−[0.45ρ+1.4(1−ρ)](rDA−3.8Å)/Å, (7.9)

where rDA is the donor-acceptor distance, and the density 0 ≤ ρ ≤ 1 is explicitly defined

as “the fraction of the volume between redox cofactors that is within the united van der

Waals radius of intervening atoms” [203]. The packing density model gives good agree-

ment with experimentally measured electron transfer rates for numerous physiologically

significant reactions [203], but is known to fail for certain specific ET systems [209].

7.1.5 Ab Initio Models

Ab initio calculations of the transfer integral TDA can be used to verify the accuracy of

semi-empirical estimates, and can help clarify the cause of anomalous results in cases

where experiment is not in agreement with the semi-empirical prediction. Empirical dis-

agreement with the packing density model may be expected when the heterogeneity of

the ET medium promotes virtual charge transfer along a non-geodesic pathway connect-

ing the donor to the acceptor cofactor [209]. Empirical disagreements with the pathway

model are expected when the magnitude of TDA depends strongly on multi-pathway in-

terference effects [51]. In cases where multi-pathway interferences play a role and the

nuclear configuration is static on the timescale of ET, the transfer integral TDA can be

calculated using a self-consistent field (SCF) theory, such as Hartree-Fock theory [75],

extended Hückel theory [210, 211], or density functional theory (DFT) [212].
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Models of TDA that use a static treatment for the nuclei will fail when non-Condon

effects couple electronic degrees of freedom to nuclear degrees of freedom during the ET

event [84, 213, 211]. When the Condon approximation breaks down, TDA can still be

calculated using time-dependent operator techniques that take vibronic resonances and

dephasing into account. For example, non-Condon models of ET are crucial to models

of olfaction based on phonon-assisted tunneling [214, 215]. When inelastic electronic

tunneling becomes a significant factor determining TDA, the primary ET mechanism can

change from superexchange to resonant tunneling to sequential thermal hopping [51].

7.2 The Marcus Equation

The rate kET of a nonadiabatic electron transfer reaction is derived as the transition rate

for a thermal ensemble using “Fermi’s Golden Rule” such that it takes on the familiar

form [76, 216],

kET =
2π

~
|TDA|2 %FC, (7.10)

where the Franck-Condon weighted-density of states %FC describes the probability that

the ET system is “activated” to achieve degeneracy between the reactant and product

states. Rudolph Marcus has derived a formal expression for the factor %FC, as it applies to

nonadiabatic ET reactions, and the “Marcus equation” is now commonly used to predict

nonadiabatic ET reaction rate-constants [86, 217],

kET =
2π

~
|TDA|2

1√
4πλkBT

e−(∆G◦+λ)2/4λkBT . (7.11)

In eq. (7.11), kET denotes the molecular electron transfer rate, ~ is the reduced

Planck constant, kB is Boltzmann’s constant, T is the reaction temperature, TDA is the

superexchange-mediated electronic transition integral [211], ∆G◦ is the standard Gibbs

free energy of product formation [218], and λ is the so-called “reorganization free en-
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ergy” [86]. Corresponding with eq. (7.10), the factors following after |TDA|2 in eq. (7.11)

are collectively called the “Franck-Condon factor.”

Reaction Coordinate

E
n

er
g

y

2|HDA|

∆G0

λ

|D−+A〉 |D+A−〉

Figure 7.1: Diagram shows the Marcus reactant (“|D−+A〉”) and product (“|D+A−〉”)
diabatic energy surfaces, approximated as a pair of identical one-dimensional harmonic
wells (dashed curves). The wells are superimposed on the hybrid adiabatic surfaces
(solid curves) to show the energy gap at the crossing point. I calculated the curves using
MATLABTM with the generic parameters −∆G◦ = 5|HDA| and λ = 25|HDA|, where
|HDA| provides the lowest order contribution to |TDA| in eq. (7.11).

According to eq. (7.11), the Gibbs free energy ∆G◦ and the reorganization free en-

ergy λ jointly control the probability that the reactant and product redox states reach

a resonant configuration. By definition, reactant-product resonance occurs as thermal

fluctuations render the energies of the reactant and product states degenerate. When

applied to biological reactions, the few parameters contained in eq. (7.11) can conceal a

wealth of underlying kinetic complexity. Empirical studies reveal that minor structural
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variations in the reactants can produce major variations in the reaction parameters [219].

In some cases, these variations so severely alter the kinetic mechanism of an ET reaction

that eq. (7.11) ceases to accurately describe it [14].

It is established that “protein structures tune thermodynamic properties and elec-

tronic coupling interactions to facilitate” electron transfer reactions [192]. However, it

is not yet clear how this is accomplished in metabolic ET systems. Studies of pseudo-

biological ET reactions (in Ru-modified proteins, for example) do not capture the nuances

of metabolic ET reactions. It follows that the fundamental challenge facing nonadiabatic

redox enzymology today is to determine how structural and environmental features con-

trol the parameters comprising eq. (7.11), and hence to identify how biological systems

modulate these features to regulate the energetic resonances that determine redox reac-

tion rates.

7.3 Complexity of Electron Transfer Kinetics

Living organisms respond to their environments and regulate their bodies [19]. The high

sensitivity of reaction rates to modest structural or environmental variations enables a

subtlety of control that makes homeostatic regulation viable.

For example, if the dominant mechanism effecting a reaction depends on the ionic con-

tent of the surrounding aqueous environment, the change in the reaction mechanism that

accompanies a change in the local ionicity can provide an essential form of homeostatic

feedback, allowing an organism to respond to and rapidly-counteract potentially-deadly

fluctuations in its internal biochemistry [220]. When the ET reaction rate is modulated

by an independent non-ET reaction or conformational change, additional parameters be-

come necessary to predict the reaction rate. A number of other kinetic models have been

developed to treat kinetically-complex ET reactions [219, 220, 221, 222, 223, 224, 225].
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7.3.1 True Electron Transfer Reactions

The rates of “true” ET reactions, as already mentioned, are limited by the kinetics of

the ET “event” itself. According to the Marcus Theory of ET [86, 217], a nonadiabatic

ET event comprises two concomitant processes:

1. The translation of the nuclei from the electrostatic equilibrium conformation that

immediately precedes ET to an “activated” conformation satisfying the condition

of reactant-product degeneracy (according to the Franck-Condon Principle [84]).

2. The nonadiabatic quantum transition of the electronic subsystem from its reactant

configuration to its product configuration.

Following ET, the system relaxes to the equilibrium configuration of the products.

Experimenters characterize the rates of biological ET reactions using the semi-empirical

form of the Marcus equation,

kET ≈ k◦ e
−β(r−r◦) e−(∆G◦+λ)2/4λRT . (7.12)

In eq. (7.12), kET is the same molecular rate as that given by eq. (7.11), k◦ is the

characteristic frequency of the nuclei usually taken to be about 1013 s−1 [86, 14], r◦ is

defined to be the distance between the redox cofactors at which the activationless ET

rate equals k◦ [86], r is the actual distance between the redox cofactors, and β is an

empirically determined tunnelling decay factor [192, 86] as described in Section 7.1.2,

and R is the ideal gas constant. Given values for the other parameters in eq. (7.12),

estimates of the reaction coupling matrix element |TDA| can be obtained by comparing

eq. (7.12) directly with eq. (7.11).

Biological reactions are often highly complex, and multiple non-ET steps may be

necessary to optimize a biochemical redox complex after binding but prior to the ET

event [14]. These non-ET steps may include protein-protein interactions, conformational
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rearrangements, and other chemical reactions such as proton transfers [221]. However, if

the forward rate constant kx associated with a requisite non-ET step x is much faster than

the ET rate constant kET, and also faster than the corresponding reverse rate constant

k−x, then these non-ET steps will not contribute to λ and the observed reaction rate will

be kobs ≈ kET [226]; kinetically complex reactions of this type are also categorized as

“true” ET reactions [63, 220, 221, 219].

7.3.2 Kinetically Gated Electron Transfer Reactions

An ET reaction is classified as “gated” when the ET event itself is preceded by a much

slower adiabatic reaction step x that is necessary to activate the redox complex for

ET [63, 219, 220, 221]. The step x may represent a chemical reaction or a reorganization

of the nuclear configuration. Because the rate constant kx describing the reaction step

x is much slower than the ET rate itself (kx � kET), x becomes the rate-determining

step such that kobs ≈ kx. The experimentally-observed adiabatic reaction rate may be

plotted using parameters derived from transition state theory, where the rate constant

is determined by the adiabatic Gibbs free energy of activation ∆G‡x and given by the

Eyring equation [227],

kx =
kBT

2π~
e−∆G‡x/kBT . (7.13)

Gating effects can accelerate the rates of otherwise-slow ET reactions [220], by con-

trolling the ambient chemical conditions prior to the ET event. Davidson has observed

that chemical gating effects can introduce regulatory mechanisms into metabolic ET

systems [220]:

Chemical gating allows the rate of an ET process to be controlled by con-

centrations of specific metabolites, effector molecules, or pH. By having large

differences in rates of the slow ungated true ET, and the very rapid gated

ET, flow of electrons through the system may be effectively regulated.
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A gated ET reaction may be empirically distinguished from a true ET reaction by

analyzing the ET reaction’s rate-dependence with respect to ∆G◦ and T . The rate

constant for a gated reaction will not depend predictably on ∆G◦, because the reaction

step x is “not being driven by the redox potential difference between the reactants” and

products [226]. When the temperature-dependence of the rate constant of a gated ET

reaction is analyzed, the values obtained for |TDA| and λ will likewise be unrelated to

the properties of the ET complex [226]. Fitted values of |TDA| will likely exceed the

“adiabatic limit” of 80 cm−1 [226, 220], and λ will likely fail to corroborate the relevant

structural and dielectric properties of the system.

7.3.3 Kinetically Coupled Electron Transfer Reactions

“Kinetically coupled” ET occurs when a nonadiabatic ET event is preceded by a nec-

essary, independent reaction step x that is fast compared to the ET reaction itself

(kx � kET ) but kinetically unfavourable (kx � k−x) [221, 220, 219, 63]. Because the

forward reaction rate kx is much slower than the back reaction rate k−x, the equilibrium

constant Kx defined by kx and k−x obeys Kx � 1. As a result, the net probability of the

ET event depends on the relative probability Kx [221, 220, 219, 63], such that

kobs ≈ Kx · kET. (7.14)

Coupled ET reactions are markedly difficult to distinguish from true ET reactions,

because the reaction rate constant of a coupled ET reaction still depends on eq. (7.11)

via eq. (7.14). If kobs is naively equated to eq. (7.11) in order to analyze a kinetically

coupled ET reaction, distorted estimates of λ and |TDA| will be obtained because of

the attenuating effect of Kx on the reaction rate. The enthalpy ∆Hx and entropy ∆Sx

associated with Kx obey the equilibrium relationship [222],

lnKx = −∆Hx

kBT
+

∆Sx
kB

. (7.15)
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If the reaction free energy ∆G◦ of a kinetically-coupled reaction is varied at constant

temperature in order to determine λ and |TDA|, a correct value of λ will be obtained but

the apparent value of |TDA| will be less than the true value [222]. If T is varied instead,

the apparent value of λ will exceed the actual value, increasing with the magnitude of

∆Hx; the apparent value of |TDA| will scale monotonically with the magnitude and sign of

∆Sx [222]. The most conclusive confirmation of the kinetic coupling in an ET reaction is

obtained by combining these thermodynamic analyses with the relevant complementary

empirical techniques [226].

7.3.4 Dynamic Docking

Inspired by the experimental confirmation that multiple bound protein conformations

can affect the rates of interprotein ET reactions [223], Hoffman and coworkers developed

a “dynamic docking” model of biological ET kinetics [224, 225]. The dynamic docking

model expands upon the standard Marcus picture of ET (Fig. 7.1) by defining multiple

pre-ET and ET-active conformations in phase space. The equilibrium constant for each

pre-ET (electrostatic equilibrium) conformation i is defined to be Ki
x = kix/k

i
−x [224]. It

also represents a generalization of Davidson and coworkers’ “gated/coupled” framework

that includes multiple ET and conformational rate constants, respectively defined by the

sets {kiET} and {kix, ki−x} [223, 224, 225]. By construction, the microscopic coordinates

described by {kix} are all orthogonal to those described by {kiET}. Within this dynamic

docking framework, the observed ET rate constant kobs becomes [225],

kobs =
∑

i

kiET

kix
ki−x + kiET

(7.16)

Notice that eq. (7.16) reduce to kobs ≈
∑

i k
i
x in the limit where kET � kix and kET �

ki−x, which is consistent with the concept of “gated” ET. In the opposite limit, where

kET � kix � ki−x, we find kobs ≈
∑

iK
i
x×kiET, making this model conceptually consistent



100

with “coupled” ET [14, 225]. Hoffman and coworkers’s dynamic docking framework

naturally accommodates a wide range of conformationally-distinct reaction mechanisms,

making it particularly suitable to biological ET reactions that exhibit high degrees of

kinetic complexity. Hoffman et al. [223] have mused that,

It is intriguing to speculate that some physiological protein–protein electron-

transfer processes might be tuned or even switched on/off by reversible protein

surface modifications, which are well-known to play an important role in

regulating protein–protein recognition events in living systems.

The dynamic docking model introduces an important distinction between the binding

of the protein-protein complex itself (described by Kd), and the docking of the bound

complex into its ET-active conformers.

7.3.5 Non-Condon Effects

As exhibited by eq. (7.11), Marcus theory assumes only a single value for the transition

element |TDA| that couples the reactant and product electronic states. The assumption

that “the dependence of the electric dipole matrix elements on the nuclear positions”

may be neglected is called the “Condon approximation” [84]. This assumption is valid

for ET activation that can be modelled by a low-order perturbation of the energy of a

single nuclear equilibrium conformation, as it is by Marcus Theory.

When the Condon approximation breaks down, Marcus Theory can be recovered in

a piecemeal fashion according to the dynamic docking model, if each distinct value of

|TDA| corresponds to the activation of a distinct electrostatic equilibrium conformation

of the nuclei. If this is not the case, and the value of |TDA| varies widely even in the

vicinity of a local minimum on the Born-Oppenheimer electronic potential surface, then

Marcus Theory cannot be recovered by either the kinetic coupling or the dynamic docking

framework.
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7.4 Enzymatic Electron Transfer

Studies of metabolism in single-celled organisms allow for a high degree of experimen-

tal precision, because these organisms can be cultured under tightly-controlled living

conditions to allow for in-depth studies of specific chemical reaction pathways during

metabolism. Site-directed mutagenesis studies allow the consequences of in vitro struc-

tural changes performed on bacterial enzymes to be explored in vivo. Discoveries made

during studies of the electron transfer reactions of bacterial respiration are broadly ap-

plicable across biology, because all known forms of life use electron transfer to convert

energy from their surroundings into metabolic energy.

7.4.1 Copper Enzymes

Copper-containing enzymes play multiple roles in living systems. They are crucial for

respiration, photosynthesis and efficient metabolism throughout the “tree of life” [63].

The atomic copper centres contained in these proteins are involved in many chemi-

cal functions, including electron transport, molecular oxygen transport, and enzymatic

oxidation-reduction reactions [63].

Copper-containing proteins are categorized numerically by the “types” of “copper

centres” that they contain. A copper centre is defined by the geometrical arrangement of

the molecules (“ligands”) bonded to the central copper atom(s), coordinating the atomic

position(s) inside the protein [228]. The ligands of “Type I” copper centres have tetrahe-

dral or bipyramidal geometries (see, for example, Fig. 7.2), and these copper centres are

found primarily in plants and bacteria [63]. “Type II” copper centres have square planar

ligand geometries and predominate in fungi and animals [63]. “Type III” copper centres

contain a pair of twinned copper atoms each coordinated by three (histidine) ligands,

and these are also found in fungi and animals [63]. Proteins containing multiple types of

copper centres are common [63].
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“Type I” copper proteins, called “cupredoxins” [63], function primarily as ET medi-

ators during bacterial and plant respiration [229]. They have been studied extensively

“as model systems for protein electron transfer reactions” [63]. A cupredoxin makes an

ideal research prototype, because its relatively small size (10–14 kDa [230]) and single

metallo-atomic centre limit the potential for experimental confounds. Because many

cupredoxins have a bacterial origin, they are straightforward to synthesize biologically

using bacterial cultures, natively or in a genetically-engineered host. Several cupredoxins

are well-characterized, structurally, kinetically, and thermodynamically [63]. Thorough

characterization is particularly important for the determination of the structural origins

of functional variations, among native cupredoxins as well as their mutagenic variants.

7.4.2 Cupredoxin Structure

The cupredoxin copper centre contains a single copper atom that is strongly coordinated

by a trigonal-planar arrangement of ligands comprising a cysteine and two histidine

residues [63, 229]. One or two axial ligands sometimes complement this arrangement

to form a trigonal-pyramidal or -bipyramidal geometry. This coordination geometry is

not optimal for either the Cu+1 or the Cu+2 redox state, and it does not change signifi-

cantly upon the transition of one redox state to the other [63, 229]. This characteristic

helps minimize the cupredoxin’s “inner-sphere” (i.e., ligand) reorganization energy [229].

Cupredoxins also share in common the presence of a hydrophobic patch around the active

site [230] to help ensure binding affinity with redox partners [231, 230].

Cupredoxins are also commonly referred to as “blue copper proteins” because they

exhibit an unusual ligand-to-metal charge transfer transition near 600 nm in their Cu+2

form [86, 229]. Secondary and tertiary protein structure is generally well-preserved across

the blue copper proteins, which all share a similar folded structure of roughly eight bun-

dled β-strands [63]. Despite their simple and well-conserved structures, copper-containing
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proteins of the Type I family are generally not functionally interchangeable, and subtle

structural alterations can lead to dramatic shifts in functionality [219]. Their functional

sensitivity to structural variations, along with their accessible in vitro redox chemistry,

make blue copper proteins exemplary prototypes to use in investigations of the factors

that enforce efficient molecular recognition [232] in biological redox systems.

7.4.3 Methylamine Metabolism in Paracocous denitrificans

The cupredoxin amicyanin is essential to the bacterium Paracocous denitrificans’ ability

to metabolize methylamine as a food source. Gene-replacement experiments have shown

that P. denitrificans loses its ability to survive on an exclusive diet of methylamine after

losing the ability to synthesize amicyanin [54]. The amicyanin redox cycle affords an

important empirical control in the study of cellular respiration, because it has been iden-

tified as critical metabolic bottleneck during methylamine digestion by P. denitrificans.

P. denitrificans does not use amicyanin to oxidize methylamine directly. Instead,

methylamine is oxidized by the globular protein methylamine dehydrogenase (MADH),

which in turn donates the absorbed electron to amicyanin. Amicyanin is then oxidized by

a cytochrome molecule as the electron continues down its pathway through the electron

transport chain, ultimately driving the production of adenosine triphosphate (ATP).

The active site of MADH is a tryptophan tryptophylquinone (TTQ) prosthetic group

comprising a pair of posttranslationally-modified tryptophan residues from the protein’s

“light” β-subunit [233, 47], located at the amicyanin-binding site. Residues tryptophan

57 (Trp57) and tryptophan 108 (Trp108) of the β-subunit of MADH have covalently-

linked indole groups; the benzene ring of Trp57 is linked to the benzene ring of Trp108 [55].

Additionally, in the TTQ’s fully-oxidized (“O-quinone”) state, the two adjacent carbon

atoms of the Trp57 benzene ring are carbonylated to form a dione edge at the location

where methylamine (or dithionite) oxidation actually occurs (Fig. 7.3) [55].
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Amicyanin’s copper centre is spatially coordinated by a distorted tetrahedral arrange-

ment of ligands consisting of a methionine, a cysteine, and two histidines (Fig. 7.2) [63].

Like that of other cupredoxins, this coordination geometry is intermediate between the

electronic orbital geometries preferred by the Cu+1 and Cu+2 redox states [63]. Seven

amino acid residues surround the histidine 95 (His95) ligand of the active copper site on

the surface of amicyanin. These seven residues form a hydrophobic patch comprising me-

thionine 28 (Met28), methionine 51 (Met51), proline 52 (Pro52), methionine 71 (Met71),

proline 94 (Pro94), proline 96 (Pro96), and phenylalanine 97 (Phe97) [55, 63, 234]. These

residues comprise a major portion (∼60%) of the binding interface at which MADH at-

taches itself in crystals of the binary [55] and ternary [47] complexes.

Figure 7.2: Amicyanin’s copper centre is coordinated by His53, His95, Met98 and Cys92.
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Figure 7.3: MADH’s TTQ cofactor comprises Trp57 and Trp108.

The binary and ternary crystal structures corroboratively provide a good model for

the structure of the redox complex in solution [235, 236]. In solution, the MADH–

amicyanin redox complex (Fig. 7.4) is stabilized by hydrophobic and ionic interactions

in a predictable way that is consistent with the known crystal structures [234, 237].

Amicyanin has also been demonstrated to be catalytically competent to transfer electrons

from MADH to cytochrome c551i in crystalline form [238, 239]. The question of whether

amicyanin transfers electrons from MADH to cytochrome c551i during the formation of

a ternary complex [63] or by way of a shuttle (“ping-pong”) mechanism [236] during

metabolism remains an ongoing topic of debate.
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Figure 7.4: The complex of amicyanin (cyan) and MADH (tan) is shown graphically using
a ribbon motif generated using VMD. The active site of each complex is also depicted
using a colour-coded ball-and-stick representation, where hydrogen atoms are shown in
white, carbon in light blue, nitrogen in dark blue, oxygen in red, sulphur in yellow, and
copper in green.

7.4.4 True Electron Transfer from MADH to Native Amicyanin

Throughout the 1980s and 1990s, Davidson and coworkers performed extensive kinetic

and thermodynamic studies to characterize electron transfer between various reduced

forms of MADH, amicyanin, and cytochrome c [227, 235, 238, 240, 241, 242, 243, 244].

These studies revealed the oxidation of amine-reduced (“N-quinol”) MADH by amicyanin

to be a catalytically-gated ET reaction (rate-limited by an adiabatic proton transfer

step), Davidson ultimately concluded that oxidation of dithionite-reduced (“O-quinol”)

MADH by amicyanin to be a “true” ET reaction with an “unusually large” reorgani-

zation energy [235]. On the other hand, Davidson and his colleagues determined that

the oxidation of dithionite-reduced (“O-quinol”) MADH by amicyanin was a “true” ET
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reaction with a rate predicted by the Marcus equation, summarizing their perspective

neatly in a follow-up article [245],

In the case of the reaction between O-quinol MADH and amicyanin, it was

proven that this is a true ET reaction by demonstrating that the same λ

value was obtained from both temperature and ∆G◦ dependence studies of

the reaction rate (10). This would not be expected for a coupled ET reac-

tion (14). Furthermore, mutations at the MADH–amicyanin interface that

affected binding had no effect on the λ for the ET reaction from TTQ to

copper (15). Thus, the large λ for this reaction is not believed to be due to

kinetic complexity.1

This result is surprising, because the “unusually large” value of λ = 2.3 eV needed

to model ET from O-quinol MADH to amicyanin using Marcus Theory was previously

suggested to be due to an extra “conformational” reaction step rate-limiting the ET re-

action [235], and the studies that confirmed the status of ET from O-quinol MADH to

amicyanin as a “true” ET reaction gave no indication as to why the reaction’s reorgani-

zation energy should be so much larger than other ET reactions of its kind.

7.4.5 Species-Specific Electron Transfer

Soluble charge-carrying proteins such as MADH and amicyanin must recognize [232] and

distinguish their predefined redox partners from everything else floating in the periplasmic

or cytoplasmic cellular space where they reside. The question of whether conformational

motions of the protein complex contribute to the unusually large reorganization energy

exhibited by the oxidation of MADH by amicyanin is related to the issue of “species-

specific” electron transfer.

1Quoted references (10), (14), and (15) correspond respectively to references [246], [222], and [244].
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A striking example of species-specific ET is evident in the comparison of the MADH–

amicyanin ET pair with the functionally-analogous AADH–azurin pair. Under metabolic

conditions, aromatic amine dehydrogenase (AADH) oxidizes alkylamines and donates

electrons to the cupredoxin azurin. MADH and AADH have similar structural and kinetic

properties, each possessing a TTQ redox cofactor at the redox interface [63]. Similar to

amicyanin, azurin is a cupredoxin made of eight β-strands and an α-helix. Azurin’s

Type 1 copper centre is coordinated by a trigonal bipyramindal structure consisting of

a cysteine, a methionine, and two histidine residues [63]. Despite structural similarities,

the MADH–amicyanin and AADH–azurin redox pairings are mutually exclusive. MADH

cannot transfer electrons to azurin and AADH cannot transfer electrons to amicyanin [63].

A number of factors can contribute to the partner-exclusivity exhibited by the MADH–

amicyanin and AADH–azurin pairs. For example, amicyanin is known to dock with

MADH at a different angle than azurin does with AADH. While both complexes are sta-

bilized by hydrophobic interactions, amicyanin’s docking configuration also involves at

least one ionic interaction that azurin’s does not [63, 234]. Amicyanin’s copper center is

coordinated by four ligands in a tetrahedral geometry, whereas azurin’s copper center is

coordinated by five ligands in a trigonal bipyramidal geometry. Both geometries contain

pairs of nitrogen and sulphur atoms that together form a tetrahedron, but azurin’s ge-

ometry includes an additional backbone carbonyl oxygen to provide a second axial ligand

to create the trigonal bipyramidal arrangement [63].

7.4.6 Proline 52 Mutation of Amicyanin

In a 2006 study performed under the direction of Victor Davidson, Ma and coworkers

sought to determine whether it would be possible to introduce the copper-binding geom-

etry of azurin into amicyanin—and if it did prove possible, to determine what effect this

geometrical change would have on amicyanin’s capacity to oxidize MADH [13].
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Amicyanin’s copper centre is coordinated by the two Nδ atoms of histidine 95 (His95)

and histidine 53 (His53) residues, as well as the sulphur atoms of cysteine 92 (Cys92) and

methionine 98 (Met98). A nearby proline 52 (Pro52) residue is situated so that it could

provide an additional carbonyl oxygen ligand to form a trigonal bipyramidal geometry

like azurin’s, except that the carbonyl oxygen of Pro52 is oriented away from the copper

center rather than towards it [13]. In azurin, the axial carbonyl oxygen ligand is provided

by a glycine residue that is oriented properly in order to bind to the copper center.

Ma and coworkers hence carried out a “P52G” mutation on amicyanin, replacing

Pro52 with glycine, in the hope of reproducing an azurin-like ligand geometry in ami-

cyanin [13]. The P52G mutation failed to produce its intended effect, as it generated “no

structural rearrangement that would allow the carbonyl oxygen of Pro52 to form a fifth

ligand to the copper atom” [13]. However, the P52G mutation did generate a number of

other unanticipated effects of interest:

Changed ET Kinetics.—Most significantly, Ma et al. found that “the mutation of

Pro52 alters the positions of residues that are involved in protein–protein interactions

within the ET protein complex with MADH and consequently alters the kinetic mech-

anisms of the ET reactions from MADH to amicyanin” [13]. The oxidation-rate of O-

quinol MADH by P52G amicyanin was fit to the Marcus equation with parameters of

∆G◦ = −4.8 kJ/mol, λ = 2.8± 0.1 eV, and |TDA|/hc = 78± 34 cm−1 [13]. These param-

eters “do not likely describe a true ET reaction” [13]. The remarkably-large apparent

value of |TDA|, in particular, corresponds to a donor–acceptor separation distance of

6.0 ± 0.9 Å [13], about two-thirds of the structurally-realistic distance obtained from a

Marcus analysis of the ET rate from O-quinol MADH to native amicyanin. Steric restric-

tions prevent the donor and acceptor cofactors from coming this close together without

severely deforming (e.g., squishing) the equilibrium complex structure [13], a possibility

unaccounted for by either Marcus Theory or classical MD force fields.
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Neglecting the possibility of a “squished” ET-active conformation, Ma et al. concluded

that the large apparent value of the matrix element obtained for the O-quinol/P52G

reaction instead indicated that the reaction had become conformationally gated. They

came to this conclusion after comparing the O-quinol and N-quinol reaction rates, based

on the marked loss of salt-dependence of the N-quinol reaction and the additional fact

that the “rates of the reactions of P52G amicyanin with the O-quinol and N-quinol are

essentially identical in a 10 mM phosphate buffer” [13]. They reasoned that the identical

rates of the O-quinol and N-quinol reactions must be indicative of a single rate-limiting

step governing both reactions [13].

Changed Equilibrium Constants.—Ma et al. found that the equilibrium dissociation

constant for the O-quinol reaction increased from Kd = 4.5 ± 0.5µM (native) to Kd =

38±12µM (P52G), a finding that “supports the notion that the protein–protein interface

has been perturbed” [13]. Ma and coworkers also found that the magnitude of the

standard Gibbs free energy of the O-quinol reaction increased by more than fifty percent,

from ∆G◦ = −3.2 kJ/mol (native) to ∆G◦ = −4.8 kJ/mol (P52G) [13]. This dramatic

increase in the reaction’s driving force was not attributed to any change in the electronic

properties of the copper centre, and instead it was attributed to a shift in the acid

dissociation constant Ka of P52G amicyanin towards a more acidic value [13].

Changed Crystal Structures.—Ma et al. obtained the crystal structure of oxidized

P52G amicyanin at a resolution of 1.25 Å and the crystal structure of reduced P52G

amicyanin at 0.92 Å. Although the structural differences between native and P52G ami-

cyanin crystal structures are relatively minor, Ma et al. were unable to crystallize P52G

amicyanin in complex with MADH [13]. In both the oxidized and reduced forms of crys-

tallized amicyanin, the largest deviation from the structure of the native backbone was

found in a “very flexible” loop segment comprising residues 18 through 20 [13]. These

residues make up a flexible loop that is far removed from the copper site and does not
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participate in binding to MADH. Excluding these three residues, the root-mean-square

deviation of the positions of the oxidized P52G mutant’s remaining 102 α-carbons (with

respect to those of the native) is 0.42 Å, while the reduced P52G mutant’s is 0.27 Å [13].

Ma et al. attributed the failure of P52G amicyanin to crystallize in complex with

MADH to a weakening of the hydrophobic interactions between the two proteins [13]. In

native amicyanin, Pro52 contributes three carbon atoms to the hydrophobic patch that

stabilizes complex formation with MADH [13]. Simulations indicated that the surface

area of amicyanin “buried” in the complex is reduced from 783 Å
2

to 764 Å
2

due to the

P52G mutation, while MADH’s buried surface area is reduced from 725 Å
2

to 710 Å
2

[13].

Ma et al. found notable differences between the positions of the methionine 51 residue

in the crystal structures of native amicyanin in complex, native amicyanin in isolation,

oxidized P52G amicyanin, and reduced P52G amicyanin. In particular, significant differ-

ences were found in the position of atom Cε of amicyanin methionine 51, reflecting the

possibility of altered interactions with MADH β Val56 [13]. This change in the position of

the side chain of Met51 “eliminated the contacts with the side chain of β Val58 of MADH

that are seen in the structure of the complex of native amicyanin with MADH” [14].

7.4.7 Methionine 51 Mutations of Amicyanin

In order to distinguish the effect of the reorientation of the Met51 residue from the effect

of the loss of the three carbon atoms from Pro52, Ma et al. devised a new set of site-

directed mutagenesis experiments. By replacing amicyanin’s Met51 with each of alanine

(Ala), lysine (Lys), and leucine (Leu), Ma et al. generated three new mutant forms of

amicyanin, denoted M51A, M51K, and M51L respectively [14].

Ma et al. found that the values of Kd for mutant amicyanin in complex with MADH

were consistent with those of native amicyanin, while the kinetics of ET from MADH to
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the Met51 mutants were anomalous. They reached the following conclusion [14]:

These data indicate that the loss of the interactions involving Pro52 were

primarily responsible for the change in Kd for P52G amicyanin, while the

interactions involving the Met51 side chain are entirely responsible for the

change in ET parameters and conversion of the true ET reaction of native

amicyanin into a conformationally gated ET reaction.

Ma and coworkers chose to mutate methionine 51 into alanine (“M51A”) in order to

mimic the loss of the interaction of amicyanin Met51 with MADH β valine 58 (Val58)

that was observed during the P52G experiments [14]. Ma et al. also performed two ad-

ditional experiments, mutating Met51 into lysine (“M51K”) and also Met51 into leucine

(“M51L”), in order “to provide further insight into the mechanism of this regulation” [14].

Crystal Structure of M51A amicyanin.—Ma et al. obtained the crystal structures of

the oxidized and reduced forms of M51A amicyanin at resolutions of 0.89 Å and 0.90 Å,

respectively [14]. Ma et al. catalogued several differences between the mutant and na-

tive crystal structures [14], but none of them were especially substantial or obviously

consequential. The root-mean-square deviations of the α-carbons of the relatively-rigid

84-residue chain constituting the main body of amicyanin (residues 22-105) ranged from

0.1 Å to 0.3 Å for pairwise comparisons of the native, oxidized P52G, and oxidized M51A

crystals—a small fraction of the resolution of the structures themselves.

Both oxidized and reduced forms of M51A amicyanin exhibited alternate conforma-

tions of the side chain of Met71 [14]. On both of these structures, Met28 had been

modified by the addition of an oxygen atom to form a sulphoxide product [14]. The α-

carbons of M51A amicyanin’s patch residues Met28, Ala51, and Pro52 were all displaced

by more than 0.2 Å from their locations in native amicyanin [14]. The M51A mutation

alters the positions of amicyanin residues 26–28 to a greater degree than the P52G muta-

tion, with potential consequences to the binding-functionality of the hydrophobic patch
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as well as the free energy barrier of the ET event itself [14]. Any or all of these factors

may have contributed to Ma et al.’s failure to crystallize M51A amicyanin in complex

with MADH.

Equilibrium Constants.—The equilibrium dissociation constants of the M51A, M51K,

and M51L mutant complexes were respectively 6.8µM, 11µM, and 6.8µM, all of which

compare favourably to the native value of Kd = 4.9µM [14]. Variations in ∆G◦ were

also modest, as M51A, M51K, and M51L respectively produced values of −2.8 kJ/mol,

−3.4 kJ/mol, and −3.7 kJ/mol, compared to the native’s ∆G◦ = −3.2 kJ/mol [14]. These

findings indicate that the thermodynamic properties of the protein–protein complex in

solution were qualitatively unperturbed, absent considerations specifically-related to bio-

logical regulation. Having ruled out confounds resulting from different bulk chemical

properties of the native and mutant enzymes, Ma and coworkers were able to directly

investigate the subtle “logical structure” [15] of the molecular recognition process.

Reduction of N-quinol MADH by Met51 Mutant Amicyanins.—Electron transfer from

N-quinol MADH to native amicyanin is chemically gated by the deprotonation of the N-

quinol TTQ cofactor. The first-order rate constant of this reaction in solution depends

upon the salt concentration because the rate-limiting proton transfer requires the pres-

ence of a monovalent cation at the active site [247]. The reaction demonstrates a linear

dependence on the solution’s potassium chloride concentration up to 200 mM [14].

The reaction rates of N-quinol MADH with oxidized M51A, M51K, and M51L am-

icyanin are also salt-dependent, but to a much lesser extent [14]. The rate and the

salt-dependence of the M51A reaction is practically identically to that of the P52G re-

action up to a salt concentration of [KCl] = 200 mM [14], indicating that both of these

reactions share the same underlying kinetic mechanism. Both the M51A and M51K re-

action rates increase up to a KCl concentration of 200 mM and then plateau, whereas the

M51L reaction rate “exhibits a gradual hyperbolic increase that has not yet reached a
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plateau at a 200 mM KCl” [14]. The kinetics of the M51L reaction qualitatively resemble

those of the native reaction, whereas the M51A and P52G kinetics do not. The M51K

reaction kinetics fall in between those of M51L and M51A (see Fig. 4 of ref. [14]). These

finding demonstrate a remarkable advance for the controlled study of reaction kinetics—

by interchanging just one amino acid in the primary structure of amicyanin, Ma and

coworkers were able to incrementally reprogram the functional output of this enyzme.

Reduction of O-quinol MADH by Met51 Mutant Amicyanins.—Based on the values

of Kd and ∆G◦ obtained from equilibrium analyses of the oxidation of O-quinol MADH

by M51A amicyanin, it follows that “if ET from O-quinol MADH to M51A amicyanin

were also a true ET reaction, then kET should be only slightly less than that observed

for the reaction with native amicyanin” [14]. Instead, the observed value of the reaction

rate constant kobs of the M51A reaction was eight times smaller than that of the native

reaction [14]. The M51K and M51L mutant rate constants were also smaller than that

of the native reaction, but to a lesser extent [14]. When plotted against the solution

temperature, the observed reaction-rate constants kobs of the three mutants exhibited an

incremental loss of temperature-dependence qualitatively the same as the corresponding

loss of salt-dependence of the N-quinol reaction (compare Figs. 3 and 4 of Ref. [14]). Like-

wise, when plotted against the solution amicyanin-concentration, the net reaction-rate

constants knet exhibited the same incremental pattern again in their loss of amicyanin-

dependence (compare Fig. 2 to Figs. 3 and 4 in Ref. [14]).

The temperature-dependent reaction-rate constants exhibited some severe anomalies

when they were fit to the Marcus equation [14]. The nonequilibrium parameters derived

by Ma et al. from the fittings of native and mutant experimental data to eqs. (7.11) and

(7.12) are shown in Table 7.1. The values of |TDA| obtained from the fittings of the M51A

and M51K mutant rates were unreasonably large, widely exceeding the so-called “nona-

diabatic limit” [14]. Within the nonadiabatic limit |TDA|/hc � 80 cm−1, the reaction
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Marcus Parameters for the Oxidation of O-quinol MADH

Species λ (eV) |TDA| (hc/cm) r (Å)

Native 2.30± 0.10 12± 7 9.5± 0.8

P52G 2.80± 0.10 78± 30 6.0± 0.9

M51A 3.07± 0.03 142± 20 4.7± 0.3

M51K 3.00± 0.04 194± 40 4.1± 1.0

M51L 2.55± 0.10 23± 10 8.3± 0.4

Table 7.1: Marcus parameters taken from Refs. [13] and [14].

rate is limited by the weak electronic coupling and the rate constant is proportional to

2π|TDA|2/~ [62, 208]. In the opposite limit |TDA|/hc � 80 cm−1, the reaction becomes

“solvent-controlled” such that it is rate-limited by the adiabatic solvent reorganization

rate [62, 248]. Fitted values of |TDA|/hc on the order of 200 cm−1 unambiguously demon-

strate that eq. (7.11) is not appropriate to describe the M51A and M51K ET reactions.

Altered Kinetic Mechanisms.—Based on these collective findings, Ma et al. concluded

that the Met51 mutations altered the kinetic mechanisms of both the N-quinol and O-

quinol ET reactions, and that in each case both the P52G and M51A reactions had

become gated by the same rate-limiting step [13, 14]. The intermediate character of the

M51K and M51L reaction kinetics suggests that these reactions are also rate-limited by

the same kinetic step as the P52G and M51A reactions, although to a lesser degree such

that the M51K and M51L reactions are kinetically-coupled rather than gated [14]. In

regard to the character of the kinetic step in question, Ma et al. made the inference [14],

It is not obvious how the M51A mutation could introduce a new reaction

step as was suggested for the P52G mutation since the binding process seems

not to be perturbed. Therefore, it is likely that this mutation has slowed the

rate of an existing but previously unrecognized conformational rearrangement

that normally occurs in the native amicyanin-MADH complex subsequent to

binding and prior to ET.
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This finding appears as a contrast to Davidson and coworkers’ previous conclusion

that “the large λ for this reaction is not . . . due to kinetic complexity” [245]. Yet the

conclusion [245] that “the reaction between O-quinol MADH and amicyanin . . . is a true

ET reaction” stands unaffected, because it was derived empirically from the results of a

cumulative series of rigorous temperature- and ∆G◦-dependence studies [235, 243, 246],

without regard for the kinetic underpinnings of these quantities. Evidently, the “true”

character of the ET reaction of MADH with amicyanin belies an underlying kinetic

complexity, not explicitly accounted for by the Marcus equation (7.11).

7.5 Further Considerations

The MADH–amicyanin ET reaction exhibits other anomalous characteristics that cast

doubt on the adequacy of Marcus Theory to describe it. The thermodynamic reaction

coordinate used to derive Marcus Theory does not allow for the protein and solvent

molecules to undergo “their actual complicated coupled anharmonic motions” [86], and

instead is limited to a “dielectrically unsaturated” picture of the ET medium [217]. This

limitation creates a problem for the description of the reaction in terms of reactant

and product equilibrium states (i.e., the minima of Fig. 7.1), because the electrostatic

properties of amicyanin in complex with MADH differ from its equilibrium electrostatic

properties when free in solution.

The acidity of amicyanin (as quantified by its acid dissociation constant pKa) changes

dramatically upon binding to MADH [63]. This finding indicates that the docking of

MADH with amicyanin introduces a non-equilibrium constraint on amicyanin’s redox

potential, so that “over the physiologic range of pH, the Em value of free amicyanin

varies with pH, but the Em value of amicyanin in complex with MADH does not” [249].

The oxidation-reduction midpoint potential Em measures the average electrostatic po-
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tential of an oxidant in solution (against a standard hydrogen electrode) when half of its

concentration has been reduced.

Plots of oxidation-reduction midpoint value Em for free amicyanin and amicyanin

in-complex with MADH against pH do not cross [249], so the values of Em for complexed

amicyanin do not correspond to any of the values of free amicyanin within the physiolog-

ical range. The equilibrium nuclear conformation of oxidized free amicyanin resembles

the nuclear conformation of oxidized amicyanin in-complex with MADH [249], suggest-

ing that oxidized amicyanin in-solution provides a good electrostatic model for oxidized

amicyanin in-complex with MADH. The same is not true for its reduced form [249].

Davidson and coworkers had previously found that “the Em value of amicyanin

(+294 mV) is more positive than that of cytochrome c-551i (+190 mV)” [63, 250]. This

informs us that “when amicyanin is free in solution and interacts with the cytochrome,

the direction of electron transfer would be . . . the reverse of the physiological direc-

tion” [63]. On the other hand, the oxidation-reduction midpoint potential of amicyanin

in-complex with MADH is +221 mV [251], providing a situation much more favourable

for electron transfer to cytochrome [63]. This presents a curious situation [249]:

The pH dependencies of the Em values of amicyanin free and in complex with

MADH were dramatically different. The redox potential of free amicyanin

exhibited a clear dependence on pH, whereas the Em value of amicyanin in

complex was essentially independent of pH . . .

Reduced amicyanin’s docked state does not describe its undocked (bulk) equilib-

rium state, because amicyanin is sterically-constrained away from equilibrium when it

is docked in-complex with MADH [249]. Production of this nonequilibrium electrostatic

state presents an additional thermodynamic cost of complex formation that must be

taken into acount somewhere in the reaction description.
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Furthermore, the reduction of amicyanin in solution is accompanied by a bond-

breaking event at the His95 ligand of the copper active site. According to Marcus theory,

“no bonds are broken or formed” during an ET reaction [81]. The dissolution of the

His95 ligand and the resulting conformational transport of His95 from the inner sphere

to the outer sphere of the system defines a striking departure from the basic assumptions

of Marcus theory. However, when reduced amicyanin is in complex with MADH [249],

His 95 is prevented from dissociating from the copper coordination sphere

upon reduction, and the redox potential of amicyanin in complex remains

similar to that of free amicyanin at the highest values of pH, where it is

singly protonated and unflipped.

A high degree of underlying kinetic complexity of the MADH-amicyanin ET reaction is

indicated in the dramatically-altered kinetics of the Met51 mutation experiments, the

native reaction’s unusually large reorganization free energy, the non-equilibrium electro-

static state of the complex, and finally the explicit inner-sphere bond-breaking event.

Taken all together, the anomalous characteristics reveal a picture of an ET reac-

tion that is not likely to conform to the standard assumptions of Marcus Theory [86],

because the Marcus ET reaction coordinate does not account for the nontrivial thermo-

dynamic cost necessary to accomodate these complex effects [86]. The kinetic changes

due to the Met51 mutations do not appear relevant to the thermodynamic coordinate

used to describe complex association and dissociation (because Kd was not significantly

perturbed by mutations), so the reversible thermodynamic cost associated with all this

kinetic complexity must be accounted for along the empirically-motivated nonadiabatic

ET coordinate—even if the conditions used to ensure the reversibility of ET-activation

according to Marcus Theory are not met.
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Chapter 8

Water Bridges to Enhance Electron Transfer

It has become increasingly clear over the past two decades or so that water

is not simply “life’s solvent” but is indeed a matrix more akin to the one

Paracelsus envisaged: a substance that actively engages and interacts with

biomolecules in complex, subtle, and essential ways.

—Philip Ball, 2008 [46]

My six main contributions to the work described in Chapter 8 are summarized as follows:

1. I construct computational representations of hypothetical crystallographic structures

of mutant forms (M51L, M51K, M51A, M51C) of the bacterial blue copper enzyme

amicyanin, based on existing crystallographies (Section 8.2).

2. I initialize and run numerical implementions of Langevin dynamics of each of

these amicyanin mutants in complex with native amicyanin’s physiological reductant

methylamine dehydrogenase in aqueous solution (Section 8.3).

3. I carry out semi-empirical “tunneling pathway” and “packing density” calculations

to estimate the relative donor-acceptor electronic transition amplitudes exhibited by

the mutant redox complexes, identifying a pattern of reduced electronic coupling in

the experimentally-relevant mutant complexes (Section 8.4).

4. I perform extensive qualitative and quantitative analyses on the atomic coordinate

trajectories generated by these simulations, with regard to distinctions between the

interprotein solvent dynamics of the mutant complexes (Section 8.5).
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5. I demonstrate that the reduced electronic coupling exhibited by the simulated mutant

complexes is due to the disruption of the stability of an inteprotein “water bridge,”

numerically confirming a long-standing hypothesis (Section 8.6).

6. I hypothesize that the hydrophobic ring of amino acid residues surrounding am-

icyanin’s active ET site functions as a “molecular breakwater” that protects the

ET-mediating water bridge in the native protein complex (Section 8.7).

8.1 Introduction: Water-Bridged Electron Transfer

Contemporary studies have suggested that the geometric ordering of the intervening water

molecules between ET donor and acceptor cofactors may play a crucial role enabling or

disabling ET processes [51, 46]. Researchers became interested in the possibility that

the protein fold might organize solvent molecules in order to facilitate electron transfer

as early as 1994, when Chen and coworkers suggested that the presence of a particular

water molecule at the MADH–amicyanin ET interface might increase the interprotein

electronic tunneling rate by as much a factor of three [47].

In 2001, Tezcan et al. examined redox reactions in protein crystals, experimentally

demonstrating that “water-mediated hydrogen bonds are effective coupling elements for

tunneling across a protein–protein interface” [49]. Interest in solvent-mediated ET surged

after investigators in Judith Klinman’s laboratory concluded, based on kinetic isotope ex-

periments (and an aggregate of previous work) that the protein known as peptidylglycine

α-hydroxylating monooxygenase (PHM) most likely uses available solvent molecules to

generate a charge transfer conduit during the ET step of its enzymatic action [50].

Inspired by the conclusions of Klinman et al. [50] and motivated by other studies of en-

zymatic interprotein ET [49, 197, 58, 51], Aurélien de la Lande and coworkers performed

molecular dynamics (MD) simulations of the PHM enzyme and experimentally-relevant
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mutant forms of it [52]. As part of their study, they performed a tunneling pathway

analysis on the nuclear trajectories generated by these MD simulations in order to esti-

mate the donor-acceptor electronic couplings. They established a model of the electronic

coupling mechanism that depended on the presence of an inter-cofactor water bridge, and

showed that their model produced “good agreement between the experimentally deter-

mined relative maximum rate of the mutants and the predicted square of the electronic

couplings” [52]. Estimates of the magnitude of the electronic coupling were lower in

mutants with less stable water bridges. De la Lande and coworkers also identified key

amino acid residues involved in stabilizing the putative water bridges, lending credence

to a previous hypothesis by Lin et al. [51] that “enzymes could organize this kind of

water-mediated electron transfer” [52].

8.1.1 Simulation of Native MADH–Amicyanin Complex

Buoyed by the affirmative results of his numerical study of the PHM enzyme, de la

Lande selected the MADH–amicyanin metabolic redox pair as his next topic of inves-

tigation. Whereas PHM represents an example of solvent-mediated intraprotein ET,

the MADH–amicyanin pair represents a true interprotein ET reaction incorporating the

added subtlety and complexity of globular protein-protein recognition processes.

As the starting structure for this new set of MD simulations, de la Lande chose

the ternary crystal structure of MADH, amicyanin, and cytochrome c551i in-complex

(Brookhaven Protein Data Bank entry 2GC4), resolved at 1.9Å by X-ray crystallogra-

phy [252]. The crystal structure of the MADH-amicyanin-cytochrome-c551i had been

shown to be catalytically viable for amicyanin-mediated ET from MADH to cytochrome

c [238]. Furthermore, the orientation of MADH with respect to amicyanin in the ternary

complex is believed to be similar to that of the binary complex, uniformly across crys-

talline and solution phases [55, 236].
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After deleting the cytochrome-c551i from the simulated structure, de la Lande used the

Chemistry at HARvard Molecular Mechanics (CHARMM) software package to add hy-

drogen atoms (which were not resolved in the crystallography) to the simulated structure,

based on known equilibrium molecular geometries (via the “hbuild” command [253]). The

proteins’ histidine residues were monoprotonated consistent with the experimental pH

of 7.5 [14]. The hydrogen atoms were inserted at fixed bond lengths, and these lengths

remained fixed for the duration of the MD simulation. Protein-bonded hydrogen geome-

tries were solved at each time-step of the MD simulation using the “SHAKE” constraint

algorithm [254].

After introducing hydrogen atoms to the structure of the simulated protein complex,

de la Lande used an algorithm written by Lennart Nilsson of the Karolinska Institutet to

introduce water molecules in the form of a “water box” of dimensions 115 × 80 × 80 Å
3

surrounding the protein complex structure. The TIP3P potential function [255] was used

to parameterize the Coulomb and Lenard-Jones potential terms for the water molecules.

To model the protein and solvent interactions, de la Lande selected the “CHARMM27”

force field which is composed from the all-atom “CHARMM22” force field with cor-

rections to improve the accuracy of dihedral (angle) energy terms [256, 257]. The

CHARMM27 force field has been shown to produce good overall agreement with ex-

perimental (RMSD) data when simulating the native structure of folded proteins with

the TIP3P water model [257]. The CHARMM27 force field tends to over-estimate the

stability of the α-helices, making it suitable for simulating protein folding for α-helix

structures but not β-sheets [257]. The stability advantages of the CHARMM27 force field

made it the best available force field in 2007 when the simulations were performed [257].

The disadvantages of the force field, with respect to α-helix overstabilization and β-sheet

folding, would not be expected to produce deleterious effects because protein folding and

unfolding were not being simulated.
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The CHARMM27 force field parameter sets did not contain all the necessary infor-

mation regarding the TTQ cofactor of MADH or the copper center of amicyanin, making

it necessary to manually enter the force field parameters for these cofactors. Force field

parameters for the blue copper centre were adapted from a study employing density

functional theory calculations to develop general force field parameters for blue copper

proteins [258]. The Lennard-Jones parameters for the copper ion were ε = 0.05 kJmol and

σ = 2.13 Å [258]. The calculation of long-range (nonbonded) molecular interactions was

limited to a 12 Å radius, tapering off between 10 Å and 12 Å. This is the recommended

default setting for continuously cutting off computationally-costly long-range interactions

when using the CHARMM27 force field.

De la Lande next geometrically-optimized the system structure using 500 steps of a

steepest descent method followed by 1500 steps using an adopted basis Newton-Raphson

method. These optimization steps were implemented as a basic precaution in order to

eliminate the most energetically costly (and therefore unfavourable) interactions from the

starting structure for the simulation. He next added sodium ions in order to neutralize

the total charge of the solvated MADH-amicyanin complex. He then optimized the

system again by a further 1500 adopted basis Newton-Raphson steps. This optimization

procedure is typical for simulations of this type.

The MD simulations themselves were performed using Langevin dynamics as im-

plemented in CHARMM. During Langevin dynamics, the usual Newtonian equation of

motion for a particle of mass m at position ~x, given by m~̈x = −~∇V (~x), is augmented

by a damping term −γm~̇x, and a pseudo-random noise term
√

2γmkT ~R(t). The term

~R(t) simulates a stationary three-dimensional Gaussian process obeying 〈~R(t)〉 = ~0 and

〈~R(t)· ~R(t′)〉 = δ(t−t′), where δ(t−t′) is the Dirac delta distribution. Thus, the equation

of motion for each particle labeled i is given by

mi ~̈ix = −~∇V (~xi)− γmi ~̇ix +
√

2γmikBT ~Ri(t). (8.1)
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Langevin dynamics were chosen by de la Lande to ensure a constant temperature and

a thorough sampling of the nuclear phase space over the simulation duration. Langevin

dynamics have been described as “a method closely related to MD, as a potential tool for

conformational search” [259]. The time-dependent functional form of the stochastic tra-

jectory of nuclear coordinates generated by Langevin dynamics should not be confused

with the true time-dependent classical dynamics of a system of particles propagated

using Newton’s laws of motion. Rather, Langevin dynamics represent a method of con-

formational sampling intended to approximately reproduce the statistics of a canonical

ensemble in contact with a thermal reservoir at constant temperature. A friction coeffi-

cient of γ = 10 ps−1 and a temperature of T = 298 K were used to calibrate the Langevin

thermostat, ensuring canonical conditions with good temperature coupling [260].

De la Lande initialized and ran molecular dynamics simulations of the native MADH–

amicyanin complex for 41 ns of simulated time with these settings, with snapshots of

atomic coordinates saved once every 100 fs for the last 40 ns of simulation time. Nanosec-

onds timescale simulations of this kind have been recommended as optimal for Langevin

dynamics simulations of small peptides [259] with robust generalization to macromolec-

ular systems in solution at constant temperature [260]. No explicit boundary conditions

were imposed on the system during the simulation, so the protein/solvent system evolved

as a droplet floating in free space, without artifacts due to periodic boundary condtions.

8.2 Production of Mutant Amicyanin Structures

In this Section, I describe my construction of computational representations of four mu-

tant forms of the globular redox enzyme amicyanin.

Following experiment [14], I chose to replace amicyanin’s methionine 51 residue with

each of alanine, leucine, and lysine. As an additional selection, I carried out a fourth
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mutation to investigate the effect of replacing methionine 51 with a smaller cysteine

residue without eliminating the seemingly-relevant sulphur atom from the vicinity of

the 51 position of the amicyanin protein chain. I generated these mutant amicyanin

structures by loading the 2GC4 amicyanin PDB structure into the molecular pre- and

post-processing software package “Molden” [261], graphically selecting and deleting the

Met51 residue, replacing it with each mutant residue in turn, and saving the resulting

structure as a new PDB file.

8.3 Simulations of the Mutant Complexes

In this Section, I describe my initialization and production of numerical implementaions

of Langevin dynamics of the mutant complexes in solution.

I followed de la Lande’s system initialization and simulation procedure as described

in Section 8.1.1, replacing the native amicyanin structure with each mutant in turn.

I carried out these simulations using the CHARMM [56] molecular dynamics software

(version 33a), on parallel computing hardware provided by WestGrid (www.westgrid.ca)

and Compute Canada Calcul Canada (www.computecanada.ca).

8.4 Comparison of Pathway and Packing Density Models

In this Section, I describe the results of “pathway” and “packing density” calculations

that I carried out to estimate the relative electronic coupling strengths between native and

mutant electron transfer complexes.

The semiempirical pathway and packing density models of ET are presented in Sec-

tions 7.1.3 and 7.1.4 respectively. Both of these models rely on the calculation of the

inter-cofactor electronic transmission decay factor εDA, where the total transition am-
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M51L M51K M51A M51C
rmut
k (experiment) 0.68 0.49 0.13 —
rmut
ε (pathway) 0.47 0.36 0.57 0.76
rmut
ε (packing density) 0.36 0.42 0.62 2.29

Table 8.1: Native-to-mutant ratios describing the relationship between the experimental
ET rates (rmut

k = kmut
ET /k

nat
ET) [14] and the simulated decay factors (rmut

ε = ε̄mut/ε̄nat).

plitude TDA is a product of the “close-contact” transition amplitude T 0
DA and the decay

factor εDA, i.e., TDA = T 0
DA · εDA. In our case, where all of the native and mutant

complexes share the same donor and acceptor cofactors (in essentially the same orienta-

tions), it is adequate to compare only the decay factors in order to assess the change in

the electronic coupling strength induced by the mutations.

The algorithms that I used to carry out these calculations were implemented by

Jan Řezáč using a variant on the “Ruby” programming language (i.e., “Cuby3”) and

compiled for Unix-based operating systems. I carried out these calculations on the nuclear

coordinate trajectories using compiled versions of Řezáč’s code. Based on the results of

DFT calculations performed by Aurélien de la Lande, I selected the catechol ring of

MADH β Trp57 as the donor and the copper center of amicyanin as the acceptor.

I used the results of these calculations to estimate the mutant-to-native ratio rmut
ε

of the donor-acceptor decay factor where rmut
ε = ε̄mut/ε̄nat, and where ε̄mut and ε̄nat are

respectively the average decay factors computed from the mutant and native trajectories.

I found that all the experimentally-investigated mutant complexes exhibited decreased

electronic coupling compared to the native complex, according to both the pathway

and the packing density models (Table 8.1). Both the pathway and packing density

model calculations qualitatively reproduced the overall trend in reduced ET efficacy

demonstrated by the experimentally-relevant ET complexes. This finding is ambiguous

on its own, because it compares experimentally-determined rates to hypothetical decay

factors that do not account for reduced ET as a consequence of decreased ET activation
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via the Franck-Condon factor %FC. In order to interpret the meaning of the decreased ET

coupling predicted by simulations, with regard to the altered conformational dynamics

hypothesized by experimenters [14], it is necessary to consider the underlying mechanism.

The data presented in Table 8.1 are subject to statistical sampling errors due to the

finite size of the sampled data set (400 000 nuclear conformations). Classical sampling

theory allows for general conclusions about the characteristics of a population to be made

using a finite amount of sample data drawn from that population, according to the Central

Limit Theorem [262]. The “confidence interval” around the mean value of a finite set of

sampled data reflects the degree to which the statistician may be confident that mean

value of the sample reproduces the mean values of the actual population. The confidence

interval of a sampled data set is given by±σ/√nρ, where σ is the standard deviation of the

sampled set, n is the number of elements in the set, and ρ is the statistical “efficiency”

of the sampling (i.e., a perfectly efficient sample set is identically and independently

distributed) [262, 263]. Confidence approaches certainty in the limit of an infinitely

large, independently and identically distributed sample set. The statistical error analysis

carried out by de la Lande for the data presented in Table 8.1 is given in Ref. [5], with

confidence intervals ranging from ±3% to ±17%. Comparable statistical confidence may

be expected for the results presented in the following sections.

8.5 Analysis of Solvent Organization

In this Section, I describe qualitative and quantitative geometrical analyses that I per-

formed on the coordinate trajectories generated by the molecular dynamics simulations of

the native and mutant MADH–amicyanin complexes.

In order to decipher the role of solvent conformations in modulating the ET rate, I

carried out extensive visual inspections of the trajectory data. For this task, I employed
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the Visual Molecular Dynamics (VMD) software developed at the University of Illinois

at Urbana-Champaign [57]. Focusing my attention on the inter-complex region situated

between the donor and acceptor cofactors, I found that a water molecule was consis-

tently and simultaneously hydrogen-bonded to particular surface atoms of both MADH

and amicyanin, namely MADH β Ser56O and amicyanin His95HE2, in accordance with

the original interprotein “water-bridge” hypothesis posed by Chen and coworkers [47].

The water molecule in this position was visibly less stable in the simulated mutant com-

plexes, being frequently jostled out of position by the greater numbers of adjacent water

molecules observed in the inter-protein space of the mutant complexes.

In order to quantitatively verify these qualitative observations, I conceived of three

numerical measures of solvent occupation and dynamics in the interprotein region, and

I implemented them in CHARMM:

1. I calculated PHB, the average probability that a single water molecule should be sim-

ulatenously hydrogen-bonded to both MADH β Ser56O and amicyanin His95HE2,

finding the probability significantly higher in the native complex than in any of the

mutant complexes (Table 8.2).

2. I calculated τ , the total number of distinct water molecules (per unit time), to take

up the bridging position during each simulation, finding that significantly fewer

different water molecules occupied that position in the native complex (Table 8.2).

3. I calculated the average number NH2O(r) of water molecules found inside a spherical

volume (the “ET region”) of varying radius r, centered equidistantly between the

atoms MADH β Ser56O and amicyanin His95HE2, finding significantly more water

molecules present inside the mutant complexes (Fig. 8.1f).

These findings demonstrated that the water “bridge” linking MADH to amicyanin

directly across the interprotein gap was mostly stable in the native complex, being oc-



129

Native M51L M51K M51A M51C
PHB 0.53 0.15 0.19 0.18 0.16
τ 0.23 0.45 1.20 0.50 2.25

NH2O 1.8 2.8 2.4 2.5 2.1

Table 8.2: The unit-normalized probability PHB of formation of the Ser56O–His95HE2
hydrogen-bonded water-bridge, the “turnover” τ denoting the time-averaged number of
different water molecules to occupy the bridging position (in units of ns−1) for the native
and mutant systems, and the average number NH2O of water molecules within a sphere
of radius r = 3.0 Å centred around the water bridge.

cupied the majority of the time, and replaced relatively infrequently. In contrast, this

single-molecule bridge was usually not intact in the mutant complexes, and when it was

present, it was more frequently displaced and exchanged with another molecule from the

surrounding solvent. The greater numbers of water molecules observed in the spherical

“ET region” suggested that the destabilization of the water bridge in the mutant com-

plexes was due to increased interactions with the surrounding bulk solvent, compared to

bulk-solvent interactions in the native complex.

These findings support the original hypothesis by Chen, Durley, Matthews and David-

son [47] that ET may be facilitated by the use of a water molecule to electronically couple

the donor and acceptor orbitals. The bridging water molecule that I observed in the na-

tive and mutant simulations is located in the same position as the one they observed

in Chen and coworkers’ crystallography (PDB entry 2MTA). The results of the mutant

MD simulations also corroborate Chen et al.’s concerns that the solvent bridge posi-

tion “might not always be occupied” [47]. Rigorously establishing the role of the water

bridge as an electron transfer facilitator thus required confirmation that the bridge itself

provided the enhanced coupling.
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8.6 Analysis of Electronic Transition Amplitudes

In this Section, I describe my analysis and categorization of the ET “pathway” and “pack-

ing density” analyses that I performed on the nuclear coordinate trajectories generated by

molecular dynamics simulations of the native and mutant complexes.

The ET pathway model calculation generated a set of real-valued electronic transition

decay factors accompanied by ASCII regular expressions representing the corresponding

atomistic pathways from the donor to the acceptor. I employed MATLABTM to perform

detailed analyses on these results, for the purpose of establishing a comprehensive system

for categorizing variations between the different pathways. According to my analysis, the

vast majority of the pathways could be categorized by the amino acid residue through

which the dominant ET pathway exited the MADH β-subunit, namely one of Ser56,

Trp57, Val58, or Trp108. More than 99% of the dominant ET pathways involved some

solvent molecule(s) and entered amicyanin through its His95 copper-ligand. I labeled

each pathway alphabetically, according to the residue by which it exited MADH:

• pathways exiting via Ser56 were labeled “A”,

• those exiting by Trp57 were labeled “B”,

• those exiting by Val58 were labeled “C”,

• those exiting by Trp108 were labeled “D”,

• and all remaining pathways were labeled “E”.

All the pathways labeled A through D involved some water molecule(s) and entered

amicyanin through His95. I divided the E-labeled pathways into pathways involving any

water molecule(s) (“Ewet”), and pathways involving a “through space jump” from MADH

to amicyanin (“Edry”). The average value ε̄ of the relative coupling element ε for each

pathway motif (or “tube”), and its overall probability, are given in Table 8.3.
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Native M51L M51K M51A M51C
ε̄ % ε̄ % ε̄ % ε̄ % ε̄ %

A 1.02 59.4 0.63 49.6 0.75 45.2 0.78 32.4 0.80 33.3
B 0.74 39.8 0.48 29.1 0.60 35.3 0.68 66.1 0.69 39.0
C 0.56 0.4 0.48 20.4 0.55 17.4 0.6 0.8 0.61 12.9
D 1.25 0.2 0.23 0.4 0.76 1.4 1.06 0.2 0.96 13.9
Ewet 0.32 <0.1 0.09 0.2 0.25 0.1 0.14 <0.1 0.33 0.3
Edry 0.14 0.1 0.06 0.3 0.18 0.5 0.19 0.4 0.3 0.7

Table 8.3: Averaged coupling decay factors ε̄ (in units of 10−3), and occurance probabil-
ities (as percent) of the four main pathway motifs (A, B, C, D) and all other remaining
solvent-mediated (Ewet) and through-space (Edry) pathways from donor to acceptor.

The native simulations reveal the dominant character of the A-labeled pathways, ex-

hibiting strong coupling (ε̄ = 1.02) the majority (59.4%) of the time. The D-labeled path-

ways (exiting MADH through the Trp108 redox cofactor) exhibited somewhat stronger

coupling (ε̄ = 1.25) in the native system, but these pathways were viable only 0.2% of the

time, making their contribution to the overall ET coupling practically negligible. The

mutant complexes exhibited siginificantly weaker coupling overall and reduced prevalence

of A-labeled pathways in particular.

In order to quantify the significance of the Ser56-His95 water bridge in facilitating

electronic coupling, it is necessary to examine the prevalence of precisely this ET pathway

in contributing to the overall ET coupling. For this reason, I subdivided the A-labeled

category into three subcategories labeled A1, A2, and A3, as follows:

• pathways passing across a completely-hydrogen-bonded, single-molecule, water bridge

from MADH Ser56O to amicyanin His95HE2 were labeled “A1”,

• pathways passing across a completely-hydrogen-bonded, multi-molecule, water bridge

from MADH Ser56O to amicyanin His95HE2 were labeled “A2”, and

• pathways involving through-space jumps but still passing across water molecules

from MADH Ser56O to amicyanin His95HE2 were labeled “A3”.



132

Native M51L M51K M51A M51C
ε̄ % ε̄ % ε̄ % ε̄ % ε̄ %

A1 1.10 52.8 0.91 26.2 0.99 29.0 0.94 24.9 1.00 23.0
A2 0.44 3.0 0.38 13.0 0.43 5.1 0.43 1.9 0.44 4.5
A3 0.25 3.6 0.23 10.4 0.28 11.1 0.24 6.2 0.26 5.8

Table 8.4: Averaged coupling decay factors ε̄ (in units of 10−3), and occurance probabil-
ities (as percent) of three submotifs A1, A2, and A3 of the A type of pathway.

Table 8.4 shows how the overwhelming majority of A-labeled pathways in the native

complex actually represent the A1 pathway originally hypothesized by Chen et al. [47].

The ET coupling generated by the A1 pathway in the mutant complexes is closely compa-

rable to that of the native complex, but signficantly less likely to contribute to the overall

ET coupling. This finding demonstrates that the disruption of the Ser56O–His95HE2 wa-

ter bridge observed in the mutant complexes leads directly to the reduced likelihood of

ET coupling via the A1 pathway, and reduced overall electronic coupling as a result.

This preeminence of the A1 pathway can be visually established by comparing weighted

histograms showing the relative coupling strength and probability of each of the (A1, A2,

A3, B, C, D, E) pathway categories, as plotted graphically in Figs. 8.1a-e. The blue data

points plotted in Fig. 8.1a shows how the dominant A1 pathway manifests the highest

overall probability and the largest average coupling strength in the native system.

8.7 Molecular Breakwater Hypothesis

In this Section, I describe the “molecular breakwater” hypothesis I developed in order to

explain the role of protein surface residues in organizing the structure of inter-complex

water molecules to promote enhanced electronic coupling between MADH and amicyanin.

Having established that simulations of native and mutant MADH–amicyanin com-

plexes exhibit the presence of an ET-enhancing water bridge at the position and orienta-
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Figure 8.1: Plots a-e depict histograms showing the relative coupling strength and prob-
ability of occurance of the pathways categorized A1, A2, A3, B, C, D, E for the native
(“wild type”) and mutant complexes. Plot f depicts the number of water molcules found
in a spherical inter-protein “ET region” of varying size for each of these complexes. Plots
are reproduced from Ref. [5] with permission from the publisher.

tion to form a hydrogen-bonded single-molecule link from MADH β Ser56O to amicyanin

His95HE2 according to the water-bridge hypothesis originally proposed by Chen et al.

in 1994 [47], it remained to establish a causal mechanism linking the mutations per-

formed on the methionine 51 residue of amicyanin to the disruption of the water bridge

itself. The increased occupation of solvent molecules in the interprotein “ET region” of

the mutant structures, along with the increased interchange between water molecules in

this region with those from the surrounding bulk solvent, suggested that the mutations

performed on the Met51 residue led to increased exposure of the sterically-constrained

interprotein region to the dynamics of the surrounding solvent milieu.

In the original motivating experiment, Ma and coworkers mutated amicyanin’s pro-

leine 52 residue into glycine in order to investigate whether the ligand geometry of azurin’s

copper center could be introduced into amicyanin [13]. They found instead that “the
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mutation of Pro52 alters the positions of residues that are involved in protein-protein

interactions within the ET protein complex with MADH and consequently alters the

kinetic mechanisms of the ET reactions from MADH to amicyanin” [13]. In particular,

the mutation of Pro51 into Gly51 resulted in the reorientation of the adjacent Met51

residue, leading Ma et al. to hypothesize that the P52G mutation produced a change

in the interaction between amicyanin Met51 and MADH β Val58 during ET complex-

formation. Follow-up experiments involving mutations performed on Met51 supported

the hypothesis that “the P52G mutation resulted in a change in position of the side chain

of Met51, which eliminated the contacts with the side chain of βVal58 of MADH that

are seen in the structure of the complex of native amicyanin with MADH” [14].

From these experimental conclusions it was natural to infer that the loss of these

complex-stabilizing interactions between amicyanin and MADH β Val58 led to increased

contact and interchange between the water molecules contained inside the redox complex

and those of the surrounding bulk. However, the logical consistency of this inference

required the additional assumption that the inter-protein contact points surrounding the

redox cofactors of MADH and amicyanin should form a water-tight seal upon complex

formation—sealing in a small number of ET-mediating water molecules, while sealing out

the surrounding bulk solvent. The generation of this assumption represented a novel con-

ceptual addition to established models describing the function of the ring of hydrophobic

surface residues surrounding amicyanin’s redox cofactor.

Amicyanin has a hydrophobic patch of seven amino acid residues on its surface (sur-

rounding the His95–copper ligand) that is believed to stabilize its formation of a redox

complex with MADH [234, 237]. This hydrophobic patch is common to blue copper

proteins [230], and is believed to play a role ensuring redox complex stability [230] and

specificity [231]. It had not, however, been previously supposed that this surface struc-

ture might “dynamically organize water bridges to enhance electron transfer between
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proteins” [5]. Therefore, based on my numerical findings, I proposed the novel hypoth-

esis that the hydrophobic ring surrounding the active site of amicyanin (along with its

negative counterpart on MADH) also functions as a “molecular breakwater” that pro-

tects and supports the stability of the ET-mediating solvent bridge by limiting solvent

interchange between the sterically constrained ET region and the surrounding bulk [5].

8.8 Concluding Remarks

In conclusion, I have presented my production and analysis of data drawn from com-

puter simulations of MADH in complex with mutant forms of amicyanin, in comparison

with data from the native complex. I conceived, designed, and implemented quantitative

measures of the atomic coordinate trajectory data generated by the native and mutant

simulations, in order to demonstrate qualitative changes in the interprotein solvent dy-

namics that occur in the mutant complexes as a result of the mutations. I implemented

tunneling “pathway” and “packing density” calculations using data from the coordinate

trajectories. I conceived and implemented analytical techniques to interpret data pro-

duced by the pathway calculations, demonstrating that these mutations resulted in the

destabilization of an interprotein water bridge that facilitates electronic coupling between

the redox cofactors of the ET complex.

Although the reduced electronic coupling observed in each mutant simulation might

by itself be construed as a numerical artifact or a statistical fluke, the collective findings

that I have presented in this Chapter corroborate to form a robust physical picture of

solvent-mediated ET that cannot be summarily dismissed. It is exponentially unlikely

that all of the simulated mutant complexes could have randomly exhibited reduced ET

coupling (according to the pathway analysis) with respect to the native complex. Fur-

thermore, the presence of the consistently occupied ET-enhancing bridge in the native
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complex, taken along with its absence in the mutant complexes, forms an explanatory

picture of the actual ET-enhancing mechanism that is inconsistent with the concept of a

fluke. The loss of bridge stability is causally related to the mutations themselves by the

increased numbers of more rapidly fluctuating solvent molecules in the “ET region” of the

mutant complexes, because of the mutation-induced loss of solvent-repelling hydropho-

bic interactions between the proteins. These findings therefore provide sound numerical

evidence in support of the original hypothesis by Chen and coworkers that charge trans-

port in this system is enhanced by solvent-mediated ET which “depends critically on the

presence of a water molecule that might not always be occupied” [47].

My finding are supported by follow-up calculations of interprotein solvent occupation,

performed by Chen “Tina” Liu [6] using these coordinate trajectories. Liu’s calculations

showed marked increases in solvent occupation in the vicinity of amicyanin residue 51 and

MADH β-subunit residues Val58 and Glu101 in the simulated mutant complexes with

respect to the native complex. My findings are also supported by the results of inde-

pendent simulations of the native and mutant MADH–amicyanin complexes in solution,

performed by Ehsan Zahedinejad. Zahedinejad performed these simulations using the

Not just Another Molecular Dynamics (NAMD) program [264], using periodic boundary

conditions and temperature regulation by means of a Lowe-Anderson thermostat [265].

Zahedinejad performed the same calculations on his data set as those represented by Ta-

bles 8.2, 8.3, and 8.4, reproducing the same pattern of interprotein solvent-stabilization

and enhanced A1-bridge-mediated electronic coupling in the native complex [266].

These findings collectively provide strong support for the hypothesis that the puck-

ered hydrophobic ring around the active site on the surface of amicyanin, in cooperation

with the residues they interact with on the surface of MADH, collaboratively operate to

“dynamically stabilize” the interprotein solvent molecules to enable enhanced ET. They

were published in the article, “Surface residues dynamically organize water bridges to
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enhance electron transfer between proteins,” in the Proceedings of the National Academy

of Science. That article has been cited in twenty-three (23) different peer-reviewed sci-

entific articles [64, 63, 66, 267, 268, 269, 68, 6, 270, 271, 272, 273, 274, 69, 275, 65, 276,

277, 278, 279, 280, 281, 67] since the time of its publication. The article has garnered

recognition from Davidson himself [63]:

It was subsequently shown using molecular dynamics simulations that the

interactions between Met51 and MADH comprised a “molecular breakwater”

that optimized the position of water molecules at the protein interface, and

that the M51A mutation disrupted this breakwater resulting in a decreased

availability of the optimum configuration for electron transfer These results

highlight the fact that specific individual residues at the surface of redox

proteins not only dictate specificity for initial binding to their redox protein

partners, but also are critical to optimize the configuration of the redox centers

and intervening media within the protein complex for the electron transfer

event.

The article is reproduced in the Appendix with written permission from the publisher.
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Chapter 9

Concluding Discussion

The medium is the message.

—Marshall McLuhan, 1964 [282]

During the 1960s, Marshall McLuhan famously promoted the principle that the dis-

semination of a technological medium in a human environment itself defines a message

in that environment [282]. He defined his principle succinctly [282]:

This is merely to say that the personal and social consequences of any medium—

that is, of any extension of ourselves—result from the new scale that is intro-

duced into our affairs by each extension of ourselves, or by any new technology.

The application of this principle need not be limited to the scope of human affairs.

Living cells exhibit agency ; they are able to respond to external stimuli and they are

capable of internal self-regulation [19]. These faculties represent complex information

processing tasks defined according to the precepts of communication theory [18].

Chemistry is used to define the “basis of life” [19]. In the case of partner-specific

biological electron transfer, the enzymatic reactants encode the information necessary

to definitively identify each other during metabolism—the medium is the message. The

natural intelligence exhibited by redox enzymes as they efficiently carry out complex

metabolic tasks differentiates them from the simple oxidants and reductants that are

traditional to chemistry. As Davies has proposed [15], the hierarchy of complexity that

is found in a living system presents the need for a reevaluation of the traditional models

and assumptions of chemistry with regard to metabolic biochemistry.
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9.1 Summary and Conclusions

Summary of Part I

In Part I of this Thesis, I presented my prototype design for a two-qubit
√

SWAP gate

that operates according to the adiabatic approach and reseparation of a pair of atomic

qubits trapped individually using optical tweezers [2]. Previous proposals [28] and demon-

strations [29] of this exchange gate relied on qubits stored using the nuclear spin states

of the atoms. In contrast, I chose to consider gate operation using decoherence-resistant

non-magnetic electronic states, such as the 1S0 and 3P0 states of alkaline-earth atoms.

I derived a simple criterion to ensure adiabatic gate operation and I performed numer-

ical analyses to evaluate gate fidelity over a range of speeds [2]. I helped develop a

“loophole-free” Bell inequality test based on the use of this gate, and I carried out an

order-of-magnitude feasibility analysis to assess whether the test is viable given realistic

technological limitations [3]. Using a mathematical technique devised by Wiebe, I in-

vented an asymptotic error-correction scheme to polynomially improve the gate’s fidelity

without decreasing its speed [4].

The decoherence-resistance gate that I propose represents a means of realizing a cru-

cial entanglement-generating component to neutral atom-based QIP architectures, and

it can be adapted readily to ionic QIP systems [30]. My contribution to the development

of an atom-based Bell test provides a critical alternative route to performing a conclusive

test of local realism, should current photon-based approaches encounter insurmountable

difficulties [157]. My scheme to improve gate operation by harnessing nonadiabatic inter-

ference effects provides an essential contribution to the development of error-correcting

techniques for atomistic QIP architectures that rely on adiabatic transport.

This vibrationally-adiabatic exchange gate generates a nonadiabatic transition be-

tween the initially-degenerate logical qubit basis states |0L1R〉 and |1L0R〉. At large
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trap separation distances, the cluster separability [83] of the individual atoms allows

the neglect of the identical character of the two systems, so that the atoms become

effectively distinguishable. As the traps converge, the controlled breakdown of the Born-

Oppenheimer approximation is exploited to implement the two-qubit entangling gate, as

the two atomic centre-of-mass wavefunctions are brought into overlap for exchange.

For qubits encoded into the joint electronic levels of the two atoms, the logical “dia-

batic” basis states |0L1R〉 and |1L0R〉 are initially degerate. This degeneracy is split into

two (symmetric and antisymmetric) non-degenerate adiabatic states |χ+〉 ⊗ |Ψ+〉 and

|χ−〉 ⊗ |Ψ−〉 as the atomic centre-of-mass wavefunctions come into overlap. Thus, the
√

SWAP gate physically realizes half of one “nonadiabatic” electronic transition between

the diabatic basis states |0L1R〉 and |1L0R〉 as the traps converge.

Whereas I have considered a pair of logical states |0L1R〉 and |1L0R〉 with regard to

the orbital angular momentum states of a pair of divalent atoms, these generic logical

states could be physically reconcieved as charge occupation states to describe the physics

of inter-particle nonadiabatic ET (e.g., |0〉 = “unoccupied” and |1〉 = “occupied”). In

this case, my logic gate provides an immediate physical analogue to an intermolecular ET

system, as the size and complexity of the redox-partners scale from individual atoms to

whole macromolecules. The controlled collision of a pair of one-dimensional particles to

generate an electronically-nonadiabatic quantum logic gate from a vibrationally-adiabatic

evolution represents a profound simplification of the kind of nonadiabatic electronic tran-

sition that occurs during amicyanin’s collision with MADH. Nevertheless, the physical

realization of this gate defines a small but fundamentally-important step towards the

kind of full-scale analogue simulation that Feynman and others have envisioned.
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Summary of Part II

In Part II of this Thesis, I investigated ET reaction experiments performed on native and

mutant forms of the MADH–amicyanin redox complex derived from P. denitrificans. I

implemented molecular dynamics simulations of native and mutant forms of the solvated

MADH–amicyanin complex, and I analyzed the resulting nuclear coordinate trajectories

geometrically and according to a tunneling pathway analysis. I found that the inter-

protein solvent dynamics of the mutant systems differed dramatically from those of the

native system, and that the stability of an ET-mediating “water bridge” was compro-

mised in the mutant complexes. I concluded that the mutations disrupted the structure

of a protective “molecular breakwater” on the surface of amicyanin that stabilizes the

interprotein water bridge in the native complex.

My findings highlight the need for novel experiments involving mutations of protein

surface residues, in order to determine how these residues are able to “optimize the

configuration of the redox centers and intervening media within the protein complex for

the electron transfer event” [63]. In this respect, my molecular breakwater hypothesis has

already been used to interpret the result of one such follow-up experiment subsequently

performed in Victor Davidson’s laboratory [64]. My findings have had a considerable

impact on the opinion of the biochemical community, as ET-mediating structured water

has become a subject of serious and widespread interest [67, 68, 69].

The anomalous characteristics of the MADH–amicyanin ET reaction make it a suit-

able object for investigations regarding molecular recognition processes [232]. As we

have discussed in Section 7.5, the reaction exhibits an anomalously large reorganization

energy, which could be due to the non-equilibrium electrostatic properties of amicyanin

in-complex or the inner-sphere (Cu–His95) bond-breaking event that accompanies ami-

cyanin reduction. These anomalies raise questions about the reaction’s theoretical status

as a “true” ET reaction (defined in Section 7.3.1). The non-Condon effects (see Sec-
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tion 7.3.5) that are introduced into the ET reaction in the mutant complexes (due to

variations in the ET couplings afforded by the different nuclear-conformation-dependent

tunneling pathways) suggest that part of the breakwater’s function is to help ensure that

the Condon approximation is satisified during ET by limiting the number of accessible

solvent conformations in the native complex upon docking. The thermodynamic cost

of generating this solvent-organizing effect is not taken into account by the empirically-

defined reaction coordinates used to describe the experiment [242, 283]. All these issues

raise questions about the whether the physical characteristics of the reaction conform to

the theoretical assumptions of Marcus Theory (see Sections 7.2, 7.3, and 7.5).

These findings suggest that the degrees of freedom used to define the thermodynamic

cost to activate a metabolic ET reaction can be different from those of a non-metabolic

one. For example, the non-negligible cost to ensure reaction specificity needs to be

taken into account in the definition of the reaction coordinate of a metabolic reaction.

Both classical and quantum resources may need to be quantified in order to characterize

nonadiabatic reactions that involve explicit dynamical quantum effects. An entanglement

resource [21] needs to be prepared to enable a nonadiabatic electron transfer reaction,

akin to any other quantum information processing tasks.

At a minimum, nonadiabatic ET requires the non-deterministic use of one exchange-

mediated SWAP operation (equivalent to two
√

SWAP operations) in order to reversibly

transfer the electron from donor to acceptor. The preparation of this entanglement

resource at physiological temperature defines a non-trivial QIP task, even if preparation

succeeds with minimal probability. It is metabolically important for the ET event to

occur reversibly via quantum mechanical exchange, rather than classically via thermal

hopping, in order to minimize the risk of oxidative damage due to electron loss. This

subtlety reveals how a living organism can exploit a modest QIP resource in order to

gain a significant survival advantage.
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9.2 Perspective

The findings presented in Part I and Part II both highlight the need for a deeper under-

standing of the conditions that govern nonadiabatic transitions during approximately-

adiabatic evolutions. Ordered expansions of nonadiabatic effects, such as those consid-

ered by Wiebe and myself [4], can be used to characterize the degree of nonadiabaticicity

exhibited by quantum chemical system when nuclear momenta cannot be satisfactorily

neglected or treated separably.

The two-qubit exchange gate considered in Part I provides a key component to digital

QIP architectures, but its value is not strictly limited to quantum computing applica-

tions. It introduces an experimental technique for the practical realization of traditional

Gedankenexperiments in physics, such as the EPR “paradox” via a Bell inequality test [3],

and also for traditional Gedankenexperiments in chemistry, such as formation of Heitler

and London’s hydrogen molecule via an adiabatically-controlled atomic collision [2]. QIP

experiments involving the controlled breakdown of the adiabatic description of a chemical

system may promote insights with regard to the traditional models and assumptions of

chemical theory.

As we have discussed in Section 2.2, chemical systems are defined according to an

adiabatic description. The assumption that vibronic transitions may be neglected (piece-

wise) along the chemical reaction coordinate dictates that the electronic subsystem re-

mains in its instantaneous quantum adiabatic ground state during the activation step of a

chemical reaction. The assumption that the electronic ground state of the system evolves

quantum-adiabatically from the reaction’s initial equilibrium state to the transition state

is mathematically identical to the definition of an adiabatic quantum algorithm that “in-

terpolates between an initial Hamiltonian, whose ground state is easy to construct, and

a final Hamiltonian, whose ground state encodes the satisfying assignment” [108].
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The controlled chemical reactions that occur during metabolism define complex in-

formation processing tasks: the biochemical medium is the message. Chemical reac-

tions, considered as information processing tasks, are hard to solve. The time needed to

(non-deterministically) generate a reaction’s transition state from its equilibrium state

increases exponentially with the size of the free energy gap separating them. Enzymatic

catalysts can increase the rates of chemical reactions by many orders of magnitude [284].

The physical basis for this rate-enhancement is not well-understood [284].

The enormous rate-enhancements that enzyme-catalyzed reactions exhibit over un-

catalyzed reactions are reminiscent of the speed-enhancements that quantum computing

algorithms exhibit over classical computing algorithms. This suggests that the math-

ematical techniques developed to analyze and enhance the rates of adiabatic quantum

algorithms may also promote insights into the mechanisms governing enzyme catalysis.

For example, Kieferová and Wiebe found that the computational power of a nearly-

adiabatic process can be increased with the application of weighted superpositions of

otherwise-classical control parameters (i.e., potentials) [77]. This finding indicates that

non-Born-Oppenheimer superpositions of the nuclei can be used to increase the com-

putational power of a chemical system. Quantum nuclear motions have been shown to

modulate activation free energies during enzyme catalysis [285] and classical nuclear mo-

tions can produce geometrically-weighted coherence effects during ET [213]. It follows

that enzymes may be able to exploit combinations of transient nonadiabatic evolutions

in order to enhance and control the activation rates of the reactions that they catalyze.

Here I have provided just a few examples to suggest how new models and hypothe-

ses may be generated by formulating chemical reaction theory in quantum information

theoretic terms. This formulation is essential to quantify the resources employed during

the enzymed-catalyzed activation of a reaction because enzymes operate reversibly.
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gates for neutral atoms,” Physical Review Letters 85(10), 2208 (2000).

[145] J. Mompart, K. Eckert, W. Ertmer, G. Birkl, M. Lewenstein, “Quantum Comput-

ing with Spatially Delocalized Qubits,” Physical Review Letters 90, 147901 (2003).

[146] O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, I. Bloch, “Controlled
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[162] D. Guéry-Odelin, J. G. Muga, “Transport in a harmonic trap: Shortcuts to adia-

baticity and robust protocols,” Physical Review A 90, 063425 (2014).

[163] K. O. Roberts, T. McKellar, J. Fekete, A. Rakonjac, A. B. Deb, N. Kjærgaard,

“Experimental violation of a Bell inequality with efficient detection,” Nature 39,

2012 (2014).

[164] G. Weihs et al., “Violation of Bell’s Inequality under Strict Einstein Locality Con-

ditions,” Physical Review Letters 81, 5039 (1998).

[165] B. B. Jensen, H. Ming, P. G. Westergaard, K. Gunnarsson, M. H. Madsen, A. Br-

usch, J. Hald, J. W. Thomsen, “Experimental Determination of the 24Mg I(3s3p)

3P2 Lifetime,” Physical Review Letters 107, 113001 (2011).

[166] K. Aron, P. M. Johnson, “The multiphoton ionization spectrum of xenon: Inter-

atomic effects in multiphoton transitions,” The Journal of Chemical Physics 67,

5099 (1977).

[167] G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization

spectroscopy and one-atom detection,” Reviews of Modern Physics 51, 767 (1979).

[168] F. Gerbier, J. Dalibard, “Gauge fields for ultracold atoms in optical superlattices,”

New Journal of Physics 12, 033007 (2010).

[169] S. Stellmer, R. Grimm, F. Schreck, “Production of quantum-degenerate strontium

gases,” Physical Review A 87, 013611 (2013).



163

[170] S. Stellmer, F. Schreck, “Reservoir spectroscopy of 5s5p3P2–5snd3D1,2,3 transitions

in strontium,” Physical Review A 90, 022512 (2014).
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[5] Aurélien de la Lande, Nathan S. Babcock, Jan Řezáč, Barry C. Sanders,
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Entangling identical bosons in optical
tweezers via exchange interaction

Nathan S. Babcock, René Stock, Mark G. Raizen, and Barry C.
Sanders

Abstract: We first devise a scheme to perform a universal entangling gate via controlled
collisions between pairs of atomic qubits trapped with optical tweezers. Second, we present
a modification to this scheme to allow the preparation of atomic Bell pairs via selective
excitation, suitable for quantum information processing applications that do not require
universality. Both these schemes are enabled by the inherent symmetries of identical
composite particles, as originally proposed by Hayes et al. Our scheme provides a technique
for producing weighted graph states, entangled resources for quantum communication, and a
promising approach to performing a “loophole free” Bell test in a single laboratory.

Résumé :

[Traduit par la rédaction]

1. Introduction

Entanglement plays an indispensable role in many quantum information processing tasks, such as
long-distance quantum communication [1], teleportation-based quantum computation [2, 3], and one-
way quantum computation [4]. While great progress has been made entangling arrays of neutral atoms
in optical lattices en masse [5], the current approach to generating such massive entangled states (via
cold collisions) necessitates state-dependent traps [6]. This state-dependency results in increased noise
sensitivity and decoherence of atomic qubits [5]. Other proposed approaches for entangling neutral
atoms feature encodings in vibrational rather than internal electronic states of atoms [7, 8], but are
subject to similar dephasing of qubits. Approaches based on atomic interactions other than ground
state collisions have been suggested [9, 10], but none have been successfully implemented and atomic
collisions still hold the most promise. Thus, there is a need for collisional quantum gates that allow
more flexible encodings in robust electronic states—such as the clock states of Rb, Cs, or Group II
atoms—that are held in state-insensitive traps to minimize decoherence.

In this work, we examine schemes to entangle pairs of bosonic atoms, analogous to the recently
proposed fermionic spin-exchange gate [11]. Gates based on this exchange interaction offer a natural
resistance to errors and more flexibility due to inherent symmetrization conditions. Furthermore, this
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exchange interaction allows the design of entangling operations for atoms with state-independent (e.g.,
Rb [5]) or partially unknown interaction strengths (e.g., Yb [12] or Sr [13]). The underlying exchange
interaction for these gates has recently been experimentally demonstrated using bosonic Rb atoms in
a double-well optical lattice [14]. However, a verifiable entangling gate between an individual pair of
trapped neutral atoms has not yet been demonstrated. Here, we provide a detailed analysis of these
operations as they may be carried out using a pair of individually controlled atomic qubits trapped via
optical tweezers.

Our approach builds on disparate proposals and experiments for preparing individual atoms from
a Bose-Einstein condensate [15–17], encoding qubits into long-lived electronic states, coherently ma-
nipulating and transporting atoms using optical tweezers [18,19], and performing two-qubit operations
on pairs of atoms via collisional interactions [11,14]. The combination of these elements allow for the
design of a tunable two-qubit gate, which can create an arbitrary degree of entanglement between a
pair of atoms. We also examine a scheme that exploits symmetrization rules to produce Bell pairs via
selective excitation.

These entangling schemes may be realized using qubits stored in the electronic states of a pair of
atoms trapped with moveable optical tweezers. Trapping at a “magic wavelength” makes the light shift
potential state-independent. Encoding in atomic clock states—which are insensitive to fluctuations in
the trapping field—avoids dephasing and ensures qubit coherence during the transport process. Unlike
the case of a state-dependent optical lattice in which it is trivial to separate the atoms after interaction,
we have state-independent potentials in which the system’s dynamics determine the likelihood of the
atoms being separated into opposite wells. Under adiabatic conditions, atom separation is guaranteed.
We consider only the 1-D case for simplicity. Multidimensional effects such as trap-induced resonances
cannot be captured by the 1-D delta-potential employed here [20] but could potentially be used to
enhance the atomic interaction further.

2. Hamiltonian for identical particles in separated tweezers

The Hamiltonian for two atoms with internal structure in a pair of optical dipole traps (a.k.a.,
“tweezers”) is given by,

H =
∑

i,j=0,1

{
p2

a

2m
+ V (xa, d) +

p2
b

2m
+ V (xb, d) + 2aij~ω⊥δ(xa − xb)

}
⊗ |ij〉〈ij|, (1)

where xa and xb are the positions of atoms a and b respectively, pa and pb are similarly the momenta,
aij is the state-dependent scattering length that depends on internal atomic states |i〉a and |j〉b (using
|ij〉 ≡ |i〉a⊗|j〉b), ω⊥ is the harmonic oscillation frequency due to transverse confinement [21], and
d is the time-dependent centre-to-centre distance between wells. For Yb, Sr, and alkali atoms, one
can usually choose a particular trap-laser wavelength (the “magic wavelength”) so that the light shift
potential becomes state-independent and each atom sees a double-well potential:

V (x, d) = −Voe−(x− d
2 )2/2σ2 − Voe−(x+ d

2 )2/2σ2

. (2)

Here, Vo > 0 is the depth of each Gaussian well and σ2 is the variance.
The first three vibrational eigenstates of a single particle in this double-well potential are shown

in Fig. 1 for varying d. In general, the single-particle eigenstates are {|ψA(d)〉, |ψB(d)〉, |ψC(d)〉, . . .}
and d-dependence is assumed implicit (e.g., |ψA〉 ≡ |ψA(d)〉) for notational simplicity. Note that as
d increases, |ψA〉 and |ψB〉 become spatially delocalized and energetically degenerate. Thus, when
|d| � σ we can write |ψL〉 ≡ (|ψA〉 − |ψB〉)/

√
2 to represent a single particle localized in the ground

state of the left well, and similarly |ψR〉 ≡ (|ψA〉+ |ψB〉)/
√

2 for the right well.
When a second particle is added to the double-well potential, the interaction term in the Hamilto-

nian may be treated as a perturbation. Accordingly, the new two-particle eigenstates may be written as

c©2013 NRC Canada
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Fig. 1. The first three eigenstates of a single particle in a double-well potential for different well separations d.

a sum of perturbed tensor products of one-particle states. We will use a tilde to denote the perturbation
to the terms composing the new symmetrized eigenstates. For a repulsive interaction between atoms
(aij > 0), the first six two-particle eigenstates are (see Fig. 2a),

d = 0 d � σ

|ψ̃BψB〉 ←→ 1
2 (|ψ̃AψC〉+ |ψ̃CψA〉 − |ψ̃BψD〉 − |ψ̃DψB〉) (3a)

1√
2
(|ψAψC〉 − |ψCψA〉) ←→ 1√

2
(|ψAψC〉 − |ψCψA〉) (3b)

1√
2
(|ψ̃AψC〉+ |ψ̃CψA〉) ←→ 1√

2
(|ψ̃LψL〉+ |ψ̃RψR〉) (3c)

1√
2
(|ψ̃AψB〉+ |ψ̃BψA〉) ←→ 1√

2
(|ψ̃LψL〉 − |ψ̃RψR〉) (3d)

1√
2
(|ψAψB〉 − |ψBψA〉) ←→ 1√

2
(|ψLψR〉 − |ψRψL〉) (3e)

|ψ̃AψA〉 ←→ 1√
2
(|ψ̃LψR〉+ |ψ̃RψL〉). (3f)

States that are antisymmetric under exchange are not affected by the interaction at any separation
and the tildes have been intentionally omitted from these states. States with atoms in opposite traps
(e.g., 3a, 3f) are obviously not affected by the interaction in the limit d → ∞. Note that there is the
usual on-site interaction penalty for putting two atoms in same trap, resulting in an energy splitting at
d� σ between states having atoms in opposite traps (3e, 3f) and those having atoms in the same trap
(3c, 3d), as shown in Fig. 2a.

In case of attractive interaction (aij < 0), the eigenstates are (see Fig. 2b),

d = 0 d � σ

1√
2
(|ψAψC〉 − |ψCψA〉) ←→ 1√

2
(|ψAψC〉 − |ψCψA〉) (4a)

|ψ̃BψB〉 ←→ 1
2 (|ψ̃AψC〉+ |ψ̃CψA〉+ |ψ̃BψD〉+ |ψ̃DψB〉) (4b)

1√
2
(|ψ̃AψC〉+ |ψ̃CψA〉) ←→ 1√

2
(|ψ̃LψR〉+ |ψ̃RψL〉) (4c)

1√
2
(|ψAψB〉 − |ψBψA〉) ←→ 1√

2
(|ψLψR〉 − |ψRψL〉) (4d)

1√
2
(|ψ̃AψB〉+ |ψ̃BψA〉) ←→ 1√

2
(|ψ̃LψL〉 − |ψ̃RψR〉) (4e)

|ψ̃AψA〉 ←→ 1√
2
(|ψ̃LψL〉+ |ψ̃RψR〉). (4f)

c©2013 NRC Canada
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(a) (b)

Fig. 2. Adiabatic energy levels as a function of well separation d for (a) aij = 0.1σ and (b) aij = −0.1σ. Well
separation is in units of σ. Energies are in units of ~ωo, where ωo is the harmonic oscillation frequency of one
atom in the ground state of a single well. Symmetric vibrational eigenstates are shown in blue, antisymmetric in
red. Eigenstates for (a) and (b) are given by Eqs. (3) and (4), respectively. Notice that crossings between oppositely
symmetrized states are unavoided because the Hamiltonian is symmetric.

The order of states in (4) is different from (3), since states with atoms in the same trap now posses
a lower energy due to the attractive interaction.

Until this point we have neglected the internal structure of the particles (i.e., the qubits). The
eigenstates of the full Hamiltonian (1) are tensor products of the vibrational wavefunctions and the
symmetrized qubit states. For bosonic atoms, permissible eigenstates are tensor products of external
(i.e., vibrational) and internal (i.e., qubit) states of the same symmetry. Thus, antisymmetrized spatial
wavefunctions are permitted for a pair of composite bosons, so long as their internal structure is also
antisymmetric.

We solve the Hamitonian (1) numerically for individual internal states. Examples of two-atom en-
ergy spectra as a function of well separation are plotted in Fig. 2 for positive and negative interaction
strengths aij . We define E n

|ϕ〉(d) to be the energy of the nth two-atom vibrational eigenstate with two-

qubit internal state |ϕ〉 at well separation d. For example, the energy of |ψ̃AψA〉⊗|11〉 is E 0
|11〉(d).

As we have already discussed, not all combinations of n and |ϕ〉 are possible. For example, E 0
|Ψ−〉(d)

is forbidden for identical bosons. This reduction of the size of the Hilbert space makes it possible to
perform quantum gates adiabatically without losing coherence due to energetic degeneracies. Further-
more, the Hamiltonian’s inherent particle and parity symmetries lead to selection rules which further
enhance the fidelity of two-qubit operations.

3. Universal entangling gate

As shown by Hayes et al. [11], it is possible to exploit these symmetries in order to produce a
two-qubit entangling operation. We begin with a pair of identical atoms localized to opposite wells of
the double-well Hamiltonian (1) in the far separated case (d � σ). We prepare the qubit on the left in
the state |ϕα〉 ≡ (α|0〉+ β|1〉) and the qubit on the right in the state |ϕµ〉 ≡ (µ|0〉+ ν|1〉). The initial
wavefunction |ψi〉, written as a tensor product of external and internal states, is then,

|ψi〉 = 1√
2
(|ψ̃LψR〉 ⊗ |ϕαϕµ〉+ |ψ̃RψL〉 ⊗ |ϕµϕα〉). (5)
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Using |Ψ±〉 = 1√
2
(|01〉 ± |10〉), we rewrite equation (5) to make the symmetrization explicit:

|ψi〉 = (|ψLψR〉 − |ψRψL〉)⊗ (αν−βµ2 |Ψ−〉) (6)

+ (|ψ̃LψR〉+|ψ̃RψL〉)⊗(αµ√
2
|00〉+ αν+βµ

2 |Ψ+〉+ βν√
2
|11〉).

As the wells are brought together and separated adiabatically, the external states evolve according to
Fig. 2. That is, each vibrational eigenstate at d� σ evolves continuously into its respective eigenstate
at d = 0. As d decreases, the degeneracies between symmetric and antisymmetric eigenstates are lifted,

resulting in a dynamic phase difference between 1√
2
(|ψ̃LψR〉+ |ψ̃RψL〉) and 1√

2
(|ψLψR〉−|ψRψL〉),

corresponding to the difference in respective energy curves (see energy curves 3e and 3f in Fig. 2a, or
4c and 4d in Fig. 2b). Furthermore, degeneracies between the even two-qubit states {|00〉, |11〉, |Ψ+〉}
are removed if the interaction strengths aij differ, which is usually the case. This state-dependent
interaction results in additional phase differences between qubit states of the same symmetry [22].
Thus, each joint internal and external state acquires a unique phase, and the final state |ψf〉 upon re-
separating the wells is,

|ψf〉 = (|ψLψR〉 − |ψRψL〉)⊗ (αν−βµ2 e−iφ− |Ψ−〉) (7)

+(|ψ̃LψR〉+ |ψ̃RψL〉)⊗ (αµ√
2
e−iφ00 |00〉+ αν+βµ

2 e−iφ+ |Ψ+〉+ βν√
2
e−iφ11 |11〉) .

For positive scattering lengths, the phases are given by,

φjj ≡
1

~

∫ tf

ti

E0
|jj〉 (d(t)) dt and φ± ≡

1

~

∫ tf

ti

E
1
2∓ 1

2

|Ψ±〉 (d(t)) dt. (8)

Equation (7) is also valid for negative scattering lengths, although different phases will be acquired

since 1√
2
(|ψ̃LψR〉+|ψ̃RψL〉) is not the vibrational ground state when aij < 0.

Clearly, this evolution can be thought of as the identity acting on the vibrational subsystem tensored
with a unitary U acting on the qubit subsystem. Thus, we can discard the vibrational terms and examine
the unitary evolution of the qubit subsystem by itself. Using matrix notation,

|0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
, (9)

we can write U as,

U =
1

2




2e−iφ00 0 0 0
0 e−iφ+ +e−iφ− e−iφ+−e−iφ− 0
0 e−iφ+−e−iφ− e−iφ+ +e−iφ− 0
0 0 0 2e−iφ11


 (10)

= T




e−iφ00 0 0 0
0 e−iφ+ 0 0
0 0 e−iφ− 0
0 0 0 e−iφ11


T †, where T =




1 0 0 0
0 1√

2
1√
2

0

0 1√
2
− 1√

2
0

0 0 0 1


 .

This entangling operation is diagonal in the partial Bell basis {|00〉, |Ψ±〉, |11〉}. As noted in [11],
even if the interaction strengths are state-independent, the singlet state |Ψ−〉 acquires a phase differ-
ent from the triplet states (except in the limit as aij → ±∞, when the gate is no longer feasible).
State-dependent traps or atomic interactions generally result in state-dependent interactions with the
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environment as well, making the qubits more sensitive to noise. Avoiding this state-dependence leads
to the inherent robustness observed in initial experiments [14], as compared to earlier experiments
wherein gate fidelities were severely limited because of dephasing due to state-dependent traps [5].
Furthermore, this gate works for a wide range of positive scattering lengths, as we show elsewhere [22].
This is especially important for experiments employing atomic species with unknown or approximately
known scattering lengths (e.g., Yb or Sr).

A “controlled phase” gate (i.e., e−iπ|11〉〈11|) in the computational basis can be obtained by com-
bining single qubit phase gates S(θ) = e−iθ|1〉〈1| with a pair of U gates:

G = U (S(π)⊗ S(0))U =




e−2iφ00 0 0 0
0 e−i(φ++φ−) 0 0
0 0 −e−i(φ++φ−) 0
0 0 0 −e−2iφ11


 . (11)

G is locally equivalent to the “tunable controlled-phase” gate e−iγ|11〉〈11|, subject to the constraint:

φ00 + φ11 − φ+ − φ− =
(
2n± 1

2

)
γ, ∀ n ∈ Z. (12)

While a simple controlled-phase gate is itself a universal entangling gate, many quantum algorithms
(e.g., the quantum Fourier transform) can be performed more efficiently when tunable controlled-phase
gates are available. Here, the value of γ can be easily tuned, simply by adjusting the speed at which the
optical tweezers are combined and separated. The inherent robustness and easy tunability of this gate
make it a highly desirable one for quantum information processing.

4. Alternative entanglement preparation

For some quantum information processing applications, universal entangling gates are not neces-
sary and an ability to prepare entangled pairs will suffice. Atomic quantum repeaters based on entan-
glement swapping [23] provide an example of one such application. We next examine a scheme which
uses symmetrization requirements and a selective excitation to produce Bell pairs.

We begin with two bosonic atoms in the ground state of a single well, both with internal state |0〉.
The energy of this state is E0

|00〉(0). It is then possible to perform a coherent transition, selectively
exciting to the eigenstate with energy E0

|Ψ+〉(0). If the interaction for atomic qubits in the state |Ψ+〉 is
significantly different than that of |11〉, one can deterministically excite only to the |Ψ+〉 qubit eigen-
state, since the state |11〉 is off resonant and the overall state must remain symmetric. An excitation to
the antisymmetric state |Ψ−〉 is not possible as long as the two atoms are in the symmetric vibrational
ground state. Thus, any initial population in antisymmetric vibrational states (e.g., due to heating) must
be avoided to keep the fidelity of entanglement generation high. Furthermore, the vibrational spacing
and sidebands due to the interaction energy must be spectroscopically resolvable. With typical vibra-
tional energies on the order of kHz and on-site interaction shifts of close to 100Hz (dependent on
atomic species but tunable by the tightness of traps), this selective excitation process is generally slow,
but nevertheless viable. The final state after separating the atoms adiabatically is,

|ψfinal〉 = 1
2 (|ψ̃LψR〉+|ψ̃RψL〉)⊗ (|01〉+|10〉) . (13)

This operation provides a novel way of creating Bell states deterministically, but does not constitute
a universal two-qubit entangling gate. It does however allow for fundamental tests of quantum mechan-
ics and Bell inequality violations, as well as basic quantum information processing and communication
tasks.

c©2013 NRC Canada
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(a) (b)

(c) (d)

Fig. 3. Snapshots of the magnitude of the two-atom vibrational wavefunction (||ψ〉| ≡ ||ψ(xa, xb, t)〉|) as a

function of the position of each atom. Plot (a) shows the initial wavefunction, |ψinit〉 = (|ψ̃LψR〉+ |ψ̃RψL〉)/
√
2.

Plots (b-d) show the wavefunction after the wells have been brought together and separated. Initial conditions are
the same for all figures, and only the well speed (in units of vo = ~σω2

ab/Vo) is varied. The resulting vibrational
state fidelities f = |〈ψinit|ψ〉|2 are as follows: (b) v ≈ 0.01vo, f = 0.9997. (c) v ≈ 0.1vo, f = 0.491. (d)
v ≈ vo, f = 0.002.

5. Speed constraints for adiabaticity

An approximation to the general adiabaticity criterion is given in [24]:
∣∣∣〈a| ∂Ĥ∂t |b〉

∣∣∣� ~ω2
ab ∀ |a〉 6= |b〉 , (14)

where ωab = min(|Eb(t)− Ea(t)| /~) and where |a〉 and |b〉 are time-dependent eigenstates of an
arbitrary Hamiltonian. Since our specific Hamiltonian is invariant under exchanges of both symmetry
and parity, transitions between vibrational states of different symmetry or parity are suppressed. Thus,
in our case ωab is determined by the energy gap of the two closest states having both equal symmetry
and parity. This restriction contributes significantly to the robustness of this gate. Since only the double-
well potential is time-dependent, the left side of the equation reduces to |∂V (x,d(t))

∂t |. Assuming constant
v and maximizing |∂V (x,d(t))

∂t | with respect to x, we obtain the adiabaticity criterion:

v � ~σω2
ab/Vo. (15)

c©2013 NRC Canada
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Time-dependent numerical simulations confirm the validity of this simple criterion over a wide
range of values of Vo and aij (including aij < 0). Plots of the two-particle wavefunction comparing
adiabatic and non-adiabatic evolutions are shown in Fig. 3. Under adiabatic conditions, we recover both
atoms in separate wells. Under non-adiabatic conditions both atoms may end up in the same well with
non-negligible probability, resulting in an erroneous gate. However, time-dependent simulations have
also shown significant revivals, with both atoms ending up in opposite wells with large probability even
under non-adiabatic conditions. This suggests the very real possibility of producing a fast, coherent,
non-adiabatic gate via optimal control.

6. Conclusion

In summary, we have proposed two schemes for preparing pairs of entangled atoms. We have shown
it possible to construct a tunable universal entangling gate via the exchange interaction between iden-
tical bosons, promising high fidelity operation for positive (repulsive) and even negative (attractive)
interaction strengths. This is of particular importance for quantum information processing applications
that use novel species of atoms, such at Group II-like atoms (e.g., Yb and Sr) [22], for which the
collisional interaction parameters are partially unknown. In addition, we have introduced a novel en-
tanglement scheme allowing the creation of Bell pairs. This scheme could prove useful for quantum
communication schemes and fundamental tests of quantum mechanics. The use of this entanglement
operation for Group II-like atoms and its application to fundamental tests of quantum mechanics are
studied in detail in other work [22].
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Entanglement of group-II-like atoms with fast measurement for quantum information
processing
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We construct a scheme for the preparation, pairwise entanglement via exchange interaction, ma-
nipulation, and measurement of individual group-II-like neutral atoms (Yb, Sr, etc.). Group-II-like
atoms proffer important advantages over alkali metals, including long-lived optical-transition qubits
that enable fast manipulation and measurement. Our scheme provides a promising approach for
producing weighted graph states, entangled resources for quantum communication, and possible ap-
plication to fundamental tests of Bell inequalities that close both detection and locality loopholes.

PACS numbers: 03.67.Mn, 34.50.-s, 32.80.Wr, 03.65.Ud

I. INTRODUCTION

Entanglement is a vital resource for most quan-
tum information processing (QIP) tasks, including long-
distance quantum communication [1], teleportation-
based quantum computation [2, 3], and one-way quantum
computation (1WQC) [4]. An under-appreciated but cru-
cial aspect of QIP is the need for speed of single qubit
operations, to enable applications including synchroniza-
tion of quantum communication networks, measurement
and feed-forward in 1WQC, and tests of local realism.
For example, in 1WQC, the processor speed primarily
depends on the time needed for measurement and feed-
forward, whereas the entanglement operation may be
slow and accomplished simultaneously before commence-
ment of the computation. In atomic systems, single-
qubit fluorescence measurements are limited to microsec-
onds due to auxiliary state lifetimes, and in alkali metals
single-qubit rotation times are hampered by the gigahertz
spectroscopic separations of hyperfine states. In this
work, we overcome these obstacles by encoding in long-
lived optical clock transitions (e.g., 1S0 ↔ 3P0) of group-
II-like neutral atoms, without sacrificing the advantages
of other atomic schemes. Group II-like atoms such as Yb
and Sr have long been considered for atomic clocks and
much recent experimental and theoretical effort has been
dedicated to this group of atoms [5, 6, 7, 8, 9, 10, 11, 12].
The recent cooling of Yb into a Bose-Einstein conden-
sate (BEC) [9] and the ongoing study of interactions [12]
make Yb an especially tantalizing candidate for atomic
qubits. Our approach for entanglement and measure-
ment of group-II atoms offers promising techniques for
the high-speed synchronization needed for quantum com-
munication and computing, and also for the near-term vi-
olation of a Bell inequality in a single laboratory, without

∗Electronic address: restock@physics.utoronto.ca

any assumptions about signaling, sampling, or enhance-
ment [13, 14, 15, 16].

Significant experimental progress has been achieved
towards entangling atoms in optical lattices [17], which
could lead to the creation of an initial state for 1WQC.
Here we take a complementary approach, considering the
entanglement of individual pairs of atoms on demand,
comparable to other addressable neutral atom architec-
tures [18]. Rather than creating a generic cluster state,
we propose the creation of computation-tailored weighted
graph states as a resource for 1WQC and other QIP
tasks. Our technique combines efforts to prepare individ-
ual atomic qubits from a BEC [19], coherently manipu-
late and transport atoms [20, 21] using optical tweezers
at a “magic wavelength,” entangle atoms via an inher-
ently robust exchange interaction [22, 23], rotate single
qubits via a three-photon optical dipole transition [10],
and perform fast (∼ns) measurements via resonantly en-
hanced multi-photon ionization (REMPI). A “loop-hole
free” Bell inequality test imposes stringent requirements
on detector separation [15] and efficiency (see, e.g. the
experimental work in [16, 24]), and presents an enticing
test-bed for fast measurements with applications to QIP.
We study the limits of fast measurement for encoding in
the optical clock states of Yb and Sr, which can be re-
solved spectroscopically and measured on a ∼10ns time
scale, thereby admitting space-like separation over a few
meters (as opposed to large spatial separations consid-
ered in [24]). We show that such Bell tests in a single
laboratory should be feasible via a detailed theoretical
analysis accompanied by comprehensive numerical simu-
lations.

II. QUBIT PREPARATION AND TRANSPORT

Clock transitions in ions have been considered for effec-
tively encoding qubits for ion trap-quantum computing
due to extremely low decoherence rates [25, 26]. Simi-

188



2

larly, in the case of neutral atoms, optical clock transi-
tions in alkaline-earth and group-II-like atoms are ap-
pealing candidates for encoding qubits. Single atoms
have been experimentally isolated [19] and transported
in optical dipole traps [20, 21]. By trapping at a “magic
wavelength” [7, 8], the light shift potential is made ef-
fectively state-independent, ensuring phase stability of
the qubits for several seconds. For example, for the clock
states of Sr, the light shift dependencies on the trap laser
frequency ν differ by d∆/dν = 2.3×10−10 [7]. Therefore
light shift fluctuations can be kept to less than 0.1 Hz by
using a trap laser with linewidth of 100 MHz. Further-
more, the magic wavelength at 813.5 nm (easily accessible
using commercial lasers) is far detuned from the excited
states so that photon scattering rates are on the order
of 10 s for trap light intensities of 10 kW/cm2 [7]. This
ensures a coherence time of 10 s or more for trapping and
transporting atoms.

III. ENTANGLING OPERATION

We devise a universal entangling operation for bosons,
analogous to the recently proposed fermionic spin-
exchange gate [22]. This gate is based on the exchange
interaction recently demonstrated for bosonic Rb atoms
in a double-well optical lattice [23]. Because of inher-
ent symmetrization requirements, gates based on this ex-
change interaction offer a natural resistance to errors and
greater flexibility for encoding atoms, thereby enabling
an entangling operation even for atoms with interaction
strengths that are state-independent (e.g., Rb [23]) or
partially unknown, as is the case for most group-II-like
atoms (e.g., Yb [12]).
The entangling operation is achieved by temporarily

bringing together a pair of atomic qubits via mobile
optical tweezers. Unlike state-dependent optical traps
wherein atoms are trivially separated into opposite wells
after interaction, we have state-independent traps in
which the dynamics of the system generally determine
the likelihood of a successful separation. However, under
adiabatic conditions the atoms definitely end up in oppo-
site wells. We assume a strong confinement to one dimen-
sion (1D) by higher order Hermite Gaussian beams ac-
cording to [19]. All the essential physics is captured in the
1D model we employ here, although performance could
conceivably be enhanced by exploiting multi-dimensional
effects such as trap-induced resonances [27].
The Hamiltonian for two trapped atoms a and b with

internal structure (|i〉a , |j〉b ∈ {|0〉, |1〉}) is given by

H =
∑

i,j=0,1

[Ha +Hb + 2aij~ω⊥δ(xa−xb)]⊗ |ij〉〈ij| (1)

for Ha,b ≡ p2a,b/2m + V (xa,b − d/2) + V (xa,b + d/2),
with xa,b and pa,b the position and momentum of atom a
or b. The tweezer potential V (x) = −V0 exp(−x2/2σ2)
describes a Gaussian trap of depth V0 and variance σ2.

The two wells are separated by a distance d, ω⊥ is
the harmonic oscillation frequency of the transverse con-
finement [28], and aij is the state-dependent scattering
length for the two-qubit states |ij〉 ≡ |i〉a⊗|j〉b. We nu-
merically solve the Hamiltonian dynamics of individual
qubit states using a split-operator method. Two-atom
energy spectra are plotted as a function of well separa-
tion (Fig. 1) for different interaction strengths.
Due to symmetrization requirements, not all com-

binations of vibrational and qubit states are allowed.
For example, a pair of composite bosons cannot share
the ground state if the qubits are in the antisymmet-
ric state |Ψ−〉, defining |Ψ±〉 ≡ (|01〉 ± |10〉)

√
2. As

in the fermionic case [22], it is possible to exploit these
symmetrization requirements in order to produce a two-
qubit entangling operation for bosonic atoms (see [29]
for details). Consider a pair of identical bosons, one lo-
calized in the left trap (|ψL〉) and carrying a qubit in
the state |ϕα〉 = α |0〉 + β |1〉, the other in the right
trap (|ψR〉) and carrying a qubit in the state |ϕµ〉 =
µ |0〉 + ν |1〉. The initial symmetrized wavefunction (as
a tensor product of vibrational and qubit states) is then

|ψi〉 = (|ψLψR〉 ⊗ |ϕαϕµ〉+ |ψRψL〉 ⊗ |ϕµϕα〉)/
√
2.
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FIG. 1: (Colour online) Adiabatic energy levels as a function
of well separation. Energies are measured in units of ~ω0,
where ω0 is the harmonic oscillation frequency of one atom
in a single well. (a) Lowest six energy levels for aij = 0.1σ.
Energy levels correspond to symmetric or antisymmetric ex-
ternal eigenstates. The antisymmetric curves (red) are the
lower of the two curves at E ≈ −7 ~ω0 and the lowest of the
three curves at E ≈ −5.8 ~ω0 for d = 0. (b) Lowest two levels
of (a) for different scattering lengths. The lowest three energy
curves (from bottom to top) correspond to aij = 0, aij = 0.1σ,
and aij = σ, and asymptote to the antisymmetric (topmost)
curve for infinite aij . The antisymmetric eigenstates are not
affected by the interaction and hence the topmost (red) curve
does not shift for different aij .

As the wells are brought together and separated adi-
abatically, the energies evolve as shown in Fig. 1, and
each two-qubit state |00〉, |11〉, and |Ψ±〉 acquires a phase
φ00, φ11, and φ±, depending on its respective energy
curve. Adiabaticity can be satisfied even for negative
scattering lengths, since transitions between vibrational
states of different symmetry or parity are suppressed.
For constant tweezer speed v, the adiabaticity criterion
is v ≪ σ~ω2

ab/V0. Here, ~ωab is the energy difference
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between any coupled states. Time-dependent numerical
simulations confirm the validity of the adiabatic approx-
imation over a wide range of values of V0 and aij [29].
The final state after an adiabatic change of separation is

|ψf〉 = |ψ−〉 ⊗ (αν−βµ√
2
e−iφ− |Ψ−〉) (2)

+ |ψ+〉⊗(αµe−iφ00 |00〉+ βνe−iφ11 |11〉+ αν+βµ√
2
e−iφ+ |Ψ+〉),

using |ψ±〉 ≡ (|ψLψR〉 ± |ψRψL〉)/
√
2.

Evidently this process corresponds to a tensor prod-
uct of the identity acting on the vibrational state and a
unitary U acting on the qubit state. Thus, the internal
qubit evolution simplifies to

U = e−iφ00 |00〉〈00|+ e−iφ++e−iφ−

2
(|01〉〈01|+|10〉〈10|)

+
e−iφ+−e−iφ−

2
(|01〉〈10|+|10〉〈01|) + e−iφ11 |11〉〈11|. (3)

As in [30], a controlled-phase gate can be obtained
even if φ+ 6= φ− by sandwiching a single-qubit phase
gate between a pair of U operations. That is, G ≡
U [S(π)⊗ S(0)]U for S(θ) = exp(iθ|1〉〈1|). Thus defined,
G is locally equivalent to exp(−iγ|11〉〈11|) if

φ00 + φ11 − φ+ − φ− = (2n± 1
2 )γ, ∀ n ∈ Z. (4)

As shown in Eq. (2), the phases critical to this en-
tangling operation are acquired in a non-separable basis.
This leads to the inherent robustness observed in initial
experiments [23]. In standard schemes, the important
non-separable phase is usually acquired due to the inter-
nal state dependence of the interaction strengths aij . In
the case of this exchange symmetry-based gate, however,
there always is an energy gap between symmetric and
antisymmetric curves. The singlet state |Ψ−〉 therefore
acquires a phase different from the triplet states even if
the interaction strengths are state-independent (except
as aij → ±∞). This substantial phase difference en-
ables the exchange gate to operate faster than standard
collisional gates that rely on the difference in aij . Fur-
thermore, this gate works over a large range of scatter-
ing lengths [see Fig 1(b)], which is especially important
when designing experiments for atomic species with any
currently unknown scattering lengths (e.g., Yb or Sr).
Current studies of Yb interactions [12] already promise
a wide applicability of this entanglement gate for differ-
ent isotopes. (For 168Yb, a00 ≈ 13 nm and for 174Yb,
a00 ≈ 5.6 nm. a01 and a11, are not yet known.)

IV. SINGLE QUBIT ROTATION AND
MEASUREMENT

Recent attempts to cool and trap neutral Yb and Sr
have been very successful, and we therefore consider them
primarily. Optical clock states in Yb and Sr have ex-
tremely low decoherence rates, due to the fact that elec-
tric dipole one- and two-photon transitions between 1S0

and 3P0 states are dipole and parity-forbidden, respec-
tively [see Figs.2(a) and 3(a)for energy levels and tran-
sition wavelengths]. While affording long lifetimes, the
selection rules also present a significant challenge to fast
coherent manipulation and measurement of qubits. To
overcome this challenge, we employ a coherent, three-
photon transition to perform single qubit operations, uti-
lizing the excited 3S1 and 3P1 states [10]. The three
transitions 1S0 → 3P1,

3P1 → 3S1, and
3S1 → 3P0 are

electric-dipole allowed (see [5, 6] for transition matrix ele-
ments). Because three beams can always be arranged in a
plane such that the transferred recoil cancels, this three-
photon transition has the benefit of being recoil-free [10].
For Sr, the need for three lasers may be reduced to two,
as explained below.
We model this three-photon transition by a master

equation using the Liouvillian matrix given in [10]. Its fi-
delity is limited by the short-lived intermediate 3S1 state,
which decays primarily to the 3P1 state. The fast coher-
ent rotation of qubits is followed by the fast readout of the
3P0 state via REMPI on a nanosecond or even picosecond
time scale. Re-using the 3S1 excited state, photoioniza-
tion can then be accomplished in a two-step process. An
on-resonant 3P0 to 3S1 transition is followed by a final
ionization step at λ < 563 nm for Yb and λ < 592 nm
for Sr. The main errors in this read-out scheme are due
to population in the 3P1 to 3S1 states. During readout,
any population in 3P0 and 3S1 will be counted as logical
|1〉 (ionized). Population in 1S0 and 3P1 will be counted
as logical |0〉 (not ionized).
The case of Sr is particularly interesting: the tran-

sitions 1S0 →3 P1 and 3P1 →3 S1 are close in energy
difference (689 and 688 nm, respectively) so that a reso-
nant two-photon transition 1S0 →3 S1 utilizing a single
laser is possible. This reduces the laser requirement from
three to two. Figure 2(b) shows fidelities for qubit rota-
tion for wavelengths in the range 688 to 689.5 nm. The
time for a π-rotation is minimized by tuning to 688.7
nm. Figure 2(c) shows the fidelity and time scales for a
π-rotation as a function of laser powers. For fairly realis-
tic mode-locked laser powers, 109W/cm

2
(roughly 1 kW

pulse peak power focused onto 100µm2), rotations within
a few nanoseconds are possible with better than 90% fi-
delity. Higher fidelities of 99.99% can be reached for the
same detuning by using lower laser powers of 106W/cm

2
.

V. TESTS OF LOCAL REALISM

We show the efficacy of our fast measurement scheme
by applying it to a test of local realism. This
is expressed in the usual Clauser-Horne-Shimony-Holt
(CHSH) form [13],

〈B〉 = 〈QS〉+ 〈RS〉+ 〈RT 〉 − 〈QT 〉 ≤ 2, (5)

for local realistic theories, whereas Tsirelson’s quantum
upper bound is 2

√
2. For a |Ψ+〉 entangled state, the

quantum bound is saturated for Q = Z, R = X ,
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FIG. 2: (Colour online) (a) Energy levels of Sr and three-
photon transition for manipulation of the qubit encoded in
1S0 and 3P0. (b) Minimum fidelity Fmin of single qubit oper-
ation in Sr (solid red line) and time scale for π pulse (dashed
blue line) as a function of λ1 (= λ3) using a peak laser pulse ir-
radiance of 109 W/cm2. λ2 is determined by the on-resonance
condition for the three-photon transition. (c) Minimum fi-
delity Fmin of single qubit operation (solid red line) and time
scale for π pulse (dashed blue line) as a function of laser irradi-
ance Ipeak. Detuning is fixed to λ1 = 688.7 nm. (d) Resulting
expectation value of the Bell operator 〈B〉 and threshold for
a local hidden variable model (solid black line).

S = (X − Z)/
√
2, and T = (X + Z)/

√
2, with X , Y , Z

the Pauli operators. These measurements are obtained
via basis rotations R(θ) = exp(+iθY/2) applied to the
state, followed by measurements in the z-basis. This

corresponds to measurements of the form Q = U †
QZUQ

with UQ = 11, UR = R(π/2), US = R(3π/4), and
UT = R(π/4).

(a) (b)

1S
0

3P
1

3P
0

3S
1

556 nm

649 nm680 nm

Ω1

Ω2Ω3

Δ13

Δ34 Δ24
Yb

tπ(ns)
0.5 1 1.5 2 2.5

0

1

2

3

<
B
>

FIG. 3: (Colour online) (a) Energy levels of Yb and three-
photon transition for manipulation of the qubit encoded in
1S0 and 3P0. (b) Expectation value of the Bell operator for
imperfect single-qubit rotations in Yb as a function of time
scale of the measurement for Ipeak = 109 W/cm2.

Inequality (5) is tested by first preparing an entan-

gled Bell state via a controlled phase gate as discussed
above, then separating the atoms by a few meters. In
a far-off-resonance, magic-wavelength trap, qubit coher-
ence times are on the order of 10 s or longer. For accel-
erations of 200 mm/s2 or faster [21], separations of a few
meters should be feasible. At this distance, synchronous
measurements on a nanosecond time scale are required
to ensure space-like separation. Within this time win-
dow, the measurement basis is chosen randomly, qubits
are rotated to reflect the choice of measurement basis,
and qubit states are measured in the computational ba-
sis using REMPI. Fast random basis selection can be
accomplished by using a light emitting diode (LED) as
in [15]. The time necessary for this random basis selec-
tion can be minimized [e.g., by using shorter signal paths
and custom-built electro-optic modulators (EOMs)] to
ensure basis selection times of less than 10 ns. Rotation
of the measurement basis is achieved via a coherent cou-
pling of the qubit states via three-photon Raman tran-
sitions. The presence of the ion (i.e., the freed electron)
will be detected via a single channel electron multiplier
with above 99% efficiency [31] .

As in a typical single channel experiment [16], the
measurement outcome can be only “ion”≡ |1〉 or “no
ion”≡ |0〉. No data are discarded, and no assumptions are
made about “fair sampling” [13] or “enhancement” [14].
Loss of an atom will result in a “no ion”≡ |0〉 count,
which reduces the degree of Bell inequality violation but
does not open any loopholes. High transport and detec-
tor efficiencies are necessary to ensure that a violation
occurs. A calculation of the CHSH-type Bell inequality
violation [13], including errors in rotation and ionization
readout, is shown in Fig. 2(d) for Sr and Fig. 3(b) for
Yb. To achieve an average value of the Bell-operator
larger than 2, as required for a violation, measurements
on a time scale of a few nanoseconds (including signal
processing times) should be possible with either atomic
species.

VI. CONCLUSIONS

We propose schemes for fast recoil-free manipulation
and measurement of qubits in Sr or Yb, and discuss an
entangling operation for identical bosons in optical tweez-
ers based on the exchange interaction first discussed for
fermions in [22]. We furthermore show that it is possible
to simultaneously close both space-like separation and
detection loopholes for group-II-like atomic qubits sepa-
rated on only a laboratory scale. This lays the ground-
work for future exploration of measurement-based com-
putation. Finally, our work identifies major challenges
and provides concrete guidelines for experiments utiliz-
ing bosonic Yb or Sr for quantum information processing
applications.
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Abstract. We present a new technique that improves the scaling of the
error in the adiabatic approximation with respect to the evolution duration,
thereby permitting faster transfer at a fixed error tolerance. Our method
is conceptually different from previously proposed techniques: it exploits a
commonly overlooked phase interference effect that occurs predictably at
specific evolution times, suppressing transitions away from the adiabatically
transferred eigenstate. Our method can be used in concert with existing
adiabatic optimization techniques, such as local adiabatic evolutions or boundary
cancelation methods. We perform a full error analysis of our phase interference
method along with existing boundary cancelation techniques and show a tradeoff
between error-scaling and experimental precision. We illustrate these findings
using two examples, showing improved error-scaling for an adiabatic search
algorithm and a tunable two-qubit quantum logic gate.
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The adiabatic approximation underpins many important present-day and future applications,
such as stimulated rapid adiabatic passage (STIRAP) [1, 2], coherent control of chemical
reactions [3] and quantum information processing (QIP) [4, 5]. This approximation asserts
that a system will remain in an instantaneous eigenstate of a time-varying Hamiltonian
if the time-variation happens slowly enough. Errors in this approximation correspond to
transitions away from the instantaneous (‘adiabatically transferred’) eigenstate. For high-
performance applications, it is not always practical to minimize errors by slowing things down.
Ambitious future technologies, such as quantum computing devices, will demand simultaneous
maximization of both accuracy and speed.

In this paper, we investigate a phase cancelation effect that appears during an adiabatic
evolution and can be exploited to polynomially reduce the probability of a given transition
at fixed maximum evolution time. This can lead to speed increases at fixed error probability.
Unlike alternative methods that obtain improvements by modifying the adiabatic path [6, 7], our
technique chooses the evolution time so that destructive interference suppresses the transition.
Furthermore, this phase cancelation effect can be exploited to improve existing adiabatic error
reduction strategies such as local adiabatic evolutions or boundary cancelation methods. We
provide an error analysis of our method and conclude that the accuracy improvements come
at the price of increasingly precise knowledge of the time-dependent Hamiltonian; this implies
that accuracy is an important and quantifiable resource for quantum protocols utilizing adiabatic
passage.

1. Adiabatic approximation

The adiabatic approximation states that if we consider the evolution of a quantum system
under a time-dependent Hamiltonian that varies sufficiently slowly in time, then the time
evolution operator approximately maps instantaneous eigenstates of the Hamiltonian at t = 0

New Journal of Physics 14 (2012) 013024 (http://www.njp.org/)
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to instantaneous eigenstates of the Hamiltonian at the final time t = T . That is to say, if we
define |ν(t)〉 to be an instantaneous eigenstate of the Hamiltonian H(t) and define U (T, 0) to
be the time evolution operator generated by H(t), then under the adiabatic approximation,

U (T, 0)|ν(0)〉 ≈ e−i
∫ T

0 E(t)dt
|ν(T )〉. (1)

This result is important because adiabatic evolution can be used to efficiently transfer the
state |ν(0)〉 to |ν(T )〉. This is especially relevant in situations when the state |ν(0)〉 can be
easily prepared, but |ν(T )〉 cannot. The aim in the design of adiabatic state transfer protocols
is to maximize |〈ν(T )|U (T, 0)|ν(0)〉| while minimizing other resources such as the energy,
time or experimental precision required for transfer. As a demonstrative example, consider the
Hamiltonian,

H(t)= (1 − f (t))H0 + g(t)H1, (2)

where f and g map [0, T ] 7→ [0, 1] with f (0)= g(0)= 0 and f (T )= g(T )= 1. Hamiltonians
used in adiabatic state transfer may often be written in the form of equation (2). The simplest
choice of the functions f (t) and g(t) is f (t)= g(t)= t/T , but infinitely many other choices are
possible. If we define |0〉 to be the ground state of H0, then adiabatic evolution approximately
maps |0〉 to the ground state of H1. The resources needed for adiabatic state transfer may then
be optimized by choosing f , g and T appropriately.

2. Adiabatic error

Following previous authors [8, 9], we define the error E to be the component of the post-
evolution state vector that is orthogonal to the state intended for adiabatic transfer. In many
circumstances, the following criterion adequately estimates the magnitude of the total error E at
time t = T for a given Hamiltonian:

‖E‖.
1

T
max

s

‖
d
dsH(s)‖

minν |Eν(s)− E0(s)|2
, (3)

where Eν(s) (ν 6= 0) is the instantaneous energy of the ν th eigenstate of the Hamiltonian H(s)
and E0(s) is the energy of the eigenstate being transferred (usually the ground state) [7, 10].
For convenience, we represent all mathematical terms as explicit functions of the ‘reduced
time’ s(t)= t/T , where t is the time, T is the total evolution duration, and 06 s 6 1. This
parameterization leaves the form of the Hamiltonian H(s) unchanged as T varies. We also use
the convention h̄ = 1.

Although equation (3) provides an expedient heuristic for estimating the accuracy of
adiabatic passage, it is (in general) neither necessary nor sufficient to bound the fidelity of
adiabatic state transfer [11, 12]. This equivocality opens the possibility of a modest allocation
of resources being used to enable significantly improved error-scaling.

One method of improving the fidelity of adiabatic transfer is via the use of a ‘local
adiabatic’ evolution [6, 7, 13]. The idea behind the local adiabatic approximation is to
tailor variation of H with respect to s to minimize the instantaneous non-adiabatic transition
rate ‖

∂

∂sH(s)‖/minν |Eν(s)− E0(s)|2. Local adiabatic methods have lead to substantial
improvements in the asymptotic error-scaling E with respect to the Hilbert space dimension
N [6, 7, 13]. These methods do not however improve the scaling of the error with T .
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Recently, methods were developed for improving the scaling of E with T from order
O(1/T ) to O(1/T m+1) by setting the first m derivatives of the Hamiltonian to zero at the
beginning and end of the evolution [14, 15]. Error reduction techniques employing these results
are collectively referred to as ‘boundary cancelation methods.’ Boundary cancelation methods
have two main drawbacks: first, they assume that the first m derivatives of H(s) are exactly
zero, leaving it unclear whether they are robust against small variations in the derivatives of
the Hamiltonian; second, in the regime of short T these methods can have error-scaling that is
inferior to the trivial case wherein no boundary cancelation technique is applied (i.e. m = 0).
Our work addresses these problems: we first provide an analysis of the sensitivity of boundary
cancelation methods to small variations in the values of the first m derivatives of H(s); we
then show that phase interference can be used to further reduce errors without increasing m,
improving the error-scaling for short T .

3. Main result

We present a new technique for quadratically suppressing the probability of a particular non-
adiabatic transition during adiabatic passage. It works by exploiting a phase interference effect
that appears in adiabatic systems with Hamiltonians obeying a simple symmetry. This effect can
be exploited in a realistic class of time-dependent Hamiltonians that includes many adiabatic
algorithms and transport protocols, as well as any Hamiltonian obeying H(0)=H(1).

Consider a time-dependent Hamiltonian H(s) acting on an N -dimensional Hilbert space
spanned by the instantaneous energy eigenvectors |ν(s)〉 where ν = 0, 1, . . . , N − 1. We define
|0(s)〉 to be the state intended for adiabatic passage. We use the notationH(p)(s)= ( ∂

∂x )
pH(x)|s .

In section 4 we will show that errors in adiabatic passage can be reduced for Hamiltonians
obeying the boundary symmetry condition,

〈ν(1)|H(m+1)(1)|0(1)〉

(Eν(1)− E0(1))
m+2 =

(
〈ν(0)|H(m+1)(0)|0(0)〉

(Eν(0)− E0(0))
m+2

)
e−iθ , (4)

where θ is an arbitrary phase factor, and m is the number of derivatives of H(s) that are zero
at the boundaries s = 0, 1 (e.g., if m = 2 then the first and second derivatives of H(s) are zero
at the boundaries, whereas if m = 0 then none are zero on the boundary). For a single fixed
state |ν〉, any time-dependent Hamiltonian may be adapted to satisfy equation (4) simply by
adjusting its rate of change in s at the boundaries. For example, if H(s) is of the form of
equation (2) then we can independently vary the (m + 1)th derivatives of f (s) and g(s) at s = 0,
while keeping the derivatives at s = 1 fixed, to either increase or decrease the right-hand side of
equation (4). The time rate-of-change of a Hamiltonian may also be optimized to approximately
satisfy equation (4) for a finite number of eigenstates, as we show in section 7. If equation (4)
is not exactly satisfied then the phase interference effect will still reduce errors, but it will not
necessarily improve the asymptotic error-scaling with T .

Our method can also be used in conjunction with existing boundary cancelation methods to
produce even greater improvements in the asymptotic error-scaling with T . Amplitudes of the
transitions |0(0)〉 → |ν(1)〉 are reduced from the order O(T −m−1) estimates given in [14, 15] to
order O(T −m−2) at the discrete set of times T = Tn,ν , where n is an even integer and

Tn,ν =
nπ − θ∫ 1

0 [Eν(s)− E0(s)] ds
. (5)
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Using this expression, we can find times such that the probability of transition from |0(0)〉 to
|ν(1)〉 is diminished, but such times may not be exactly commensurate with the times when other
transitions are suppressed. We show in section 7 how it is possible to choose n to approximately
cancel several transitions. In most cases, however, the error is dominated by a few non-adiabatic
transitions and in such cases our technique can lead to polynomial reductions in the scaling of
the overall error with T .

We refer to boundary cancelation methods that are augmented by our scheme to produce
order O(T −m−2) error-scaling as ‘augmented boundary cancelation methods’. In section 5, we
will analyze the error robustness of our augmented boundary cancelation method along with
the original schemes laid out in [14, 15]. We show that performance improvements are derived
from accurate knowledge of the system’s eigenspectrum {Eν}, its total evolution time, and the
derivatives of its Hamiltonian, and we provide quantitative error-bounds on these quantities. We
provide numerical examples that verify the predictions of our theory in sections 6 and 7.

4. Theory

We will break our discussion of the theory of our method into two parts. First, we discuss the
special case for which m = 0. This simple case is conceptually distinct from existing boundary
cancelation techniques, which require m > 0 to produce improvements over equation (3). We
then discuss the more general case in which m > 0.

To obtain our results, it is not necessary to assume that the instantaneous eigenvalues
satisfy the ordering condition E0(s) < E1(s) < · · ·< EN−1(s). We do however require that
E0(s) 6= Eν(s)∀ν > 0, unless transitions between |0(s)〉 and |ν(s)〉 are strictly forbidden by
H(s). For convenience, we also assume that the phases of the instantaneous eigenvectors are
chosen such that 〈ν̇(s)|ν(s)〉 = 0. This choice does not affect the quantum dynamics, but it
simplifies the analysis of the error. We also assume that the Hamiltonian is differentiable m + 2
times and that each derivative is bounded for all T . These last restrictions are put in place
order to prevent issues that arise for Hamiltonians resembling that of the Marzlin–Sanders
counterexample [11, 16].

Given the above assumptions, the error in the adiabatic approximation E for a Hamiltonian
evolution acting on an N -dimensional Hilbert space is given by

E =

N−1∑
ν=1

Eν e−iT
∫ 1

0 Eν(s) ds
|ν(1)〉 +O(T −m−2). (6)

We know from previous work that Eν ∈O(T −m−1) [14, 15], and asymptotically tight expressions
are known for Eν in the m = 0 case [8, 16]. We therefore begin with this case to illustrate how
our phase interference effect can be utilized. Given that m = 0, the form of Eν reduces to

Eν =
〈ν(s)|Ḣ(s)|0(s)〉 e−iT

∫ s
0 γν(ξ) dξ

−iT γ 2
ν (s)

∣∣∣∣∣
1

s=0

, (7)

and where γν(s)= E0(s)− Eν(s). If we choose H(s) to obey (4), then the absolute value of
equation (7) reduces to

|Eν| =

∣∣∣∣〈ν(0)|Ḣ(0)|0(0)〉T γ 2
ν (0)

(e−i(θ+T
∫ 1

0 γν(s) ds)
− 1)

∣∣∣∣ . (8)
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Equation (8) has extrema at T = Tn,ν . It is maximized when n is odd and vanishes when n
is even. Thus, when T = Tn,ν (even n), phase interference causes the scaling of the magnitude
of the ν th component of E with T to be quadratically reduced from O(T −1) to O(T −2). This can
lead to substantial error reductions in the adiabatic approximation if we choose T to suppress
the non-adiabatic transition that dominates (6), as seen in sections 6 and 7.

If m > 0 then the phase interference effect also suppresses probability of excitation to
|ν(1)〉 at T = Tn,ν for any even integer n > 0, but this effect does not directly follow from
existing results. We show in appendix A using a perturbative expansion (similar in reasoning to
that of [14, 15]) that if the first m derivatives of H(s) are zero at the boundaries s = 0, 1 then

|Eν| =

∣∣∣∣∣∣ 〈ν(s)|H
(m+1)(s)|0(s) 〉e−i

∫ s
0 γν(ξ) dξT

T m+1γ m+2
ν (s)

∣∣∣∣∣
1

s=0

∣∣∣∣∣∣ . (9)

Similar to equation (7), equation (9) reveals an adiabatic phase interference effect also that
suppresses the error at certain times. This suppression occurs when

〈ν(1)|H(m+1)(1)|0(1)〉 e−iT
∫ 1

0 γν(s) ds

γν(1)m+2
=

〈ν(0)|H(m+1)(0)|0(0)〉

γν(0)m+2
, (10)

implying that adiabatic phase interference effects reduce the order of transition amplitude Eν
from O(T −m−1) to O(T −m−2) when T = Tn,ν for even n.

As an additional note, it may appear from applying the triangle inequality to equation (6)
that the bounds we present here could exceed the value cited in equation (3) in the limit of large
N . It can be seen by a more careful use of the triangle inequality that this result does not scale
with N because ‖

∑N−1
ν=1 |ν(1)〉〈ν(s)|‖6 1 for all s. It is shown in equations (30)–(32) of [16]

that this observation leads us to the conclusion that equation (3) is, up to a constant multiple, an
asymptotic upper bound for equation (6).

5. Tolerances

Limits on the precision of physical apparatus prevent perfect phase cancelation in realistic
applications. Errors can result from imperfect modeling of the Hamiltonian, inexact calculations
of the gap integrals, or inaccuracies in the timing or control apparatus. It is therefore necessary
to address the impact of empirical imperfections on the feasibility of augmented boundary
cancelation methods and determine when they methods can be experimentally realized.

‘Symmetry errors’ occur when the timing symmetry condition (4) is not precisely satisfied:

1Sν =

∣∣∣∣〈ν(1)|H(m+1)(1)|0(1)〉

γν(1)m+2
−

〈ν(0)|H(m+1)(0)|0(0)〉

γν(0)m+2
e−iθ

∣∣∣∣ 0

〉
. (11)

Comparing equation (11) with equation (9), we find that the contributions to Eν due to symmetry
errors are of order O(T −m−2) so long as 1Sν ∈O(T −1).

‘Gap errors’ occur when inaccuracies in the estimate of the gap integral leave condition (5)
unsatisfied:

1Gν =

∣∣∣∣∫ 1

0
γν(ξ) dξ −

nπ − θ

Tn,ν

∣∣∣∣ 0

〉
. (12)
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Expanding equation (8) in powers of1Gν , we find that the contributions to Eν due to gap errors
are of order O(T −m−2) if 1Gν ∈O(T −2).

‘Timing errors’ occur when the actual evolution time T differs from the ideal evolution
time Tn,ν:

1Tn,ν =
∣∣Tn,ν − T

∣∣ 0
〉
. (13)

Expanding equation (8) in powers of 1Tn,ν , we find that the contributions to Eν due to timing
errors are of order O(T −m−2) if 1Tn,ν ∈O(T −1).

‘Derivative errors’ can also occur wherein one or more of the derivatives of the Hamiltonian
that is assumed to be zero is not:

1H(p) = max
s=0,1

‖H(p)(s)‖0〉, (14)

for p = 1, . . . ,m. Such errors do not affect the error-scaling if for all such p,

1H(p) ∈O(1/T m+2−p). (15)

In other words, given that the first m derivatives of H are approximately zero at the
boundaries, the uncertainty in each derivative must shrink polynomially as T increases in order
to achieve the full promise of an augmented boundary cancelation method. The proof that this
criterion is sufficient is not simple: it requires a high-order perturbative analysis of the error in
the adiabatic approximation. Details are provided in appendix B.

If m is a constant, then it follows that augmented boundary cancelation methods are
error robust in the sense that their error tolerances scale polynomially with T −1. This is
not problematic for numerical studies because additional precision can be provided at poly-
logarithmic cost. However, experimental errors cannot always be so conveniently reduced,
and boundary cancelation techniques that use a large value of m may be impractical. The
situation is even worse if exponential error-scaling is required, which can be obtained if
m ∈2(T/log T ). In such circumstances the tolerances H(p)(s) decrease exponentially with T
and therefore boundary cancelation methods are not error robust. This implies that boundary
cancelation techniques (augmented or not) cannot in practice achieve exponential scaling
without exceedingly precise knowledge of the derivatives of the Hamiltonian at the boundaries.
The m = 0 method may therefore be more experimentally relevant than its higher-order
brethren, because of its minimal precision requirements and its superior scaling for modestly
short T .

As the performance improvements provided by boundary cancelation methods come at
the price of increasingly accurate information about the Hamiltonian and the evolution time,
such information may be viewed as a computational resource for protocols utilizing quantum
adiabatic passage. This suggests that current analyses [17] of the resources required for generic
adiabatic quantum computing may be incomplete. We illustrate this subtlety in section 6 by
showing how to quadratically improve the total error-scaling ‖E‖ of an already ‘optimal’
quantum algorithm.

6. Search Hamiltonians

Adiabatic quantum computing (AQC) algorithms are natural candidates for error suppression
by our technique. To demonstrate, we examine an algorithm that adiabatically transforms an
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Figure 1. Final error amplitude |E| as a function of T for the search Hamiltonian
(16) using N = 16 and φ(s)= s.

initial guessed state into the sought state of a search problem [10]. The Hamiltonian for this
algorithm is

H(s)= I − (1 −φ(s))|+⊗n
〉〈+⊗n

| −φ(s)|0⊗n
〉〈0⊗n

|, (16)

where |+〉 = (|0〉 + |1〉)/
√

2, |0⊗n
〉 is the state that the algorithm seeks, and φ : [0, 1] 7→ [0, 1]

obeys φ(0)= 0 and φ(1)= 1.
Two common choices for φ(s) [7, 13, 18] are φ(s)= s and

φ(s)=

√
N − 1 − tan[arctan(

√
N − 1)(1 − 2s)]

2
√

N − 1
. (17)

The latter choice (17) is said to generate a ‘local’ adiabatic evolution [7, 13]. In each case, the
(dimensionless) energy gap is

γ1(s)=

√
1 − 4

(
1 −

1

N

)
φ(s)(1 −φ(s)), (18)

where |0(s)〉 is the ground state of equation (16) and |1(s)〉 is the only other eigenstate that is
coupled to |0(s)〉 [19]. From the eigenvectors of H(s), it is straightforward to verify that both
forms of φ(s) given above satisfy equation (4) with m = 0.

Figures 1 and 2 show that the choice T = Tn,ν (even n) produces quadratic improvements
in the scaling of ‖E‖ for both φ(s)= s and equation (17) at large T . For odd values of n,
the error is maximized, as expected. It is apparent that randomly selected times are extremely
unlikely to exhibit maximum phase cancelation. Figures 1 and 2 also suggest a second benefit of
our technique: existing boundary cancelation methods [14, 15] can improve the performance of
adiabatic algorithms in the limit of large T , but these improvements come at the price of inferior
error-scaling for small T , as seen in figure 3 of [14]. The results shown here in figures 1 and 2
exhibit no such tradeoff.

Figures 1 and 2 also shed light on the nature of the complexity of adiabatic algorithms.
Several previous studies have taken the complexity of an adiabatic algorithm to be given by

New Journal of Physics 14 (2012) 013024 (http://www.njp.org/)

200



9

Figure 2. Final error amplitude |E| as a function of T for the search Hamiltonian
(16) using N = 16 and equation (17).

Figure 3. This figure shows that existing boundary cancelation methods can
be augmented with our boundary cancelation method to achieve even higher-
order error-scaling for a search Hamiltonian with N = 16 and φ(s) chosen as
in equation (19). Figure 3(a) is a plot of the error at the times when our theory
predicts improved error-scaling (i.e. even n), whereas figure 3(b) displays the
times when the errors are predicted to be maximized (i.e. odd n).

the evolution time required for the error predicted by equation (3) to fall within a specified
tolerance [7, 10, 13]. In the case of the local adiabatic evolution, this time scales as O(

√
N ),

which is known to be optimal [7, 13]. Figure 2 show that this error can still be quadratically
reduced by eliminating the O(T −1) contributions to it. These results do not violate quantum
lower bounds because the time required for the O(1/T ) to become dominant still scales
as O(

√
N ) [14]. Therefore even an exponential improvement in the subsequent adiabatic

regime would not violate quantum lower bounds. Paradoxically, these results suggest that the
complexity of adiabatic algorithms may be dictated by the physics of the sudden approximation
rather than the adiabatic approximation.
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We demonstrate our generalized m > 0 technique in figure 3, where we plot |Eν| as a
function of the total evolution time for a search Hamiltonian with φ(s) taken to be

φ(s)=

∫ s
0 xm(1 − x)m dx∫ 1
0 xm(1 − x)m dx

. (19)

This interpolation was originally suggested in [14] and is chosen because it conveniently
guarantees that the first m derivatives of H(s) are zero at s = 0 and s = 1. Additionally, in
the m = 0 case it gives the linear interpolation φ(s)= s used in figure 1.

Figure 3 demonstrates the improvements that arise from combining our results with those
taken from [14, 15]. It is notable to see that the m = 0 data in figure 3(a) nearly coincides with
that for m = 1 in figure 3(b) for sufficiently large T . Similarly, the m = 1 data in figure 3(a)
corresponds to the m = 2 data in 3(b) in the same limit. This shows that our technique can be
used to improve the overall accuracy of boundary cancelation techniques without compromising
the error-scaling for short T .

7. Two-qubit gate

Our technique naturally lends itself to Hamiltonians that couple the ground state to only one
excited state, such as the search Hamiltonian given in equation (16). If the total error ‖E‖ is
dominated by several transitions, this technique can still be adapted to approximately cancel
multiple transitions simultaneously. To demonstrate, we show how to optimize the fidelity of an
adiabatic two-qubit logic gate without decreasing its speed. Similar improvements were reported
previously [20], without a broadly-applicable underlying theory or error bounds.

We apply of our method to an exchange-based two-qubit operation designed for neutral
atom QIP [5, 21–23]. This operation exploits identical particle exchange to generate a partial
‘swap’ operation between qubits stored in nuclear spin [22] or valence electronic states [23] of
optically trapped atoms. The gate generates a relative phase of e−iα between the symmetric
and antisymmetric components of the particles’ vibrational degrees of freedom. The phase
difference is then transferred to the respective components of the two-qubit subspace {|i j〉 :
i, j ∈ {0, 1}}. This produces an operation that (with single-qubit rotations) is locally equivalent
to a tunable entangling controlled-phase gate e−2iα|11〉〈11| [23].

Following previous work [5, 23], we examine a simple Hamiltonian governing two
identical particles confined to one dimension and trapped by pair of moving potential wells.
The Hamiltonian for particles 1 and 2 is given by

H(x1, x2, p1, p2, s)=H(x1, p1, s)+H(x2, p2, s)+ 2aω⊥δ(x1 − x2), (20)

for H(x, p, s)= p2/2m + V (x + (s −
1
2)d)+ V (x − (s −

1
2)d), where x and p are the position

and momentum of a particle of mass m. The potential V (x)= −Vo exp(−x2/2σ 2) describes a
1D Gaussian trap of depth Vo and variance σ 2. Traps are initially separated by a distance d = 3σ .
We consider a 1D s-wave scattering interaction, with scattering length aω⊥ = 3σ and transverse
confinement frequency ω⊥ [24]. As equation (20) is symmetric, transitions between symmetric
and antisymmetric states are forbidden, and each symmetry subspace evolves independently.

We diagonalized equation (20) over the range 06 s 6 0.5 at 1s = 1/1200 intervals.
We then used a spline fitting to integrate equation (5), obtaining numerical estimates T
of the ideal Tn,ν . The quality of initial approximations were then improved using the
relationship |Tn,ν − T | ≈ T/1n, where 1n measures the beat frequency between T −1 and T −1

n,ν
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Figure 4. Transition amplitudes and bounds for T = Tn,5, over 2006 n 6 2000.
Main figure shows | 〈ψ+

n |5〉 | ≈ |E5| for even n (solid) and odd n (dashed), which
are bounded by maxs[2‖

d
ds H(x, p, s)‖/(E5(s)− E0(s))2] (dotted). Inset shows

|〈ψ−

n |6〉| bounded by maxs[2‖
d
ds H(x, p, s)‖/(E7(s)− E1(s))2].

(e.g., the distance between cusps on inset, figure 4). More sophisticated model Hamiltonians
may be solved using more advanced numerical techniques and empirically refined in the same
manner.

We numerically integrated the Shrödinger equation to obtain system dynamics of durations
{Tn,5}, explicitly generating sets of wave functions {|ψ+

n (s)〉} and {|ψ−

n (s)〉} for two distinct
initial states: the symmetric ground state |ψ+

n (0)〉 = |0(0)〉 and the antisymmetric (effective)
ground state |ψ−

n (0)〉 = |1(0)〉. We chose Tn,5 because |5(s)〉 is the first eigenstate that
significantly couples to |0(s)〉. This transition is dominant because the 0 ↔ 1, 0 ↔ 2 and 0 ↔ 3
transitions are forbidden, and the 0 ↔ 4 coupling is weak. We define |〈ψ±

n |ν〉| = |〈ψ±

n (1)|ν(1)〉|.
The error probabilities are improved by nearly three orders of magnitude over the bound set

by equation (3) by applying our technique to this system (table 1). This corresponds to a tenfold
increase in gate speed (given a maximum error rate of 10−4), for the linear motion described
by equation (20). Greater improvements could be achieved by choosing H(x, p, s) or s(t) to
satisfy equation (5) for more transitions simultaneously and with better synchronization.

Partial swap operations have been experimentally demonstrated using neutral atoms in
a double-well optical lattice, but the adiabatic requirement limits gate times (∼4 ms for high
fidelity operation [21]). Our technique thus affords a significant advancement to inherently slow
gates of this kind. Furthermore, because the phase α scales with T (see table 1), the precision
necessary for accurate gate operation is itself comparable to that needed to implement our phase
cancelation technique on an atomic quantum logic gate.

We have numerically demonstrated that error in the adiabatic approximation can be reduced
for an experimentally relevant model of a quantum gate. An important remaining issue is
whether the experimental uncertainties required to observe error reductions are reasonable for
this model system. By first-order Taylor expansion of equation (7), we find that if

1S5

/(
β5(0)

γ5(0)

)
< 33% and

1G5∫ 1
0 γ5(s)ds

=
1T5

T460,5
< 0.02%, (21)
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Table 1. Error probabilities and the phase gap α (radians) obtained from
simulation runs {Tn,5} for 4566 n 6 474. For these times, local minima of
|〈ψ+

n |5〉| roughly match those of |〈ψ−

n |6〉| (inset, figure 4) and |〈ψ−

n |7〉|.
We denote total errors as ‖E+

‖
2
= 1 − | 〈ψ+

n |0〉 |
2 and ‖E−

‖
2
= 1 − | 〈ψ−

n |1〉 |
2.

Equation (3) predicts ‖E+
‖

2 6 0.046 and ‖E−
‖

2 6 0.62 × 10−3 at n = 460.

Run Error probabilities (×10−4) Phase

n |〈ψ+
n |5〉|

2
|〈ψ−

n |6〉|
2

|〈ψ−
n |7〉|

2
‖E+

‖
2

‖E−
‖

2 α

456 0.024 0.012 0.245 0.988 0.535 1.645
458 0.022 0.007 0.180 0.771 0.433 −0.186
460 0.021 0.003 0.124 0.648 0.316 4.266
462 0.021 0.001 0.078 0.764 0.275 −3.849
464 0.023 <0.0001 0.043 0.980 0.249 0.603
466 0.023 <0.0003 0.018 1.010 1.201 −1.228
468 0.023 0.002 0.003 0.925 0.292 −3.059
470 0.023 0.004 <0.0001 0.763 0.452 1.392
472 0.022 0.007 0.006 0.721 0.502 −0.438
474 0.021 0.012 0.021 0.803 0.654 4.014

then the observed transition amplitude at T ≈ T460,5 will be less than half of that at T = T459,5.
These modest requirements imply that our m = 0 method may be rapidly incorporated into
present-day or near-future atom-based QIP experiments. Such an experiment would also provide
a highly sensitive test of the validity of the adiabatic approximation in open quantum systems.

8. Conclusion

We have presented a new technique for improving the fidelity of adiabatic transport. Our
technique exploits an adiabatic phase cancelation effect that occurs at certain evolution times
to produce improved error-scaling. In addition, our method applies directly to a host of
experimentally relevant physical systems, often without modification to the adiabatic path s(t).
Our technique can also be used to improve the accuracy of existing boundary cancelation
techniques, providing improved scaling over those methods when an easily satisfiable symmetry
condition (4) is met. We show that these ‘augmented’ boundary cancelation techniques can
provide unsurpassed accuracy, requiring comparably precise control over the Hamiltonian to
achieve high-order error-scaling. Consequently, our work reveals that precision (in addition to
energy and time) is a subtle and important resource to consider when devising algorithms and
experiments that utilize adiabatic state transfer.

We have illustrated these claims using numerical examples of QIP applications. We
numerically demonstrated the use of augmented boundary cancelation methods for m = 0, 1, 2
for an adiabatic search algorithm. We also optimized a simple adiabatic quantum logic gate
using our m = 0 method. In that case we also performed an error analysis and found that the
error tolerances needed to apply the method are experimentally reasonable.

Our results open several interesting avenues of further inquiry. We have shown that our
technique can be used to improve the accuracy of some local adiabatic evolutions, but it would
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be interesting to see if further improvements can be obtained by using our method in concert
with more sophisticated adiabatic optimization methods such as the one given in [6]. In addition,
determining the error tolerances for small deviations along the adiabatic path would be an
important step towards fully characterizing precision as a resource for adiabatic processes. Our
preliminary estimates suggest that it may be possible to observe error reductions for atom-based
quantum logic using optical dipole traps, but other experimental setups may also be well-suited
to study this effect, such as nuclear magnetic resonance (NMR) systems. Such experiments
would not only be interesting as a test of the viability of augmented boundary cancelation
methods as an error-reduction strategy, but would also provide a highly sensitive test of the
limits of the adiabatic approximation itself.

Appendix A. Proof of equation (9)

In section 4 we claimed that phase cancelation can be used to accelerate the convergence
of boundary cancelation techniques. Specifically, we claimed that our augmented boundary
cancelation methods reduce |Eν| from order O(T −m−1) to O(T −m−2). We will now justify why
this is the case.

Using the path-integral representation of the time-evolution operator presented
in [8, 16, 18] we have that

‖Eν(1)| =

∥∥∥∥ ∫ 1

0
βν,0(s) e−i

∫ s
0 γν(ξ) dξ T ds

+
∑
µ

∫ 1

0
βν,µ(s) e−i

∫ s
0 γν,µ(ξ) dξ T

∫ s

0
βµ,0 e−i

∫ s2
0 γµ(ξ) dξ T ds2 ds + · · ·

∥∥∥∥,
(A.1)

where βν,µ is defined for any ν and µ in the set {0, . . . , N − 1} by

βν,µ(s)=


0, if Eν(s)= Eµ(s),
〈ν(s)|Ḣ(s)|µ(s)〉

Eν(s)− Eµ(s)
, otherwise.

(A.2)

We analyze the series under the assumption that the first m derivatives of the Hamiltonian are
zero at the boundaries s = 0, 1. Using integration by parts, we find that∫ 1

0
βν,0(s)e

−i
∫ s

0 γν(ξ) dξ T ds =
〈ν(s)|H(1)(s)|0(s〉)

−iγ 2
ν (s)T

e−i
∫ s

0 γν(s) ds T

∣∣∣∣1
0

−

∫ 1

0

(
∂

∂s

βν,0(s)

−iγν(s)T

)
e−i

∫ s
0 γν(ξ) dξ T ds. (A.3)

Then, using the fact thatH(1)(0)=H(1)(1)= 0, the first term on the right side of equation (A.3)
is zero. Evaluating the second term using integration by parts, we obtain

−

(
∂

∂s

〈ν(s)|H(1)(s)|0(s)〉
−iγν(s)2T

)
e−i

∫ s
0 γν(ξ) dξ T

∣∣∣∣1
0

+
∫ 1

0

(
∂

∂s

1

γν(s)T

(
∂

∂s

βν,0(s)

−iγν(s)T

))
e−i

∫ s
0 γν(ξ) dξ T ds.

(A.4)

New Journal of Physics 14 (2012) 013024 (http://www.njp.org/)

205



14

As before, the first term in this expression is zero because the first two derivatives of the
Hamiltonian are zero. We then continue this reasoning, applying integration by parts m + 1
times. Then after dropping the first m derivatives of the states, Hamiltonian, and energy gaps at
s = 0, 1, we find∣∣∣∣∫ 1

0
βν,0(s) e−i

∫ s
0 γν(ξ)dξT ds

∣∣∣∣
=

∣∣∣∣∣ 1

T m+1

(
〈ν(1)|H(m+1)(1)|0(1)〉 e−i

∫ 1
0 γν(s) ds T

γν(1)m+2
−

〈ν(0)|H(m+1)(0)|0(0)〉

γν(0)m+2

)∣∣∣∣∣
+O(1/T m+2). (A.5)

We then see that the symmetry condition in equation (4) implies that if T = Tn,ν then the first
term in the expansion in equation (A.3) is O(1/T m+1). The result of equation (9) then holds if
the remaining terms in equation (A.1) are asymptotically negligible.

Turning our attention the remaining path-integrals in equation (A.1), we find that all of the
remaining terms are O(1/T m+2). This is because these terms involve contain multiple products
of βµ,ν . Therefore, if we perform integration by parts m + 1 times on the outermost integral,
then the term involving H(m+1) becomes multiplied by at least one βµ,ν term, which is zero
on the boundary by definition. Therefore, no nonzero terms appear in the expansion of these
integrals to O(1/T m+2). Hence, the first term in equation (A.1) is asymptotically dominant as
anticipated [8, 16]. Since the first term is asymptotically dominant and also of order O(1/T m+2)

given T = Tn,ν , the augmented boundary cancelation technique proposed in section 5 combines
with existing methods.

Appendix B. Error-robustness of augmented boundary cancelation methods

In section 5 we claimed without proof that if the uncertainty in the pth derivative of H(s) is
O(T −m−2+p) for all p = 1, . . . ,m, then that derivative can safely be assumed to be negligible.
We prove this now by demonstrating that the leading order terms involving H(p)(0) or H(p)(1)
for p = 1, . . . ,m are of order O(T −m−2) under this assumption.

We begin by assuming that, for some q, H(q)(s) is nonzero at the boundaries s = 0, 1
and that all lower derivatives are negligible there. Following the argument put forward in
appendix A, the lowest order term that appears after applying integration by parts q times to
equation (A.1) is∣∣∣∣∣ 1

T q

(
〈ν(1)|H(q)(1)|0(1)〉 e−i

∫ 1
0 γν(s) ds T

γν(1)q+1
−

〈ν(0)|H(q)(0)|0(0)〉
γν(0)q+1

)∣∣∣∣∣ . (B.1)

If H(q)(1) and H(q)(0) are both of order O(T −m−2+q), then the term (B.1) is reduced to
order O(T −m−2). As argued in appendix A, other terms that appear in the perturbative series
after repeated integrations by parts are asymptotically smaller than this term and therefore do
not affect the error-scaling. Thus, it is sufficient to render errors in the q th derivative of H(s)
negligible by taking them to be O(T −m−2+q).

By the same reasoning, if the uncertainty in the pth derivative ofH(s) isO(T −m−2+p) for all
p = 1, . . . ,m, then the total contribution of derivative errors is O(T −m−2) given that m ∈O(1).
This implies that augmented boundary cancelation methods are robust to derivative errors given
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that m is a fixed integer. This result also trivially implies that existing boundary cancelation
methods are robust to derivative errors under the same circumstances.

If m is not bounded from above by a constant then this analysis fails because the previous
analysis ignored multiplicative factors of m that appear in the analysis. Such terms could make
the neglected higher-order derivative terms much larger if m is an increasing function of T .
This means that if we wish to achieve exponential error-scaling by taking m ∈2(T/log(T )),
then the tolerance for derivative errors must shrink even further from the already exponentially
small error tolerances obtained by substituting m ∈2(T/log(T )) into O(T −m−2+p) for fixed p.
We conclude that boundary cancelation methods that exhibit exponential error-scaling are not
robust to derivative errors.
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Cellular energy production depends on electron transfer (ET) be-
tween proteins. In this theoretical study, we investigate the impact
of structural and conformational variations on the electronic cou-
pling between the redox proteins methylamine dehydrogenase
and amicyanin from Paracoccus denitrificans. We used molecular
dynamics simulations to generate configurations over a duration
of 40 ns (sampled at 100-fs intervals) in conjunction with an ET
pathway analysis to estimate the ET coupling strength of each
configuration. In the wild-type complex, we find that the most
frequently occurring molecular configurations afford superior elec-
tronic coupling due to the consistent presence of a water molecule
hydrogen-bonded between the donor and acceptor sites. We attri-
bute the persistence of this water bridge to a “molecular break-
water” composed of several hydrophobic residues surrounding
the acceptor site. The breakwater supports the function of nearby
solvent-organizing residues by limiting the exchange of water mo-
lecules between the sterically constrained ET region and the more
turbulent surrounding bulk. When the breakwater is affected by a
mutation, bulk solvent molecules disrupt the water bridge, result-
ing in reduced electronic coupling that is consistent with recent
experimental findings. Our analysis suggests that, in addition to
enabling the association and docking of the proteins, surface
residues stabilize and control interprotein solvent dynamics in a
concerted way.

respiratory chain ∣ Marcus theory ∣ pathway model ∣ dynamic docking ∣
blue copper proteins

The electron transport chain is the cornerstone of biological
energy transduction. All known life-forms use membrane-

bound chains of redox proteins to convert energy from food or
sunlight into chemical energy stored in adenosine triphosphate
(1). Biological electron transfer (ET) often occurs over long dis-
tances (>1 nm) between protein-encapsulated redox cofactors
separated by intervening protein or solvent molecules. Over
the last two decades, there has been increasing interest in water
as an “active constituent in cellular biology” (2). Today there is a
growing body of evidence suggesting that water plays an impor-
tant role mediating long-range ET and that conformational
fluctuations are critical to protein-solvent interactions at ET
interfaces (3–10). Notably, previous authors have suggested that
“ordered water molecules in the protein-protein interface may
considerably influence electronic coupling between redox cen-
ters” (4) and that “water may be a particularly strong tunneling
mediator when it occupies a sterically constrained space between
redox cofactors with strong organizing forces that favor construc-
tively interfering coupling pathways” (7).

In general, however, the degree of sophistication of solvent-
organizing effects at aqueous ET interfaces remains unknown.
In this study, we show that a pair of solvent-organizing residues
in direct contact with a bridging water molecule may be aided by
surrounding residues that help stabilize local solvent dynamics by
mediating contact with the bulk. We predict that surface residues
at protein-protein interfaces can act collectively to organize and
stabilize solvent structures and dynamics during long-range ET.

The timely passage of electrons from protein to protein is
crucial for proper metabolic regulation (11) and relies on all
the physical and chemical phenomena (i.e., diffusion, protein
docking, and ET reaction steps) that participate in overall elec-
tron transmission. Here we investigate the redox reaction be-
tween methylamine dehydrogenase (MADH) and amicyanin
taken from Paracoccus denitrificans. This redox pair is represen-
tative of a broad class of interprotein ETreactions involving blue
copper proteins (12). Under methylotrophic growth conditions,
MADH supplies electrons to amicyanin, a blue copper protein
that in turn shuttles electrons to various c-type cytochromes
(13). In vitro, the transfer occurs between the reduced tryptophan
tryptophylquinone (TTQ) group on the MADH β-subunit and a
cupric complex buried just under the amicyanin surface (Fig. 1).
The oxidation of MADH by amicyanin is a “true” ET reaction,
limited by the ET reaction rate kET (14). Ma et al. recently
reported a series of site-directed mutations performed on the
amicyanin methionine 51 residue by alanine, lysine, and leucine
(Fig. 1) (15). Kinetic measurements revealed nearly a tenfold de-
crease in kET without significant changes to the proteins’ overall
structural, binding, or redox potentials. Ma et al. concluded that
“surface residues of redox proteins may not only dictate specifi-
city for their redox protein partners but also be critical to opti-
mize the orientations of the redox centers and intervening media
within the protein complex for the ET event” (15).

To analyze an interprotein ETreaction such as the reduction of
amicyanin by MADH, it is necessary to consider large ensembles
of protein-protein complex configurations that contribute to the
average ET rate (16). For a true ET reaction, the ET rate kET
can be estimated by nonadiabatic Marcus–Hush–Levich theory
(17, 18),

kET ¼ 2π

ℏ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πλkBT
p jTDAj2 exp

�
−ΔG‡

kBT

�

¼ 2π

ℏ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πλkBT
p jTDAj2 exp

�
−ðΔG∘ þ λÞ2

4λkBT

�
; [1]

where ℏ is the reduced Planck’s constant, kB is Boltzmann’s con-
stant, T is the temperature,ΔG‡ is the Gibbs free energy of activa-
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tion, ΔG∘ is the Gibbs free energy of reaction, λ is the reorganiza-
tion energy, and TDA is the superexchange matrix element
that couples the donor and acceptor electronic states quantum
mechanically.

The experimental trends reported by Ma et al. (15) strongly
suggest the existence of a correlation between protein motion
and ET activity in the MADH-amicyanin complex. While most
numerical studies have addressed nanosecond time scales or
shorter, we investigated longer time scales (40 ns) that are less
well understood, thereby obtaining statistics for vibrational
modes spanning several temporal orders of magnitude. In
addition to the wild-type complex, we consider four amicyanin
mutants: M51A, M51L, M51K, and M51C. The first three muta-
tions correspond to those reported by Ma et al. (15), whereas
M51C was added to investigate the impact of a thiol replacing
the original thioether. We employed molecular dynamics (MD)
simulations to generate the configurations within the transient
ET complex along with an ET pathway analysis to characterize
each configuration’s intrinsic ET activity (see Methods). This
computationally intensive investigation has allowed us to identify
important solvent-stabilizing functions of interprotein surface
residues. Because of this solvent-stabilizing effect, the most
ET-active wild-type conformations are also the most statistically
favored ones, an effect that is lost in the mutant complexes.

Results
We obtained 400,000 molecular configurations from 40 ns of MD
simulations of the wild-type complex and each mutant. We em-
ployed the semiempirical pathway model originally developed by
Beratan, Onuchic, and Hopfield (19) to determine the tunneling
pathway with the largest electronic coupling matrix element TDA
for each configuration. Although this model does not provide an
absolute value for the superexchange coupling matrix element
TDA and does not account for interferences between multiple
pathways, it can be used to estimate the total electronic coupling
decay factor εtot, where TDA ≈HDA · εtot and HDA is the theore-
tical “close-contact” coupling matrix element (20, 21). Despite
its simplicity, the pathway model has previously demonstrated
excellent predictive power when comparing different molecular
configurations (8, 22, 23). We recorded the pathway with the

largest decay factor εtot for each configuration and labeled it
by the surface residue through which the electron exits the
MADH. We found that in the vast majority of pathways
(>99%), the electron leaves the MADH through one of Ser β
56, Trp β 57, Val β 58, or Trp β 108 before tunneling through
one or more water molecules and entering the amicyanin through
His 95. Adopting the terminology already in use (21), it is con-
venient to define four distinct collections of similar pathways, or
“pathway tubes,” labeled by the letters A (Ser β 56), B (Trp β 57),
C (Val β 58), and D (Trp β 108) (Fig. 2 and Fig. S1). All the re-
maining excess pathways (labeled E) afford comparatively weak
electronic coupling (Table S1).

Pathway tubeA is of particular interest due to its large coupling
strength and high frequency of occurrence (∼60%, Table 1). For
this reason, we further divided it into three subcategories: A1 re-
presents a single pathway with a hydrogen-bonded bridge from
the Ser β 56 O carbonyl oxygen through a single water molecule
to the His 95 HE2 proton, A2 represents all the remaining com-
pletely hydrogen-bonded water bridges between Ser β 56 and His
95, and A3 represents all the partially broken (i.e., van der Waals
coupled) pathways from Ser β 56 to His 95. In a previous pathway
analysis performed on the crystal structure of the MADH-ami-
cyanin dimer (24), Brooks et al. found that the strongest pathway
required a through-vacuum jump from MADH Trp β 108 to ami-
cyanin Pro 94 (25). In contrast, in our solvated system we find that
pathways involving a direct jump from Trp 108 to Pro 94 make up
less than 0.01% of our data and are on average one-tenth as
strong as the completely hydrogen-bonded A1 pathway. In an-
other analysis performed on the MADH-amicyanin-cytochrome
ternary crystal structure, Chen et al. concluded that the strongest
pathway involved a trapped interfacial water molecule, even
though its efficiency depended “critically on the presence of
the water molecule which may not always be occupied” (26).
Chen et al.’s water-mediated pathway is identifiable as our A1

pathway, assuming a hydrogen-bonded arrangement for the hy-
drogen atoms that were not resolved. Thus, our computational
study strongly supports Chen et al.’s water-bridge hypothesis
and moreover stresses the importance of the dynamical behavior
of the ET pathways; very frequent switches between the pathways
are obtained in the course of the simulations (Fig. S2) but path-
way A1 was favored only in the wild-type complex.

Configurations associated with pathway tube A1 depend criti-
cally on the probability Phb of a water molecule forming two
simultaneous hydrogen bonds with atoms Ser β 56 O and His
95 HE2. The wild-type complex’s statistical affinity for pathway
A1 depends on this high probability (Phb > 50%) compared with
those of the mutants (Phb < 20%) (Table 1). In turn, the presence
of this water bridge is linked to the discrepancy in the average
number of water molecules found at the interface between the
proteins. The consistent presence of the water molecule joining
Ser β 56 and His 95 in the wild type, its corresponding absence in
the mutants, and the resulting reduction in the mutant coupling
strength indicate that solvent organization is vital to this reaction.
Any destabilization of the A1 water bridge results in a statistical
shift toward less efficient pathways (Table 1).

The A1 pathway is disrupted when other water molecules jostle
or compete with the bridging water molecule (Fig. 2 A1). To
determine the impact of surrounding water molecules on the
A1 bridge, we computed the number of water molecules within
the “ETregion,” which we define to be a sphere of radius R cen-
tered between the MADH Ser β 56 O and amicyanin His 95 HE2
atoms. Even for large radii (R ¼ 5 Å), an average of only 2.5
water molecules are present within the wild-type ET region,
compared with mutant averages ranging from 4.7 to 6.3 (Fig. 3).
Comparatively few water molecules are exchanged between the
wild-type ET region and the surrounding bath. The mutant ET
regions are much more turbulent, as evidenced by the larger
number of water molecules present, the lower probability of

Fig. 1. (A) Solvated amicyanin (blue) in contact with MADH subunit β (red).
Residues of interest to ET are represented as liquorice. Redox cofactors are
shown in purple and surface methionine residues in orange. The dominant
pathway A1 is shown as a transparent blue tube connecting the redox cofac-
tors. (B) Direct (“head on”) view of interfacial residues represented by their
chemical nature: hydrophobic (white), hydrophilic (yellow), positively
charged acidic (blue), and negatively charged basic (red). The dotted green
circles indicate the ET region on the surface of each protein. The molecular
breakwater is visible as a white ring of hydrophobic residues surrounding the
amicyanin His 95.
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hydrogen-bonded bridge formation Phb, and the higher rate of
turnover τ between the individual water molecules involved in
forming the A1 bridge (Table 1). These results indicate that
the dynamical organization of the intervening solvent is crucial
to the formation of the most efficient ET configurations.

A comparison of mutant-to-wild-type ratios of the calculated
decay factors rmut

ε ¼ hε 2
totimut∕hε 2

totiwt and the experimental rates
rmut
k ¼ kmut

ET ∕kwtET provides insight about the impact of the Met 51
mutation on experimental rates through modifications of the
electronic coupling term. Our results are in overall qualitative
agreement with experiment, as the decreases in the mutant decay
factors are of comparable size to the experimentally observed
decreases in the ET rate constants (Table 1). There is, however,
a discrepancy between the ordering of the experimentally deter-
mined mutant rates (1 > rM51L

k > rM51K
k > rM51A

k ) and the pathway
model decay factors (1 > rM51A

ε > rM51K
ε > rM51L

ε ), discussed be-
low. We find that the packing density model (27) produces decay
factors similar to those of the pathway model for the M51L and
M51K mutants, but predicts the M51A and M51C mutants to be
at least as kinetically competent as the wild type.

Discussion
It is remarkable that a single strongly coupled pathway should
dominate the thermal statistics of the wild-type complex alone
(>50%, Fig. 3A). There is no a priori correlation between the
binding affinity of the complex and ET activity: Maxwell-Boltz-
mann statistics govern the probability of occurrence of a given
configuration, whereas the nonadiabatic Marcus expression
(Eq. 1) independently determines the ET rate constant kET for
that configuration. It is apparent that the protein structure at
the wild-type interface is specifically suited to favor conforma-
tions most amenable to ET. On the other hand, configurations
associated with lower efficiency pathways become more statisti-
cally prominent in the mutant distributions, thereby decreasing
the average decay factor hεtoti (Table 1). This statistical change
also carries implications for the overall reaction kinetics.

In order to relate solvent dynamics directly to the mutation, it
is necessary to consider interactions between the amicyanin 51
residue and other protein or solvent molecules. Previously, when
performing a P52G mutation upon amicyanin, Ma et al. attribu-
ted the resulting reduction in kET to a loss of interactions between
the amicyanin Met 51 residue and the MADH Val 58 (28). This

Fig. 2. Representative pathways for each pathway tube in colors corresponding to those in Fig. 3. Hydrogen bonds are represented by dotted lines and
through-space jumps by solid ovals. The arrows on A1 illustrate perturbations to the hydrogen-bond network caused by another nearby water molecule.

Table 1. Expectation values for hεtoti and the ratios rmut
ε ¼ hε 2

totimut∕hε 2
totiwt and rmut

k ¼ kmut
ET ∕kwt

ET obtained from packing density and
pathway analyses*

Wild type M51L M51K M51A M51C

rmut
k (Experiment) 1.0 0.68 0.49 0.13 —
hεtoti × 103 (Pathway analysis) 0.90 ± 0.03 0.47 ± 0.03 0.61 ± 0.02 0.65 ± 0.02 0.73 ± 0.02
rmut
ε (Pathway analysis) 1.0 0.36 ± 0.04 0.52 ± 0.04 0.57 ± 0.04 0.76 ± 0.05
εtot × 103 (Packing density) 0.70 ± 0.03 0.42 ± 0.04 0.51 ± 0.03 0.62 ± 0.05 1.03 ± 0.05
rmut
ε (Packing density) 1.0 0.56 ± 0.09 0.76 ± 0.07 0.89 ± 0.15 2.29 ± 0.26
Phb 0.53 0.15 0.19 0.18 0.16
τ (ns−1) 0.40 0.57 0.60 0.65 0.68

*The uncertainties account for the sampling errors of the computational protocol (see SI Text). Experimental rates kET were obtained from k3 (at 30 °C) in
table 3 of ref. 15 (M51C was not reported). Phb is the unit-normalized likelihood that a water molecule is simultaneously hydrogen bonded to both the
MADH Ser β 56 O and amicyanin His 95 HE2 atoms during our simulations. The turnover τ of the bridging water molecule is defined as the number of
different water molecules that participate in pathway A1 divided by the length of the simulation in nanoseconds.
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conclusion is compatible with our simulation results, which show
that conformational variations in the amicyanin M51K and M51L
residues allow an increased number of water molecules to
“sneak” into the ET region (Fig. S3). Intuitively, one expects
the replacement of Met 51 by a smaller (alanine) or hydrophilic
(lysine) residue to allow more water molecules to enter the ET
region. The cases of cysteine and leucine are less straightforward
to analyze, as both residues are hydrophobic and similar in size to
methionine. Many complex interactions influence the dynamics
of these residues, and a future analysis will have to examine a
variety of chemical effects (e.g., methionine is a Lewis base
whereas leucine is more acidic). In this regard, our study high-
lights the importance of subtle interprotein surface dynamics
to the formation of efficient ET pathways.

Ma et al. (28) used the “true, gated, and coupled ET” (17) fra-
mework to rationalize the decrease in the ET rates in terms of
protein motion at the interface. Based on large increases in
the inferred values of TDA and λ, as well as observed changes
to the rate-limiting reaction kinetics for the N-quinol TTQ form
of MADH (15, 28), Ma et al. inferred that the rate constants kET
measured for the M51A andM51K mutants were not those of the
true ET reaction, as is the case for the wild-type system. Rather,
they proposed that the M51A and M51K reactions were “gated”
by an unidentified, separate, slower pre-ETstep x that imposed its
rate kx over that of the actual ETevent (15). On the other hand,
experimental data for the M51L mutant is similar to that of the
true wild-type reaction and is not consistent with conformation-
ally gated ET for which kET > kx. For the M51L mutant, Ma et al.
concluded that either kx ∼ kET or that the ET reaction is kineti-
cally “coupled” to a rapid but unfavorable conformational rear-
rangement with equilibrium constant Kx, so that the observed
rate is actually kET × Kx (15). This kinetically coupled picture
(29) is compatible with the “dynamic docking” framework in
which “a large ensemble of weakly bound protein-protein config-
urations contribute to binding, but only a few are reactive” (30). It
is not clear why the mutation of theMADHMet 51 residue would
lead to gated ET (kET > kx) in the M51A and M51K mutants, but
coupled ET (kET < kx) in the M51L mutant.

Our numerical analysis is consistent with the viewpoint that ET
is modulated by rapid interconversion within an ensemble of con-
figurations of varying ETreactivity. The configurations produced
by our simulations exhibit a continuum of ETaffinities, whereas

the kinetically coupled and dynamic docking models assume a
simple active/inactive model of ET activity (29, 30). This ac-
tive/inactive dichotomy fails to capture the variation in intermedi-
ate coupling strengths revealed by our pathway analysis (Fig. 3).
ET rate reductions comparable to the experimental ones are
obtained by summing the contributions to TDA arising from
the various accessible molecular configurations within the tran-
sient ET complex, without assuming a distinct preorganization
step. Because each configuration is associated with an intrinsic
ETcoupling strength, it is enough to modulate the ETrate simply
by modifying each configuration’s respective statistical weight.
We propose the hypothesis that the increased amount of water
at the ET interface dynamically modulates the ET rate in the
mutants, akin to kinetically coupled ET as described above.

Further work will be required to reproduce the exact experi-
mental trend in the mutant rate constants (Table 1). Variations in
relevant parameters such as ΔG∘ and λ contribute to the experi-
mental rate kET, but given that the wild-type ET rate is
kET ¼ 10 s−1, 40 ns of MD simulation may not fully account
for these parameters. Furthermore, although the use of Langevin
dynamics improves the sampling of the configuration space, the
artificial noise inherent to this method can also become a source
of error. The pathway model itself is limited by its inability to
account for complex-valued interferences between tunneling
pathways. It successfully estimates the electronic coupling for mo-
lecular configurations with a single dominant tunneling-pathway
or a few constructively interfering pathways, but its accuracy is
limited for configurations with multiple destructively interfering
pathways (7). Because pathway “tube” A1 represents only one
strongly coupled pathway and because very few water molecules
are present at the wild-type interface, the pathway model is ex-
pected to provide a good coupling estimate for the statistically
favored wild-type A1 configurations. The increased number of
water molecules at the mutant interfaces makes inter- and intra-
tube destructive interference more likely in the mutant com-
plexes, and the pathway model may overestimate the coupling
strengths for these configurations. The question of multiple inter-
ferences accentuates the potential importance of solvent control
to create one dominant strongly coupled pathway at the protein
interface.

Fig. 3. Normalized distributions of sampled pathway tubes (A–E) and the average number of water molecules (F) within the ET region defined by a sphere of
radius R (sphere shown in Fig. 4).
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Conclusions
Earlier studies on both inter- and intraprotein ET revealed
the possibility of water-mediated ET pathways in biological ET
(6, 31), as well as the specific role of protein residues stabilizing
well-defined ET pathways (8, 32). Our study, however, provides
compelling evidence that several protein surface residues can act
together in concert to organize bridging water molecules, enhan-
cing electron transfer between proteins. Our numerical simula-
tions indicate that MADH Ser β 56 and amicyanin His 95
work together to form a solvent-linked bridge between donor
and acceptor, while the surrounding hydrophobic residues act
as a “molecular breakwater” to support the stability of this bridge
(Fig. 1B). Comparisons of the solvent organization in the wild-
type and mutant complexes show that the amicyanin Met 51 re-
sidue plays an essential role, repelling bulk water molecules from
the ET region (Fig. 4). Any modification of the steric or electro-
static interactions at the Met 51 site—by either replacement (15)
or repositioning (28)—may disrupt this solvent-repelling mechan-
ism. In this respect, we believe that site-directed mutagenesis stu-
dies of the nearby amicyanin Met 28 and Met 71 residues (Fig. 1)
would also be of great interest. If Met 28 and Met 71 function in
the same manner as Met 51, mutations to these residues will
produce reductions in kET similar to those found for Met 51.

More generally, our proposed solvent-repelling mechanism
depends on a patch of hydrophobic surface residues surrounding
the acceptor site, a characteristic shared by other blue copper
proteins (12). So far, this surface characteristic was believed to
ensure a weak binding affinity of the redox partners, allowing fast
association and dissociation processes. Our study reveals another
possible role for a blue copper protein’s hydrophobic surface
(Fig. 1B). It may enhance the ET activity of the redox complex,
controlling solvent dynamics to significantly improve the strength
and stability of water-mediated ET pathways.

Methods
Molecular Dynamics Simulations. We carried out molecular mechanics
computations using the CHARMM 33a package (33). We selected the ternary
MADH-amicyanin-cytochrome-c551i complex resolved to 1.9 Å by X-ray crys-
tallography (Protein Data Bank ID code 2GC4). This is a reasonable starting
structure for simulations because crystalline MADH has been demonstrated
to be catalytically competent to transfer electrons to amicyanin (34, 35). After
deleting the cytochrome-c551i from the ternary complex, hydrogen atoms
were added with the HBUILD routine (as implemented in CHARMM), and
the proteins were solvated in a TIP3P (36) water box of dimensions
115 × 80 × 80 Å3. Approximately 40 Naþ ions were added to ensure electrical
neutrality (depending on the mutant). Histidine residues, including His 53
and His 95 were monoprotonated consistent with the experimental pH of
7.5 (15). The mutant complexes were generated from this structure in silico
using Molden (37). The amicyanin cupric center was treated using the force
field parameters developed by Comba and Remeny for blue copper proteins
(38). The Lennard-Jones parameters for the copper ion were ε ¼ 0.05 kJ∕mol

and σ ¼ 2.13 Å (39). The wild-type and mutant structures were first geome-
trically optimized by 500 steps of steepest descent algorithm and subsequent
1,500 steps of adopted basis Newton–Raphson optimizer. This was followed
by 1 ns of Langevin dynamics to ensure equilibration and a further 40 ns from
which conformations were sampled every 100 fs. The Shake algorithm was
employed to constrain hydrogenated bonds at their equilibrium bond
lengths. A friction coefficient of 15 ps−1 and a bath temperature of 298 K
were used to propagate the equations of motion within the Langevin ap-
proach. Periodic boundary conditions were applied to simulate a continuous
medium. Finally, a shift function was used to compute electrostatic interac-
tions between distant pairs of atoms, with a 12-Å cutoff. A switch function
was applied for van der Waals interactions (starting from 10 Å and set to zero
at 12 Å). This is the recommended (default) scheme in CHARMM to compute
nonbonded terms.

Choice of Donor and Acceptor. We defined the donor based on the density
functional theory (DFT) highest occupied molecular orbital of the TTQ cofac-
tor. For these computations we used the deMon2k code (40) with the Per-
dew–Burke–Ernzerhof functional (41) and the double-zeta-valence plus
polarization–generalized gradient approximation basis sets. The catecholate
ring represents 63% of the donor molecular orbital, whereas the full MADH
Trp β 57 aromatic ring represents almost 73%. There is very little orbital de-
localization onto the MADH Trp β 108 residue (less than 15% spread over its
aromatic ring), and as such it cannot be considered part of the donor group.
We therefore restrict our definition of the donor to the Trp β 57 catecholate
ring, assigning a decay factor of 1 between the Trp β 57 atoms. Consequently,
the best pathway for a given configuration does not depend on the choice of
the starting atom within the MADH Trp β 57 catecholate ring. We note that
our DFT-based definition of the donor orbital is different from the one cho-
sen in a previous pathway analysis where the electron density was assumed to
be delocalized across both cycles of the TTQ group and the Trp β 108 residue
was therefore taken as part of the donor group (25). The copper atom was
taken as the acceptor because the beta lowest unoccupied molecular orbital
essentially consists of the copper dxy orbital (some contributions are found on
the Cys 92 residue but do not extend farther than the sulfur atom 3p orbital).

ET Analysis. We chose the empirical pathway model originally developed by
Beratan et al. (20) to estimate εtot for the huge number of sampled molecular
configurations. The pathway model allowed us to classify the configurations
in terms of distinct geometric motifs, directly relating conformational fluc-
tuations to variations in the coupling strength. The pathway model assumes
that the electron can tunnel from atom to atom along a given pathway,
each interatomic step i contributing a coupling decay factor εi. Individual
covalently bonded, hydrogen-bonded, and through-vacuum decay factors
(denoted εc , εhb, εv , respectively) were calculated based on semiempirical for-
mulae (Eqs. 3–6). TDA is the product of the first order close-contact matrix
coupling element HDA and the total semiempirical decay factor εtot (Eq. 3),
where εtot is the product of N individual decay factors (N ¼ Nc þ Nhb þ Nv ,
respectively). To improve the accuracy of εtot, we used refined parameters
derived recently from constrained DFT (42, 43) for the εhb term, which
depends on the hydrogen-bond angle ϕ and the atom-to-atom distance R.
We employed Dijkstra’s algorithm (44) to find the pathway with the largest
coupling for each configuration. To make the search tractable, each protein
complex was pruned to about 300 atoms at the ET interface belonging to the
following residues: amicyanin Met 28, Met 51, Pro 52, His 53, Met 71, Cys 92,
Pro 94, His 95, Met 98, Cu(II); MADH Ala β 55, Ser β 56, Trp β 57, Val β 58, Pro β
100, Glu β 101, Trp β 108; and all water molecules within 7 Å of the amicyanin
95 HE2 or MADH 108 CD2 atoms.

TDA ¼ HDA · εtot; [2]

εtot ¼
YNc

i¼1

εic ·
YNhb

j¼1

εihb ·
YNv

k¼1

εkv ½pathway model�; [3]

εc ¼ 0.6; [4]

εhb ¼ 0.36 · e−0.64ðR−2.01Þ · e−2.23ðcosϕþ1Þ · e−1.83ðR−2.01Þðcosϕþ1Þ; [5]

εv ¼ 0.6 · e−1.7ðR−1.4Þ: [6]

For comparison with the pathway model, the packing density (27)
approach was also tested. In this case, εtot is written as a product of two

Fig. 4. Representative snapshots of the wild-type (Left) and M51A (Right)
interfaces, revealing the breach in the molecular breakwater due to the mu-
tation (other mutants shown in Fig. S3). The gray sphere represents the ET
region for radius R ¼ 5.5 Å. Water molecules are shown in the van der Waals
representation.
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exponential decay factors that involve the fraction of filled space (i.e., space
within the atoms’ van der Waals radii), the complementary fraction of va-
cuum space, and the donor-acceptor separation RDA (Eq. 7). The associated
decay factor parameters βfill (0.45 Å−1) and βvac (1.4 Å−1) were taken from
Page et al. (27). To evaluate the fraction of filled space f fill we defined
200 points regularly spaced along the donor-acceptor axis and determined
for each of them the presence of any surrounding atom within their van
der Waals radius.

εtot ¼ e−f fillβfillRDA · e−ð1−f fillÞβvacRDA ½packing density model�: [7]

Figures. Molecular graphics were prepared with VMD (version 1.8.6) (45).
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Supporting Information
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SI Text
Confidence Intervals. The expectation values reported in Table S1
for the electronic coupling factors hεtoti and the squared decay
factors hε2toti have been estimated from their average values
and standard deviations on the ensemble of snapshots extracted
from the molecular dynamics (MD) simulations. The confidence
interval is then obtained using the formula (in the case of ε)

hεi ¼ ε̄� σ
ffiffiffiffiffi

nρ
p ;

where ε̄ is the average value of εtot taken over n configurations
(400,000 for each system) and ρ is the chain statistical efficiency.
The latter term accounts for the statistical correlations among
the values within the ensemble of snapshots. Because these
ensembles are generated from MD simulations (not from purely

stochastic simulation methods such as the Monte Carlo ap-
proach), such correlations are unavoidable and must be removed
to get reliable confidence intervals (1, 2). The value of ρ can
be estimated from the analysis of the autocorrelation function
(ACF) of εtot. For example, in the case of a purely exponential
decay for the ACF with a characteristic length τ, ρ would be

ρ ¼ ð1þ 2τÞ−1:

In practice, the ACF does not take an easily identifiable
form, and the analysis is done by a numerical fitting of the εtot
autocorrelation function. This was done with the coda package
(3) implemented in the “R Project for Statistical Computing”
program (4).

1. Allen MP, Tildesley DJ, eds (1987) Computer Simulation of Liquids (Clarendon Press,

Oxford, UK), pp 192–198.

2. Gregory P, ed (2005) Bayesian Logical Data Analysis for the Physical Sciences (Cam-

bridge Univ Press, Cambridge, UK), pp 312–351.

3. PlummerM, Best N, Cowles K, Vines K (2009). coda: Output analysis and diagnostics for
MCMC. R package version 0.13-4.

4. R Development Core Team (2008). R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
Available at http://www.R-project.org.

Fig. S1. Representative snapshots of the different configuration types. The colors of the representative ET pathway tubes are the same as shown in Figs. 2 and
3 (A1, blue; A2, green; A3, red; B, purple; C, ochre; and D, brown). The donor and acceptor cofactors are represented in purple.
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Fig. S2. Running averages showing the percentages of each pathway tube taken over a 1-ns window.
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Fig. S3. Representative snapshots of the M51L (Top Left), M51K (Top Right), and M51C (Bottom) interfaces. The gray sphere represents the ET region for
R ¼ 5.5 Å. Water molecules are shown in the van der Waals representation.

Table S1. Detailed pathway analysis*

Wild type M51L M51K M51A M51C

Tubes ε̄ % ε̄ % ε̄ % ε̄ % ε̄ %
A1 1.10 52.8 0.91 26.2 0.99 29.0 0.94 24.3 1.00 23.0
A2 0.44 3.0 0.38 13.0 0.43 5.1 0.43 1.9 0.44 4.5
A3 0.25 3.6 0.23 10.4 0.28 11.1 0.24 6.2 0.26 5.8
B (Trp57β) 0.74 39.8 0.48 29.1 0.60 35.3 0.68 66.1 0.69 39.0
C (Val58) 0.56 0.4 0.48 20.4 0.55 17.4 0.60 0.8 0.61 12.9
D (Trp108) 1.25 0.2 0.23 0.4 0.76 1.4 1.06 0.2 0.96 13.9
Ewet 0.32 <0.1 0.09 0.2 0.25 0.1 0.14 <0.1 0.33 0.3
Edry 0.14 0.1 0.06 0.3 0.18 0.5 0.19 0.4 0.30 0.7

*ε̄ is the averaged decay factor obtained for a given pathway tube over 40 ns of simulation time. The εtot values for the pathway model
are scaled by a factor of 103. Pathway tube E has been subdivided into Ewet and Edry, representing all remaining water-mediated and
non-water-mediated pathways, respectively.
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Corrections

BIOPHYSICS AND COMPUTATIONAL BIOLOGY
Correction for “Surface residues dynamically organize water
bridges to enhance electron transfer between proteins,” by
Aurélien de la Lande, Nathan S. Babcock, Jan �Rezá�c, Barry C.
Sanders, and Dennis R. Salahub, which appeared in issue 26,
June 29, 2010, of Proc Natl Acad Sci USA (107:11799–11804; first
published June 14, 2010; 10.1073/pnas.0914457107).
The authors note that Table 1 appeared incorrectly. The cor-

rected table appears below.
Additionally, the authors note that on page 11803, right

column, first paragraph, lines 7–10, “A friction coefficient of

15 ps−1 and a bath temperature of 298 K were used to propa-
gate the equations of motion within the Langevin approach.
Periodic boundary conditions were applied to simulate a con-
tinuous medium.” should instead appear as “A friction coef-
ficient of 10 ps−1 and a bath temperature of 298 K were used to
propagate the equations of motion within the Langevin ap-
proach. No boundary conditions were imposed; the system freely
evolved in vacuum.”
These errors do not affect the conclusions of the article.

www.pnas.org/cgi/doi/10.1073/pnas.1220833110

Table 1. Expectation values for 〈etot〉 and the ratios re
mut = 〈e 2

tot〉
mut/〈e 2

tot〉
wt and rk

mut = kET
mut/kET

wt obtained from packing density and
pathway analyses*

Wild type M51L M51K M51A M51C

rmut
k (Experiment) 1.0 0.68 0.49 0.13 —

〈«tot〉 ×103 (Pathway analysis) 0.90 ± 0.03 0.47 ± 0.03 0.61 ± 0.02 0.65 ± 0.02 0.73 ± 0.02
rmut
« (Pathway analysis) 1.0 0.36 ± 0.04 0.52 ± 0.04 0.57 ± 0.04 0.76 ± 0.05
〈«tot〉 ×103 (Packing density) 0.70 ± 0.03 0.42 ± 0.04 0.51 ± 0.03 0.62 ± 0.05 1.03 ± 0.05
rmut
« (Packing density) 1.0 0.56 ± 0.09 0.76 ± 0.07 0.89 ± 0.15 2.29 ± 0.26
Phb 0.53 0.15 0.19 0.18 0.16
τ (ns−1) 0.23 0.45 1.20 0.50 2.25

*The uncertainties account for the sampling errors of the computational protocol (see SI Text). Experimental rates kET were obtained from k3 (at 30 °C) in
table 3 of ref. 15 (M51C was not reported). Phb is the unit-normalized likelihood that a water molecule is simultaneously hydrogen bonded to both the
MADH Ser β 56 O and amicyanin His 95 HE2 atoms during our simulations. The turnover τ of the bridging water molecule is defined as the number of
different water molecules that participate in pathway A1 divided by the length of the simulation in nanoseconds.
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