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Abstract

Quantum repeaters are the most promising approach for distributing entanglement over long dis-

tances. Recent approaches to develop quantum repeaters involve the use of deterministic entangled

photon pair sources. On the other hand heralded entangled photon pair sources have been proposed

independently both with parametric down conversion source and single photon sources. We mod-

ify the latter scheme to implement it as an on demand entangled photon pair source and analyse its

performance considering inefficient detectors, inefficient quantum memories and inefficient single

photon sources. We conclude that with the current state of art, generation of high fidelity deter-

ministic entangled photon pairs is possible with moderate efficiency. We then compare the results

to the deterministic entangled photon pair source obtainable using parametric down conversion

source and conclude that the single photon scheme described in this thesis is more practical for

such an implementation.
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Chapter 1

Introduction

The discovery of entanglement [1] has led to the most extensive research in quantum physics in

recent years. Mathematically speaking entangled states are those quantum states of compound

systems which cannot be written as product states of individual subsystems [2].For example we

can imagine a spin singlet state shared between two observers A (Alice) and B (Bob) who are

separated by a distance.

∣∣Ψ−〉= 1√
2
(|↑〉A |↓〉B−|↓〉A |↑〉B)) (1.1)

where the qubit of subsystem belonging to Alice is represented by (|↑〉A , |↓〉A) and the qubit of

subsystem belonging to Bob is represented by (|↑〉B , |↓〉B). The spin is measured in z direction for

each of the subsystems.

Clearly such a joint state cannot be written as product of states shared by Alice and Bob individu-

ally. Let us also imagine that Alice chooses to measure the spin of her subsystem in z direction and

let Bob know her choice via classical communication. The curious feature of entanglement is that

if Bob also chooses to measure the spin of his subsystem in z direction , then the result obtained

by him is always anti-correlated with that of Alice’s result. If Alice has obtained spin up for her

subsystem then Bob will end up finding his spin down for his subsystem. And if Alice has obtained

spin down for her subsystem, then Bob will end up finding spin up for his subsystem. It is, as if,

Bob’s spin had no well defined spin initially, but the measurement made by Alice, albeit at a distant

location, has somehow influenced Bob’s spin to be anti correlated. This directly challenges our pre

conception (locality, realism) [1] of classical physics.

An initial explanation [3] to this problem was to state that quantum mechanics is an incomplete

theory and one needs additional classical parameters, namely the local variables, to explain it.

However, one can ask, what if Bob is not obedient to the choice of the basis made by Alice and
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measures in any direction other than z? How will the correlations of the result look like in that

case? In the historic paper [1], John Bell deduced that if local variable theories are true, such

disobedience from Bob’s part would ensure that all correlation functions resulting out of joint

measurements between Alice and Bob, can vary only within a specific range of values. This result

is famously known as the Bell inequality [1].

One of the most interesting feature of entanglement is that for an entangled state, once can perform

joint measurements where the value of the correlation function thus obtained, violates Bell inequal-

ity or its analogous form [2]. Violation of Bell inequalities have been experimentally confirmed

through numerous experiments [4], [5]. Recently, a loophole free Bell test [6] has been reported.

In quantum information processing, entanglement has led to pioneering ideas such as quantum

teleportation [7], quantum dense coding [8] and quantum key distribution [9] thus leading to quan-

tum internet [10].

In the Ekert protocol [9] of the quantum key distribution, in the presence of an eavesdropper Eve,

Alice wants to transfer a secret key to Bob in a secured way. This key thus shared can be sub-

sequently used to exchange publicly encrypted message between Alice and Bob. However Alice

might not always succeed as Eve can intercept the key midway and perform a measurement to de-

cipher it. But measurement alters a quantum system. So Eve’s measurement will alter the original

key and thus Bob will not receive the original key Alice intended to send. So the question is, how

will Bob, upon reception of the key from Alice, know whether Eve has successfully intercepted

it or not? Here Alice and Bob shares strings of Bell states on which they can perform local mea-

surements (from a certain choice of basis). Alice now informs Bob her measurement results for

each basis via classical communication. And Bob compares her results with his own and computes

a correlation function. Ekert protocol formulates that, had Eve failed to intercept their message,

then this correlation function will violate Bell inequality. If the initial photons shared are maxi-

mally entangled, then this correlation function will violate Bell inequality maximally. However, if

the correlation function fails to violate accordingly, then Bob can know that Eve has succeeded in
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eavesdropping.

It is a well known result in quantum communication that transferring one qubit can only transfer

at most one bit of classical information [11]. However, quantum dense coding [8] exhibits that it is

possible to send two bits of classical information via transferring one qubit if the qubit is entangled

in a Bell state with another qubit at the receivers end. Bell states is a maximally entangled states

of two qubits. There are four possible Bell states and they are

∣∣Ψ−〉= 1√
2
(|0〉A |1〉B + eiπ |1〉A |0〉B)) (1.2)

∣∣Ψ+
〉
=

1√
2
(|0〉A |1〉B + ei2π |1〉A |0〉B)) (1.3)

∣∣Φ−〉= 1√
2
(|0〉A |0〉B + eiπ |1〉A |1〉B)) (1.4)

∣∣Φ+
〉
=

1√
2
(|0〉A |0〉B + ei2π |1〉A |1〉B)) (1.5)

An interesting property of Bell state is that if any one of them is chosen by Alice and Bob, either

Alice or Bob can perform a local unitary rotation on it to obtain the other Bell states. There are

four such possible rotations (I, σx,−iσy, σz) and thus we can encode two bits for each of them. For

example we can say 00≡ I, 01≡ σx,10≡−iσy,11≡ σz. In quantum dense coding, Alice and Bob

lying at two distant location, share a Bell state which they know beforehand. Now Alice can per-

form any of the four rotations mentioned above on her qubit, and send her qubit to Bob. Now Bob

can perform joint measurement on Alice’s qubit and his qubit to infer which rotation was exactly

performed by Alice. As each such rotation encodes two bits, in this way Alice can send Bob two

bits of information by only sending one qubit.

Also if Alice and Bob shares a Bell state, which is initially known, Alice can transfer an unknown

qubit to Bob without physically transporting it. This is the method of quantum teleportation [7]. In

this case, Alice couples the qubit to be sent with the Bell state previously shared between her and
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Bob. She can then perform a local Bell state measurement on her initial qubit (which is entangled

with Bob’s qubit) and the qubit to be sent. This Bell state measurement entangles the two qubit in

Alice’s hand into any of the four possible Bell state but collapses Bob’s qubit to a product state. If

Alice can now inform Bob classically which Bell state her measurement has inferred, Bob will be

able to perform local unitary operation on his qubit to retrieve the original Alice intended to send.

The common feature of all these examples of applications of quantum information processing, is

that we need entangled states shared between distant locations. Photons travel faster than any other

known medium and that they interact weakly with the environment. This makes entangled photon

states the primary choice for sharing entanglement over distance. However the main problem in

this approach is that direct transmission of photons over long distance is difficult as they get ab-

sorbed by optical fibres and for distances around 600km the rate of transmission falls to very low

values [12] .

One of the principal way to solve this problem is using quantum repeaters as proposed by Briegel

et al[13]. The well known implementation of quantum repeaters by Duan, Lukin, Cirac and Zoller,

DLCZ protocol[14] has triggered wide range of experimental interests. One of the recent and more

practical approaches to repeaters [15] (to be discussed in details next chapter) uses deterministic

entangled photon pair sources.

Photon source(s) coupled with linear optics elements and photon detectors are capable of produc-

ing entangled photon pairs [16], [17] where such creation is signalled by appropriate detections

in the detectors, thus being heralded. This entangled photon state can be subsequently stored in

quantum memories to be recalled upon. This leads one to ask whether we can have deterministic

entangled photon pair sources fabricated in this way. In this thesis we propose a scheme which can

be ideally implemented as deterministic entangled photon pair sources. This scheme uses single

photon sources, quantum memories, photon number resolving detectors and linear optic elements

and is inspired from [17]. We calculate its performance under practical imperfections and deduce

under what range of imperfections can it function as deterministic entangled photon sources.
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Heralded entangled photon pairs, which is the basic idea behind our scheme, can also be imple-

mented using parametric down conversion sources [16]. Inspired from this, we imagine another

scheme which can possibly be implemented as deterministic entangled photon sources. We com-

pare these two schemes and draw conclusions for future.

1.0.1 Arrangement of the thesis

The rest of the thesis follows in the following way-

In Chapter 2 Background we briefly discuss the relevance of our thesis in the frame work of current

research in quantum information processing. We briefly discuss quantum repeaters and a more

recent repeater scheme involving entangled photon pair sources thus the latter’s importance. In

Chapter 3 Ideal Scheme, we propose our scheme as a deterministic entangled photon pair source

and state the condition under which it can act so. In chapter 4 Imperfect Scheme we then introduce

our imperfections considered and inspect the sensitivity of the scheme to the imperfections. In

chapter 5 Performance as a deterministic source, we discuss its feasibility both under practical

imperfections and realistic improvements in technology. We also compare it with another possible

scheme which is shown in Appendix 2. In Discussions, we discuss the summary of our results.

Outline of calculations for the scheme discussed in this thesis have been shown in Appendix 1.
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Chapter 2

Background

This chapter describes the relevance of this thesis in current research in quantum information

processing. In this chapter we follow a quantum repeater protocol and importance of deterministic

entangled photon pair sources in the frame work of this repeater scheme

2.1 Quantum Repeaters

Figure 2.1: Basic scheme for quantum repeaters as proposed by Briegel et al [13]

When it comes down to sharing entangled photon states, the obvious choice would have been to

create entanglement locally and then transmit one subsystem to a distant location. But as photon

absorption increases exponentially with the length of the fibre, even with the best available re-
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sources, this makes the rate of transmission fall to very low values for distances around 600 km

[18],[12]. A solution to this problem was proposed by Briegel et al [13] under the name quantum

repeaters (figure (2.1)).

Here, say we want entanglement to be shared between two distant locations A and B separated

by a distance L. This distance L is divided into n elementary links each of distance L0 = L/n.

Each elementary link is equipped with one node at each of its ends. Entanglement is generated

independently in the elementary link and is subsequently stored in the nodes . Once entanglement

is established in neighbouring links, entanglement swapping [19](see section A.7) is performed

between elementary links, and subsequently on secondary and tertiary links till the final entangled

state shared between A and B. Quantum memories [20] are the principal choice for these nodes.

The idea behind using quantum memories (chapter 2, section 2) is to ensure that entanglement can

be generated independently along each elementary link and stored till the next link is ready for

swapping.

The DLCZ protocol uses three level atomic ensembles as its nodes. These atomic ensembles emit a

single photon via spontaneous Raman Transition while creating a single atomic excitation. Ideally

both the ensembles are excited, and any of one of them emit a photon with equal probability, which

then travels to a central station. Its detection heralds the other single atomic excitation de localised

among the two atomic ensembles, thus generating the entanglement over the elementary link. This

de localised atomic excitation can be read out with a strong resonant light pulse to emit anti-stokes

photons to perform entanglement swapping via one photon detection (see section A.7). They are

then combined into a beam splitter followed by detectors at each end. An alternative approach

[21] is to using a combination quantum memories and photon pair source has also been proposed

aiming better performance.

7



2.2 Quantum memories

Quantum memories [20],[22] are important elements for quantum information processing appli-

cations such as quantum networks [10], quantum repeaters [13],[15] and linear optical quantum

computation [23].

Quantum memories for single photons can be thought of a black box which intakes a single photon

state and re emits another single photon state. Its performance can be evaluated by two important

parameters- firstly, the probability that it re emits a single photon given the absorption of a single

photon. This probability is termed as the efficiency. Secondly the overlap of the emitted state of the

photon with the absorbed state, which is called the conditional fidelity. For an ideal quantum mem-

ory both efficiency and conditional fidelity takes the value of unity. In addition to these, important

parameters that characterizes a quantum memory are - the bandwidth of a quantum memory, which

is the range of frequency in which it can function; the storage time, which is defined as the time for

which it can store the absorbed photon and subsequently recalled. This time of recall can either be

fixed by the system or ”on demand” thus chosen by the user. Also the wavelength range of the re

emitted photons is important in certain cases where the outgoing photon is transmitted via optical

fibre.

Single photon quantum memories relies on light matter coupling through various media such as

nitrogen vacancy centres in diamond [25],[26],[27],[28],[29], optically trapped atoms [30], Raman

scattering in solids [31],[32] and alkali vapours have been observed [33], [34],[35] and rare earth

ion doped solids. Principal approaches in fabricating quantum memories with rare earth ion doped

solids involve controlled and irreversible broadening (CRIB)[36], [37], [38], [39], [40], [41] and

atomic frequency comb (AFC) [42], [43], [44], [45], [46], [47], [48], [49], [15]
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2.3 A recent repeater protocol

Figure 2.2: Simplified version of a more recent approach to quantum repeaters [15]. Here photon
pair sources which ideally emits entangled photon pairs are marked as epps. BS1 and BS2 refers
to 50 : 50 beam splitters. A 50 : 50 beam splitter can transmit or reflect a photon with equal
probability. Quantum memories are marked as qm and photon number resolving detectors are
marked as D

We here, in figure 2.2, focus on the simplified (non multiplexed) version of a more recent approach

[15] where they have outlined quantum repeater architecture with pair sources and quantum mem-

ories. A source generating entangled photon pair (epps) lies at each end of an elementary link.

Each such source emits a pair of entangled photons one of which is stored in the quantum memory

and the other is transmitted over a quantum channel to a central station where it meets the similar

member generated from the pair sources in the other end of the link. At the central station, the

joint state of two such photons undergoes a Bell state measurement with a beam splitter (BS1)

and two single photon detectors aiming for joint detection of photons, one in each detector. This

result is communicated via a classical channel to herald entanglement among the photons stored

in the respective quantum memories. This entanglement is stored within the quantum memories

till the same heralding occurs for adjacent links. Then, for entanglement swapping [19] via two
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photon detection (see section A.7) photons are recalled from the quantum memories and similar

Bell state measurement is performed at beam splitter (BS2). With classical communication this

heralds entanglement within adjacent links. This procedure is repeated till entanglement over the

final distance is achieved.

It is possible to implement this repeater scheme with multiplexing. In multiplexing, the source

emits a train of photon pairs in distinct optical modes instead of a single pair. One photon from

each pair reaches the central station while the other is stored in the quantum memory. The large

number of photons increases the probability of detection at the central station thus increasing the

entanglement generation rate over the elementary link. Entanglement swapping requires recom-

bination of the same photon modes whose partners heralds the entanglement. And although the

number of photon pairs permissible is limited by the storage capacity of the quantum memory, the

overall entanglement distribution time achievable is significantly lower than for other protocols

[18].

In temporal multiplexing photon pairs with the same frequency arrive at different time to the cen-

tral station. An individual pair from the sources are distinguished according to the time taken by

them to reach the detector. Thus in order to ensure retrieval of their corresponding partner one

needs the quantum memory to have a variable recall time time. Rare earth ion doped crystals at

cryogenic temperature have been demonstrated as promising photon storage devices for temporal

multiplexing [44],[45],[46],[47],[48].

The original proposition [15] also proposes use of spectral multiplexing [49], [15]. Unlike tem-

poral multiplexing, in spectral multiplexing the train of photons arrive at the same time but they

have different frequencies. In this case, one does not need the quantum memories to have dif-

ferent storage time but one uses a frequency shifter to retrieve an output photon with the desired

frequency. However it also required that the beam splitters used in the central station are capable

of distinguishing photons based on their frequencies. It has been shown that allowing standard

imperfections, this protocol outperforms direct transmission [50] for practical distances. The same
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paper [15] has also demonstrated efficient highly broadband quantum memories capable of storing

upto 26 spectral modes using high frequency. In future, one can envisage combining the ideas

of temporal, spectral and spatial multiplexing [51] to achieve a high number of modes [52],[45]

which promises practical implementation of quantum repeaters.

2.4 Photon pair sources

2.4.1 Parametric Down Conversion

Photon pair sources are important in the implementation of the repeater scheme discussed in the

previous section. If a pump laser is incident on non linear crystals such as beta barium borate or

potassium dihydrogen phosphate, a pair of entangled photons can emerge with a certain probabil-

ity. This process is known as parametric down conversion and it is the most practical source of

entangled photons available [53]. In this regard, it is obvious to ask whether it is possible to use

them as photon pair sources in this protocol.

If a PDC source emits a pair of photon with probability p, then the probability of two such sources

(one at each end)each emitting a pair is p2. However it is also possible that one such source emits

two pairs with a probability proportional to p2 while the other source fails to emit any. This an

unwanted case. Thus the error varies in the same order as that of the desired case. This is the prin-

cipal problem of using PDC as a pair photon source. For a more practical implementation, we look

for deterministic photon pair source, where probability of multi pair emission is much lower than

that of the square of the probability of single pair generation. This leads us to using deterministic

entangled photon pair sources.

2.4.2 Deterministic entangled photon pair sources

A deterministic single photon source ideally emits a pair of entangled photons at the convenience

of the experimenter. It is desired that it emits a pair with a high probability, denoted as efficiency
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E of the source, as this efficiency contributes to the overall entanglement distribution rate of the

repeater protocol. It is also desired that the pair thus emitted has a high overlap with desired en-

tangled state as this would enhance the fidelity of the final entanglement shared between A and B.

We denote this probability as the conditional fidelity f of the source. One can note that the values

of E and f can be optimized in order to enhance the secret key distribution rate [50], [54] for the

repeater protocol.

2.4.3 Quantum dots as photon pair sources

The principal approach in fabricating deterministic entangled photon pair source has been made

by using quantum dots.

Figure 2.3: Schematic diagram of quantum dots as single photon sources.a) The valence band of a
semiconductor is filled with electrons one of which can be excited to the conduction band leaving a
hole behind. The energy difference between the valence and the conduction band is called the band
gap. b) A semi conductor with a lower band gap can be embedded inside another semi conductor
with a higher band gap thus creating a finite potential well. An electron (X) trapped in the finite
potential well can spontaneously recombine with the hole it has left behind to emit a photon. A
spin singlet state (XX) trapped in the finite potential well can spontaneously recombine with the
hole pair it has left behind to emit pair of polarization entangled photons. c) Once one of the
electron of the singlet pair has recombined with the hole, the remaining one can recombine with
its hole via one of two non degenerate intermediate state
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A semiconductor is composed of a lower energy band, initially filled with electrons, and a

higher energy conduction band separated by an energy difference called the band gap. One or more

electrons can be excited from the valence band to the conduction band leaving a hole behind (figure

2.3 a). Now if we have two such semiconductors of different band gap (EB1,EB2,EB1 > EB2), we

can embed the one with the smaller band gap EB2 within the one with the higher band gap EB1 to

form a finite potential well (figure 2.3 b).

Now if an electron in the valence band in the embedded semiconductor is excited to its conduction

band X with an energy EB, (EB2 < EB < EB1), it will be trapped in the finite potential well leaving

a hole behind. This electron can now spontaneously recombine with the hole to emit a single pho-

ton. If the excitation energy EB > EB1, then the excited photon will initially not be trapped within

the finite potential well, but it can lose energy via interaction with phonons to fall back in to the

well. Single photon sources using quantum dots using Purcell enhanced quantum dot micro-pillar

system has been experimentally achieved [55].

If instead of a single photon, a spin singlet state of electron (XX) is excited to the conduction band,

it can recombine with the pair of holes to emit a pair of polarization entangled photons[56]. Here

the emission of the first photon brings a the system into the manifold of intermediate single exci-

tation states (figure 2.3 c). Had these intermediate excitation states been degenerate, the emitted

photon would have been perfectly entangled. However these states are naturally not degenerate.

Thus the path chosen by the second photon is not ambiguous. This makes the outgoing photon

pair mostly classically co-related rather than entangled. This is a major hindrance in producing

entangled photon pairs using quantum dots. The degree of entanglement can be increased to a

measurable level by spectrally filtering out most of the un-entangled photon pair [57], but this in-

troduces photon loss. Recent approach [58] has succeeded producing entangled photon pairs using

nano-wires with embedded quantum dots. Their single photon extraction efficiency ∼ 18% which

makes the two photon extraction efficiency have a low value∼ 3%. Finding an alternative approach

to deterministic entangled photon sources with higher efficiency is our principal motivation.
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2.5 A short note of single photon sources

2.5.1 Single Photon Sources

Single photon sources [59] are important in linear optical quantum computing. Ideally a single

photon source should satisfy four conditions.

• It should be on demand. This means that the experimenter can choose when the photon is emit-

ted.

• It should be able to emit indistinguishable photons.In particular this means the emitted photons

have identical wave packets in time or in frequency domain.

• The rate of generation of single photon is arbitrarily fast, only limited by the pulse duration.

• And finally source should emit a single photon with unit probability thus the probability of multi

pair being zero.

Apart from this, an important characteristic of a single photon source is the wavelength at which

the photon is emitted.

A single photon source is parametrized by its efficiency ε , which is defined as the fraction of

triggers that leads to a single photon emission in the output modes. However, for an imperfect

single photon source, multiple emission occurs. This feature is parametrized by the second order

correlation function g(2)[59].

second order correlation function

This definition comes from the experimental model of the Hanbury Brown and Twiss interfer-

ometer. In this model, a light beam is divided among two detectors by a non-polarizing beam

splitter and the correlation of the detections is observed. The formal definition of the second order

correlation function is given by

g(2)(τ) =

〈
a†(t + τ)a†(t)a(t + τ)a(t)

〉
〈a†(t)a(t)〉2

(2.1)

where a† is the creation operator for the incoming mode.

For a classical light, which exhibits a bunching effect g(2)(0)≥ 1. For example, in a chaotic ther-
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mal state of light, g(2)(τ) = g(2)(0) = 2 , which is its upper limit. However, for a coherent state

produced by the laser, which can be both understood in terms of semi classical and quantum for-

malism, the emitted photons are independent of each other which gives g(2)(τ) = g(2)(0) = 1.

For a fock state |n〉 we have g(2)(0) = 1− 1
n which gives us g(2)(0) = 0 for an ideal single photon

state. Further excitations of the single photon source are supposed to emit more photons which

introduces a new condition g(2)(τ)> g(2)(0) for such sources.

In this thesis the calculation starts on an incoming state (equation A.9)

|ψ〉 j = [
√

(1− ε1)e
iθ
′
0 jI +

√
ε1(1− ε2)e

iθ
′
1 ja†

j +

√
ε1ε2

2
eiθ
′
2 ja†

j
2
] |0〉 (2.2)

For this state if we calculate the expression of g(2)(0) we have

g(2)(0) =
2ε2

ε1(1+ ε2)2 (2.3)

In this thesis we have only assumed first order error in ε2 (see equation A.3)

There we have

ε2 =
g(2)(0)ε1

2−2g(2)(0)ε1
≈ g(2)(0)ε1

2
(2.4)

2.5.2 SPS with PDC and memories

A spontaneous parametric down conversion when coupled with quantum memories can serve as a

single photon source. One photon from the source is detected by a single photon detector while the

other photon enters the quantum memory. Successful single photon detection heralds the mem-

ory charging. This stored photon is retrieved on demand (within the storage time of the quantum

memory). If the conditional fidelity of the quantum memory is high then we are assured that the

retrieved state is the desired state and high memory efficiency reduces the possibility of vacuum

emission approximating it to an ideal single photon source.
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Figure 2.4: Scheme showing use of quantum memories as single photon sources:- Pair photons are
emitted from the pair source. One of the emitted photon charges the quantum memory which is
heralded by the detection of the second photon.

As the PDC source emits a pair of photon, detection of a single photon in the detector will

herald its counterpart in the quantum memory.

Now a single turn of illumination of a perfectly heralded PDC emits a single pair with probability

p but it also emits higher other pairs with other probabilities (equation B.7) such as two pairs with

probability with 3
4 p2, and so on. Considering up to two pair emissions, given a single detection in

the heralding detector, the probability that a photon is actually heralded is pe f f where

pe f f =
pηd +2× 3

4 p2ηd(1−ηd)

1+ p+ 3
4 p2

(2.5)

In our scheme we have four sources. In case we have a photon heralded in a quantum memory

for one source, we have to wait for the other three quantum memories (acting as single photon

sources in other three cases) to get charged. This will continue till the four sources are charged.

This introduces a waiting time factor Tf in our scheme. If the repetition rate of the PDC source is

RPDC and the waiting time factor for charging of the four memories is Tf then the total time Ttot of

four such detections at four single photon sources as

Ttot = Tf (
1

RPDC
)(

1
pe f f

)

Thus giving us the effective repetition/heralding rate Rrep

RS =
1
Tf

RPDC pe f f (2.6)

If we wait for time Tw for the first source, then the average waiting time for the second source is T
2 ,

for the third source it is T
3 and for the fourth source it is T

4 . This makes the estimated value of Tf
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as 25
12 .

We come back to the original scenario where we have perfectly heralded PDC emits a pair of

photons and detection of one of them in a detector heralds its counterpart in the quantum memory.

We only consider the case where there is one such detection and we allow only the error case where

two photons have been emitted by the pair and one of them have been missed by the detector. If we

ignore photon losses before it reaches the memory, the photon state reaching the detector, assuming

error linear in p, can be written as

ρ =
1

p2
1 + p2

2
(p2

1 |1〉〈1|+ p2
2 |2〉〈2|)

As this state is heralded by a single detection in the detector, we have with p2
1 = 1,p2

2 =
3
2 p(1−ηd)

Now if the memory efficiency is ηm and we write the input state in the pure state formalism, we

have

|Φ〉= (p1eiθ
′′
1 a+ p2eiθ

′′
2

1√
2

a2) |0〉

Following the beam splitter model of loss (Appendix A, section 6), we now introduce the following

loss transformations

a† =
√

ηma†
em +

√
1−ηma†

l

where aem and al are emitted and lost modes respectively. Then in the final form of density matrix

we have

ρ =
1

p2
1 + p2

2
((p2

1(1−ηm)+ p2
2(1−ηm)

2) |0〉〈0|+(p2
1ηm +2p2

2ηm(1−ηm)) |1〉〈1|+ p2
2η

2
m |2〉〈2|)

We compare this with the density matrix of the input state we use in this thesis

ρ = (1− ε1) |0〉〈0|+ ε1(1− ε2) |1〉〈1|+ ε1ε2 |2〉〈2|

and from there we can write we have

ε1 =
2+3p(1−ηd)ηm(2−ηm)

2+3p(1−ηd)
(2.7)
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and

ε2 =
3
2

pηm(1−ηd)

(1+ 3
2 p(1−ηd)(1−ηm))

(2.8)
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Chapter 3

Ideal scheme

In this chapter we discuss the principal topic of this thesis, implementing deterministic entangled

photon pair source based on single photon sources and quantum memories

3.1 Description of the scheme

Figure 3.1: Deterministic entangled photon pair source using sing photon pair sources

There are four independent but identical single photon sources, marked s1, s2, s3, s4 in the dia-

gram. Ideally, each of them simultaneously emit four indistinguishable single photons, all of them
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polarized in the horizontal mode. Each photon passes through a half wave plate marked w1, w2,

w3, w4 in the diagram. The angle of rotation for w1 and w4 is θ . The respective angles for w2 and

w3 are π

2 −θ . Thus they are complementary angles. Photons from s1 and s2 interfere at polarizing

beam splitter PBS1 and photons from s3 and s4 interfere at polarizing beam splitter PBS2. One

output from each of these polarizing beam splitters make the output modes a and b, which end up

in a pair of identical quantum memories, marked QM1 and QM2. The role of these quantum mem-

ories is to store the outgoing photons which are then recalled at a time decided by the experimenter.

The other two output modes, one from PBS1 and one from PBS2 meet at a third rotated polarizing

beam splitter, rotated in the π

4 basis, marked RPBS. The output modes from this RPBS are incident

on two other polarizing beam splitters, marked PBS3 and PBS4 respectively. Two output modes

from PBS3 end up in two photon number resolving detectors marked d1h and d1v. Two output

modes from PBS4 end up in two photon number resolving detectors marked d2h and d2v. Ideally

if we have a joint detection in such a way that one detection occurs at any one of the detector set

(d1h,d1v) and another detection occurs at any one of the detector set (d2h,d2v), then we have a

Bell state heralded in the output mode.

This scheme is inspired from the one mentioned by Zhang et al [17] except that in the original

scheme, a polarization rotator with θ = π

4 has been used for all the four sources where in this

scheme θ is a free parameter. The reason for this modification is explained in chapter 4, section

4.2. Also the two quantum memories QM1 and QM2 have been introduced here in order to store

the outgoing photons only to be recalled by the experimenter. Thus the quantum memories are

used to realize this scheme as a deterministic source.
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3.2 Heralded entanglement

3.2.1 Choice of detectors

In order to understand how entanglement is heralded in this circuit given the detections as outlined

above, we will have a brief look at some interesting properties of the RPBS where we have two

incident photons and two emerging photons.

A) If two photons are incident on it through any one input, then they will always emerge from the

same output, irrespective of whether they emerge in the same or different polarization, as shown in

Appendix A section 5.1.

B)If two indistinguishable photons emerge from it each from one output, then they must have en-

tered the RPBS through two different input modes as shown in Appendix A section 5.2.

Now if we have joint detection one from each of the detector set d1h,d1v and the detector set

d2h,d2v then we know that two photons have emerged one from each output of the RPBS and thus

from B)they have entered from two input of the RPBS. One of the photons entering the RPBS must

have come either from s1 or s2 with equal probability while the other has come either from s3 or s4

with the same probability. This ensures entanglement of the outgoing photons in the output mode.

Here the equal probability is ensured by the presence of the half wave plates

Again if we have joint detection in d1h− d1v (or d2h− d2v) then we know they must have en-

tered the RPBS from the same input. This gives rise to cases where we have two photons in any

of the output mode and none in the other. This is not desired as if we aim to apply this source in

the quantum repeater architecture, we need two photons, one from each output mode. Thus such

detections are ignored.

For the rest of the thesis we will use the terminology desired joint detection to signify joint de-

tection one from each detector set d1h,d1v and d2h,d2v. We will use the word undesired joint

detection to signify joint detections both in the same set, i.e. detector combinations d1h−d1v or

d2h−d2v.
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3.2.2 Nature of generated entanglement

From Appendix A section 5.3 we see that

A) If incoming photons (one at each input) have same polarization, i.e. both horizontally polarized

or both vertically polarized, with the same probability, then they will emerge with opposite polar-

ization, i.e. one of them horizontally polarized and the other vertically polarized, with the same

probability.

B)If they enter with opposite polarization, i.e. one of them horizontally polarized and the other

vertically polarized, with the same probability,then they will emerge with same polarization, i.e.

both horizontally polarized or both vertically polarized, with the same probability.

Thus if the photons are detected in the detector pair d1h− d2h (or d1v− d2v) then one can see

that they have emerged from the two output of RPBS with the same polarization (from B)). So they

must have entered it from two different input but with opposite polarization. This assures that the

entangled state heralded in the quantum memories is |Ψ〉. Where

|Ψ〉= 1√
2
(|Vs1〉 |Hs3〉+ |Hs2〉 |Vs4〉) (3.1)

Similarly if the photons are detected in the detector pair d1h− d2v (or d1v− d2h) then one can

see that they have emerged from the two output of the RPBS with opposite polarization (from A)).

So they must have entered it from two different input with same polarization. This assures that the

entangled state heralded in the quantum memories is |Φ〉. Where

|Φ〉= 1√
2
(|Vs1〉 |Vs4〉+ |Hs2〉 |Hs3〉) (3.2)

Denoting qubit A as |0〉A ≡ |Vs1〉, |1〉A ≡ |Hs2〉 and qubit B as |1〉B ≡ |Hs3〉, |0〉B ≡ |Vs4〉 we have

|Φ〉 ≡ |Φ+〉 and |Ψ〉 ≡ |Ψ+〉 where |Φ+〉 and |Ψ+〉 are Bell states in standard basis
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3.3 As deterministic pair source

The two quantum memories, QM1 and QM2 in the output modes ensures that the entangled pho-

tons in the outgoing modes are stored for time τs where τs is their storage time. The on demand

nature of a scheme implies that a pair of entangled photon is always available for the experimenter

whenever he or she chooses to retrieve it from the quantum memories. This implies that the rate of

desired joint detection (which ideally heralds entangled photons in the quantum memories) should

be greater than τ−1
s . For clarity of our scheme, we impose the condition that this rate must be

greater than τ−1
s at least by an order . We refer to this as the deterministic criterion

3.4 Figures of Merit

3.4.1 Probability of desired detection

ps signifies the probability that a desired joint detection takes place given the initial photon states

are prepared from the source. Mathematically,

ps = 4
tr[ρs]

tr[ρinput ]
(3.3)

where ρs is the density matrix after that desired joint detection and ρinput is the density matrix of

the system at input. The factor 4 comes from the fact that there are four combinations of desired

joint detection [d1h-d2h, d1h-d2v, d1v-d2h, d1v-d2v] and any one will serve our purpose.

In our calculations, we have normalized the incoming state, so we have

ps = 4tr[ρs] (3.4)

Ideally,

ps =
1
8
(sin2θ)4 (3.5)
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where θ is the angle of rotation for the half wave plates along the sources s1 and s3. Thus we can

see that ideally, the probability of desired joint detection is maximized for θ = π

4 and the maximum

probability is 1
8

3.4.2 Rate of desired detection

Rs signifies the number of desired joint detection per second. Mathematically this is given by

Rs = ps×Rrep (3.6)

where Rrep is the repetition rate of the source measured in Hz

3.4.3 Scheme Efficiency

Es signifies the probability of retrieving at least one photon from each of the quantum memories

QM1 and QM2. Mathematically

Es =
tr[ρE ]

tr[ρs]
(3.7)

where ρE is the density matrix of the output state where at least one photon is retrieved from the

quantum memories.

Ideally Es = 1

3.4.4 Conditional fidelity

Assuming one photon is retrieved from each of the quantum memories, fs, the conditional fidelity

is the overlap of the output state with the desired entangled state. Mathematically

fs =
tr[ρbellstateρE ]

tr[ρE ]
(3.8)

Ideally fs = 1
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Chapter 4

Scheme including imperfections

In this chapter, we introduce the imperfections to the ideal scheme described in the last chapter

and understand the performance of this scheme considering detectors with non unit efficiency,

memories with non unit efficiency and single photon sources with non unit efficiency and a small

probability of multiple emission only considered upto first order. More specifically, we study the

variation of scheme efficiency Es and scheme fidelity fs with these imperfections. We also look into

the role of the angle of polarization and how its variation is significant to the scheme

4.1 Imperfections

The three sources of loss in this scheme are the sources, the detectors and the quantum memories

respectively. So far we have assumed the ideal case where they are perfect but that is not true in

practical cases. So we introduce some parameters here which will characterize these imperfec-

tions. For the detector we introduce ηd , the detector efficiency. ηd denotes the probability that

an incoming photon is detected. For the quantum memory we introduce memory efficiency ηm

which denotes the probability that given a stored photon is extracted in its original stored state.

For the source, we introduce source efficiency ε1 and the two photon component ε2. ε1 denotes the

probability that the single photon source emits at least one photon and ε2 denotes the probability

that the single photon source also emits two photons, in a single mode, assuming that it emits at

least one photon. It is referred to as the two photon component. In this thesis we limit ourselves to

the case where only one of the sources emits two photons.

The literature of single photon sources use the terminology second order correlation function g(2).
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Here ε2 ≈ 1
2g(2)(0)ε1 as mentioned in equation 2.4.

Without imperfections, as pointed out in chapter 3, section 4.3 and section 4.4, scheme efficiency

Es = 1 and scheme fidelity fs = 1. However if the detectors, sources and quantum memories are

not ideal, a desired joint detection does not necessarily lead to storage of a photon in each quantum

memories. For example - one or more sources can misfire or the one or more detectors can fail to

detect photons thus leading to false detections. And even if two photons are stored in the mem-

ories, their inefficiency might render the photons non retrievable. There are several possibilities

of these errors but all lead to the scheme efficiency Es ≤ 1 and the conditional fidelity fs ≤ 1. To

implement this scheme as a deterministic single photon source in the framework of the quantum

repeater as mentioned in chapter 2, section 4.2, we desire to maximise scheme efficiency Es and

conditional fidelity fs (see chapter 2 section 4.2). So it is fairly obvious to say that we need close

to perfect detectors, sources and quantum memories to maximize scheme efficiency Es. But as we

do not have a perfect world, the obvious question comes, to what extent the scheme efficiency Es

varies with these imperfections.

4.2 Scheme efficiency

From the expression of scheme efficiency (equation A.58) Here we look at four graphs showing

the variation of scheme efficiency Es with each of the imperfections. In these graphs, experimental

values for memory efficiency ηm = 0.69[60], ηm = 0.87 [61], ηm = 0.56 [43], and detector effi-

ciency ηd = 0.88 [62] are assumed. Wherever required, we assume that the single photon sources

have efficiency ε1 = (0.9,0.75,0.6) and two photon component ε2 = 0.005.
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4.2.1 Graphs

Figure 4.1: Variation of scheme efficiency Es with source efficiency ε1 for detector efficiency

ηd = 0.88, memory efficiency ηm = (0.56,0.69.0.87), two photon component ε2 = 0.005, and

cos2θ = 0.1 where θ is the angle of half wave plate w1 (figure 3.1)

Figure 4.2: Variation of scheme efficiency Es with memory efficiency ηm for detector effi-

ciency ηd = 0.88, source efficiency ε1 = (0.6,0.75.0.9), two photon component ε2 = 0.005, and

cos2θ = 0.1 where θ is the angle of the half wave plate w1 (figure 3.1)
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Figure 4.3: Variation of scheme efficiency Es with detector efficiency ηd for memory effi-

ciency ηm = 0.87, source efficiency ε1 = (0.6,0.75.0.9), two photon component ε2 = 0.005, and

cos2θ = 0.1 where θ is the angle of the half wave plate w1 (figure 3.1)

Figure 4.4: Variation of efficiency Es with two photon component ε2 for memory efficiency

ηm = 0.87, source efficiency ε1 = (0.6,0.75,0.9), detector efficiency ηd = 0.88 and cos2θ = 0.1

where θ is the angle of the half wave plate w1 (figure 3.1)
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4.3 Conditional fidelity

From the equation A.62, we see that for small values of ε2 it is possible to write conditional fidelity

fs as a linear function of ε2. Thus one can see that a small change in the two photon component

ε2 can cause a significant change in the conditional fidelity fs. This is exhibited in the following

graphs.

4.3.1 Graphs

Figure 4.5: Variation of conditional fidelity fs with two photon component ε2 for mem-

ory efficiency ηm = 0.87, source efficiency ε1 = 0.9, detector efficiency ηd = 0.88 and

cos2θ = (0.1,0.5,0.9) where θ is the the angle of the half wave plate w1 (figure 3.1)
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Figure 4.6: Variation of conditional fidelity fs with source efficiency ε1 for memory efficiency

ηm = 0.87, two photon component ε2 = 0.005,0.02,0.07, detector efficiency ηd = 0.88 and

cos2θ = 0.9 where θ is the angle of the half wave plate w1 (figure 3.1)

Figure 4.7: Variation of conditional fidelity fs with detector efficiency ηd for memory effi-

ciency ηm = 0.87, two photon component ε2 = 0.005,0.02,0.07, source efficiency ε1 = 0.9 and

cos2θ = 0.9 where θ is the angle of the half wave plate w1 (figure 3.1)
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Figure 4.8: Variation of conditional fidelity fs with memory efficiency ηm for detector effi-

ciency ηd = 0.88, two photon component ε2 = 0.005,0.02,0.07, source efficiency ε1 = 0.9 and

cos2θ = 0.9 where θ is the angle of the half wave plate w1 (figure 3.1)

4.4 Conclusions

From graph 4.1 we can say that the scheme efficiency Es is highly affected by the source efficiency

ε1. It is therefore important for us to have high values of ε1 to make this scheme work in the frame-

work of the repeater protocol as mentioned in chapter 2, section 4.2. From Graph 4.2 and Graph

4.3 we see that for high values of ε1, scheme efficiency Es is also sensitive (although to a lesser

extent compared to the source efficiency) to the memory efficiency ηm and detector efficiency ηd ,

and high values of them are desired. However graph 4.4 shows that it is much less sensitive to the

two photon component ε2 as compared to source, memory and detector efficiency. For conditional

fidelity however Graph 4.5 shows that unlike scheme efficiency Es, the conditional fidelity fs is

highly sensitive to the two photon component ε2 compared to other inefficiencies considered here.

This is significant if we want to implement our single photon sources with parametric down con-

version and quantum memories as low value of ε2 implies that the photon pair emission probability

p from parametric down conversion source needs to be limited to low values (equation 2.8) but that
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would limit the effective repetition rate (equation 2.5 and 2.6).

4.5 Role of the half wave plate

The angle θ of the half wave plate w1 (figure 3.1) is not an imperfection but a free parameter

chosen in this scheme. As mentioned in chapter 3 section 1, the angle of rotation for half wave

plates w1 and w4 are θ while the angle of rotation of the half wave plates w2 and w3 is π

2 −θ We

inspect its role in the following graphs

4.5.1 Graphs

Figure 4.9: Variation of conditional fidelity fs with cos2θ where θ is the the angle of the half wave

plate w1 (figure 3.1). We assume detector efficiency ηd = 0.88, two photon component ε2 = 0.005,

memory efficiency ηm = 0.87 and source efficiency ε1 = (0.6,0.75,0.9)
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Figure 4.10: Variation of scheme efficiency E and probability of joint detection ps with cos2θ

where θ is the angle of the half wave plate w1 (figure 3.1). We assume detector efficiency

ηd = 0.88, two photon component ε2 = 0.005, source efficiency ε1 = 0.9 and memory efficiency

ηm = (0.6,0.75,0.9). Here q = 3× ps is plotted to ensure visibility.

4.5.2 Conclusions

From graph 4.10 we can see that the scheme efficiency Es increases sharply with θ while the prob-

ability of joint detection ps decreases sharply with θ . This leads to a significant trade off that

happens between the rate of desired detection Rs and scheme efficiency Es.

We recall from chapter 2, section 4.2, that when implemented in the repeater protocol, the scheme

efficiency Es directly influences the entanglement distribution rate of the repeater while the condi-

tional fidelity fs directly influences the overall fidelity of the repeater protocol. An increment in θ
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increases the scheme efficiency Es and also decreases (although to a lesser extent) the conditional

fidelity fs, as seen from graph 4.9. Thus one can, in principle, choose θ in order to optimize the

secret key distribution rate [50] [54] for this repeater protocol.
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Chapter 5

Performance as a deterministic source

In this chapter we discuss the feasibility of implementing this scheme as a deterministic entangled

photon pair source both under current state of art and under realistic improvement in technology

5.1 Performance as an on demand scheme

5.1.1 Practical regime

The state of art photon number resolving detectors has been reported with efficiency ηd = 0.88

[62]. Quantum memories with high efficiency such as ηm = 0.69 using solid state media [60]and

ηm = 0.87 using rubidium vapour [61] have been reported. Both of these memories have a storage

time in the order of µs. The repeater protocol we have discussed [15] uses multiplexed AFC mem-

ories. The best reported AFC memory [43] has an efficiency ηm = 0.56 with storage time also in

the order of µs. But the authors expect to have much longer time in foreseeable future.

Single photon sources can be implemented using quantum dots. Single photon source [55] have

been reported with efficiency ε1 = 0.66 and a g(2)(0) = 0.009, (which leads to ε2 = 0.0029 from

equation 2.4), have been reported. It has a repetition rate in the order of ∼ GHz

It is also possible to implement single photon sources using parametric down conversion and quan-

tum memories as described in chapter 2 section 5.2. Recall that, for a perfectly heralded PDC

source, a detection in the detector heralds the storage of a photon in the quantum memories, which

is subsequently retrieved as a single photon. In such an implementation, it is important to limit the

pair production probability to a low value in order to avoid higher order emissions. The probability

of a pair emission from a PDC is tunable in any experiment. We here have chosen a value 0.047 to

give us a range of conditional fidelity fs which is comparable to the case of quantum dots. Thus,
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following equations 2.7 and 2.8, if we implement single photon sources using a perfectly heralded

parametric down conversion and quantum memories, using a quantum memory with efficiency

ηm = 0.87 we can obtain ε1 = 0.87, ε2 = 0.01, with a quantum memory efficiency ηm = 0.69 we

can obtain ε1 = 0.69, ε2 = 0.007, with efficiency ηm = 0.56 we can obtain ε1 = 0.56, ε2 = 0.004.

But the rate of repetition in all these cases are 1.5MHz (assuming the quantum memory has appro-

priate bandwidth).

Considering all these practical possibilities, the predicted values have been outlined in the follow-

ing two tables -

Figure 5.1: For current state of art implementation using quantum dot single photon sources, with

source efficiency ε1 = 0.66 and ε2 = 0.0029 , this table shows theoretically predicted values of

efficiency E, conditional fidelity f , rate of desired detection R for different angles of the half wave

plate - 45◦,60◦,75◦ . Here the detector efficiency ηd = 0.88, memory efficiency ηm = 0.87 and

repetition rate of the source is 1GHz
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Figure 5.2: For current state of art implementation using combination of PDC and quantum mem-

ory as single photon sources, this table shows theoretically predicted values of efficiency E, condi-

tional fidelity f , rate of desired detection R for different angles of the half wave plate 45◦,60◦,75◦

respectively. The source efficiency ε1 and ε2 is determined from the choice of the quantum mem-

ory. Here the detector efficiency ηd = 0.88, memory efficiency ηm = 0.87. The parametric down

conversion source is assumed to emit a perfectly heralded pair of photons with probability 0.047. It

is assumed to have a repetition rate of 100MHZ with appropriate memory bandwidth which gives

an effective repetition rate for each of the four sources 1.5MHz
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5.1.2 Futurist regime

We can expect research in future to give us better performing components. Keeping that in mind,

we predict the performance of this scheme in two particular cases. In the first case, we implement

our scheme using quantum dot sources with efficiency 0.9 but assume the current state of art for

every other component. In the second case we think about a scenario where all the resources are

almost perfect, i.e. the detector, source, and memory efficiency, all equal to 0.96 and the two

photon component as low as 0.001. We put forward our predictions in these two cases in the two

following table

Figure 5.3: This table shows theoretically predicted values of efficiency E, conditional fidelity f ,

rate of desired detection R for different angles of the half wave plate 45◦,60◦,75◦ respectively for

a quantum dot single photon source with source efficiency ε1 = 0.9 and ε2 = 0.004. Current state

of art values have been assumed for all other resources. Detector efficiency ηd = 0.88, memory

efficiency ηm = 0.87
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Figure 5.4: This table shows theoretically predicted values of efficiency E, conditional fidelity

f , rate of desired detection R for different angles of the half wave plate 45◦,60◦,75◦ with source

efficiency ε1 = 0.96 and ε2 = 0.001, detector efficiency ηd = 0.96, memory efficiency ηm = 0.96

5.1.3 Conclusions

Assuming indistinguishable photons emitted from the four single photon sources,from figure 5.1,

we can conclude that at the current state of art (photon number resolving detectors with detector

efficiency of 88% [62], quantum memories with efficiency 87 % and storage time in µs [61]), one

can realize this scheme as an entangled photon pair source if one implements single photon sources

using quantum dots (source efficiency ε1 = 0.66, two photon component ε2 = 0.0029) [55]. In that

case one obtain high conditional fidelity fs ∼ 97% but with moderate efficiency Es ∼ 24% .

However if one thinks about realizing single photon sources using PDC and quantum memories,

this scheme cannot work as an entangled photon pair sources at the current state of art as shown
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in figure 5.2. This is because the rate of generation of deterministic entangled photon pair is not

sufficiently high. If a PDC source works at 100MHz, the effective rate comes down below ∼MHz

and with current quantum memories of storage time ∼ µs this does not satisfy our deterministic

criterion (chapter 3,section 3). A quantum memory of storage time at least ∼ 100µs is required.

As shown in figure 5.3, we can expect research in quantum dots to advance in future where we can

have quantum dot single photon sources with efficiency as high as 90%. Assuming in that case

they still have repetition rate of GHz, it is possible to use them as single photon sources to obtain

conditional fidelity ∼ 97% and an efficiency ∼ 65%.

We can also expect future research to give us quantum memories with storage time more than the

current one. If we want to implement single photon sources using PDC and quantum memories,

higher storage time of quantum memories will enable the sources to satisfy the deterministic

criterion (chapter 3,section 3). If the storage time reaches ∼ ms even with the current available

memory efficiency we can implement a combination of PDC and quantum memories as single

photon sources (chapter 2, section 5.3) to implement this scheme as deterministic entangled photon

pair sources with efficiency as high as 58% and conditional fidelity 95%.

From figure 5.4, we can say that in the very optimistic regime where we can expect to have photon

number resolving detectors having efficiency 96%, and quantum memories to have an efficiency

96% and quantum dot sources with efficiency 96% and acting in GHz regime, we can have almost

perfect conditional fidelity and scheme efficiency as high as 86%. If in addition to this, these

quantum memories have storage time in ms, one can implement the single photon sources using the

quantum memories and PDC to attain the same high values of scheme efficiency and conditional

fidelity.

5.2 Comparison with another scheme

So far we have seen that the current state does not provide us with resources which can make our

scheme work as a deterministic source of entangled photon pair with high efficiency. But we can
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wait for better resources to appear in future. In that light, we can ask whether this scheme is the

only possibility to have such pair sources. The answer, however, is that there is another scheme

[16] generating heralded entanglement, which used a parametric down conversion source instead

of single photon sources and which can be implemented as a deterministic pair source using quan-

tum memories. This scheme is described in Appendix 2

As we have assumed a perfectly heralded a PDC source (Appendix 2 section 3) for this scheme,

to make a comparison on equal footing, we assume a very high source efficiency ε1 = 0.97 for our

scheme. Then we compare the results of these two cases under two circumstances. Firstly, with

best available resources in the current state of art; i.e. with detector efficiency ηd = 0.88 and

memory efficiency of ηm = 0.87. And secondly in futurist case where the detectors and memories

are more efficient. In that case, similar to the futurist values in previous section, we assume ηm =

0.96 and ηd = 0.96. Recent experiments implementing the same protocol [63] have used a pair

production probability p = 0.047 for the PDC and we assume a repetition rate ∼ 100MHz for the

PDC source. Assuming outgoing quantum memories with appropriate bandwidth, the comparison

results are shown in the two tables below.

We have also assumed a modest repetition rate of 1.5MHz for the scheme single photon source. It

is obvious if quantum dots are used as single photon sources, the rate Rs in the two tables below

will be even higher by an order ≈ 103
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Figure 5.5: This table shows theoretically predicted values of efficiency, conditional fidelity, rate

of desired detection for different angles of the half wave plate 45◦,60◦,75◦ respectively for the two

schemes. Here we have assumed a perfect single photon source with source efficiency ε1 = 0.97

and ε2 = 0.011. Current state of art values have been assumed for all other resources such as

detector efficiency ηd = 0.88, memory efficiency ηm = 0.87. The single photon source is assumed

to have a repetition rate of 1.5MHz. The PDC source is assumed to have a repetition rate of

100MHz and probability of production of a perfectly heralded pair p = 0.047
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Figure 5.6: This table shows theoretically predicted values of efficiency, conditional fidelity, rate

of desired detection for different angles of the half wave plate 45◦,60◦,75◦ respectively for the two

schemes. Here we have assumed a perfect single photon source with source efficiency ε1 = 0.97

and ε2 = 0.003. Futurist have been assumed for all other resources such as detector efficiency

ηd = 0.96, memory efficiency ηm = 0.96. The single photon source is assumed to have a repetition

rate of 1.5MHz. The PDC source is assumed to have a repetition rate of 100MHz and probability

of production of a perfectly heralded pair p = 0.047
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5.2.1 Conclusions

In this comparison we have assumed a perfectly heralded PDC source for the PDC scheme and

single photon source with near perfect efficiency for the single photon source scheme. The result

obtained both in the cases of current state of art and futurist regime points to the fact that for

comparable high values of scheme efficiency and conditional fidelity, the rate of desired detection

is far too low for the PDC scheme compared to the single photon source scheme even with modest

repetition rate for the latter. Thus quantum memories at the output of the PDC scheme needs to

have a storage time at least in the order of a few seconds to satisfy the deterministic criterion

as shown in chapter 3, section 3. Although at the current state of art, the single photon scheme

discussed in this thesis can only be implemented with a moderate efficiency of 24% (as shown

in chapter 5 section 1.3), it still has a major advantage over the PDC scheme in terms of demand

on the storage time of the quantum memories. The demand on storage time for the quantum

memory for the scheme using single photon source scheme is smaller than the PDC scheme at

least by a factor 104 (107 if quantum dots are used as single photon source) for comparable high

values of scheme efficiency and conditional fidelity, which in turn is necessary for these schemes

to work efficiently in the framework of quantum repeaters as mentioned in chapter 2 section 4.2 .

Thus we can conclude that if we expect having more efficient resources in the future, successful

implementation of a deterministic entangled photon pair sources, with single photon sources will

be much more practical than doing the same with the alternate scheme that uses a single PDC

source.
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Chapter 6

Discussions

We summarize the important conclusions we have obtained in the last two sections.

• A recent repeater architecture [15] has been proposed which uses deterministic entangled photon

pair sources. Considering the non multiplexed case, one can think of implementing determinis-

tic entangled photon pair sources using heralded entanglement generating schemes [16] [17] and

quantum memories. We have proposed such an implementation using four single photon sources,

linear optics, photon number resolving detectors and quantum memories (based on the heralded

entanglement generating scheme proposed by Zhang et al [17]). We have assumed the the sources

emit indistinguishable photons thus the sources emit identical wavepackets.

For optimal performance of the quantum repeater protocol, it is important that the deterministic

pair source has high scheme efficiency and high conditional fidelity (chapter 2, section 4.2). The

deterministic scheme also demands that the rate of entanglement storage of the scheme must be

faster than the inverse of storage time of the quantum memories used (chapter 3, section 3). At

the current state of art, it is possible to implement our scheme as a deterministic entangled photon

pair source using quantum dots as single photon sources. The predicted conditional fidelity of this

scheme at the current state of art is (97%) but the predicted efficiency is moderate at (24%)(chapter

5, section 1.3).

• It is possible to implement single photon source using Parametric Down Conversion source and

Quantum Memory with appropriate bandwidth (chapter 2 section 5.2). At the current state of art,

where storage time of quantum memories ∼ µs, such implementation is not possible as the rate

of creation of deterministic entangled photon pairs does not satisfy the deterministic criterion

(chapter 3, section 3). For such an implementation, quantum memories of storage time at least

∼ 100µs is required.
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•We can envisage future research where we can think about implementing this scheme as a mul-

tiplexed deterministic photon pair source as this would enhance the over all performance of the

quantum repeaters.

•Although we have assumed perfect optical components such as half wave plates, polarizing beam

splitters, their imperfections will reduce the conditional fidelity by a margin. We look forward to

further advancement in their perfection.

•We look forward to further advancement in the fabrication of single photon sources with higher

efficiencies and high repetition rate and near perfect indistinguishability. We also look forward to

further advancement in fabrication of quantum memories with higher storage time. This advance-

ment will assure implementation of this scheme as a deterministic entangled photon pair source

with higher scheme efficiency and conditional fidelity .

• Alternatively it is possible to implement deterministic entangled photon pair sources using linear

optics, photon detectors, quantum memories and one parametric down conversion source [16]. But

to actually put it into practice, this scheme has a much higher demand of resources than the sin-

gle photon scheme. So it is fairly conclusive that with the advancements of research, this scheme

described in this thesis, which uses single photon sources, has much higher chance of successful

implementation than the PDC scheme.

• Future topics of research can be investigating the effect of imperfect indistinguishability of the

photons emitted from the four sources. One can also investigate how the repeater protocol dis-

cussed in this thesis will perform with this deterministic entangled photon pair source. We have

introduced a free parameter θ (see chapter 3, section 1) which can, in principle, be used to optimize

the secret key distribution rate of the repeater protocol where this source is implemented (chapter

4, section 4.2).

46



Bibliography

[1] John S Bell On the Einstein Podolsky Rosen paradox Physics, 1, 195 (1964)

[2] R. Horodecki et al Quantum entanglement Rev. Mod. Phys. 81, 865 (2009)

[3] A. Einstein et al Can quantum mechanical description of physical reality can be considered

complete? Phys. Rev. 47, 777 (1935)

[4] A.Aspect et al Experimental Test of Bell’s Inequalities Using Time- Varying Analyzers Phys-

RevLett.49,1804 (1982)

[5] A. Aspect et al Experimental Tests of Realistic Local Theories via Bell’s Theorem Phys-

RevLett.47,460 (1981)

[6] B. Hensen et al Loophole-free Bell inequality violation using electron spins separated by 1.3

kilometres Nature 526, 682 (2015)

[7] Charles H. Bennett, Gilles Brassard, Sandu Popescu, Benjamin Schumacher, John A. Smolin,

and William K. Wootters Purification of Noisy Entanglement and Faithful Teleportation via

Noisy Channels Phys.Rev.Lett.76,722(1996)

[8] Charles H. Bennet, SJ Wiesner Communication via one- and two-particle operators on

Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

[9] A. Ekert Quantum cryptography based on Bells theorem Phys. Rev. Lett. 67, 661 (1991)

[10] H. J. Kimble The Quantum Internet Nature 453, 1023(2008)

[11] A.S.Holevo Bounds for the quantity of information transmitted by a quantum communication

channel Probl.Peredachi Inf,9,3,3(1973)

[12] M.Takeoka et al Fundamental rate-loss tradeoff for optical quantum key distribution Nature

Communications 5, 5235 (2014)

47



[13] H.J. Briegel, W. Dr, J. I. Cirac, and P. Zoller Quantum Repeaters: The Role of Imperfect

Local Operations in Quantum Communication Phys. Rev. Lett. 81, 5932(1998)

[14] L.-M. Duan, M. D. Lukin, J. I. Cirac and P. Zoller Long-distance quantum communication

with atomic ensembles and linear optics Nature 414, 413(2001)

[15] Neil Sinclair et al Spectral Multiplexing for Scalable Quantum Photonics using an Atomic

Frequency Comb Quantum Memory and Feed-Forward Control Phys. Rev. Lett. 113, 053603

(2014)

[16] C. Sliwa, K. Banaszek Conditional preparation of maximal polarization entanglement Phys.

Rev. A 67, 030101(R) (2003)

[17] Qiang Zhang et al Demonstration of a scheme for the generation of event-ready entangled

photon pairs from a single-photon source Phys. Rev. A 77, 062316 (2008)

[18] Nicolas Sangouard, Christoph Simon, Hugues de Riedmatten, and Nicolas Gisin Quantum

repeaters based on atomic ensembles and linear optics Rev. Mod. Phys, 83, 33 (2011)

[19] C.H.Bennet et al Teleporting an unknown quantum state via dual classical and Einstein-

Podolsky-Rosen channels Phys. Rev. Lett. 70, 1895 (1993)

[20] C.Simon et al Quantum Memories A Review based on the European Integrated Project Qubit

Applications (QAP) Eur. Phys. J. D 58, 1 (2010)

[21] Christoph Simon, Hugues de Riedmatten, Mikael Afzelius, Nicolas Sangouard, Hugo

Zbinden, Nicolas Gisin Quantum Repeaters with Photon Pair Sources and Multimode Memo-

ries Phys. Rev. Lett. 98, 190503 (2007)

[22] K.Heshami et al Quantum memories: emerging applications and recent advances Journal of

Modern Optics 63, S3, S42 (2016)

48



[23] E.Knill et al A scheme for efficient quantum computation with linear optics Nature 409,

46(2001)

[24] L.A.Stewart et al Single Photon Emission from Diamond nanocrystals in an Opal Photonic

Crystal Opt Express,17(20),18044 (2009)

[25] P.R.Hemmer et al Raman-excited spin coherences in nitrogen-vacancy color centers in dia-

mond Optics Letters, 26, 6, 361 (2001)

[26] Charles Santoori et al Coherent population trapping in diamond N-V centers at zero magnetic

field Optics Express 14, 7986 (2006).

[27] V.M.Acosta et al Electromagnetically Induced Transparency in a Diamond Spin Ensemble

Enables All-Optical Electromagnetic Field Sensing Phys. Rev. Lett, 110, 213605 (2013)

[28] K.Heshami et al Raman quantum memory based on an ensemble of nitrogen-vacancy centers

coupled to a microcavity Phys. Rev. A 89, 040301(R) (2014)

[29] E. Poem et al Broadband noise-free optical quantum memory with neutral nitrogen-vacancy

centers in diamond Phys. Rev. B 91, 205108 (2015)

[30] J.Volz et al Observation of Entanglement of a Single Photon with a Trapped Atom Phys. Rev.

Lett. 96, 030404 (2006)

[31] K.C.Lee et al Macroscopic non-classical states and terahertz quantum processing in room-

temperature diamond Nature Photonics 6, 41(2012)

[32] P.J.Bustard et al Ultrafast slow-light: Raman-induced delay of THz-bandwidth pulses Phys.

Rev. A 93, 043810 (2016)

[33] A.kuzmich et al Generation of nonclassical photon pairs for scalable quantum communica-

tion with atomic ensembles Nature 423, 731(2003)

49



[34] M.D.Lukin Colloquium: Trapping and manipulating photon states in atomic ensembles Rev.

Mod. Phys. 75, 457 (2003)

[35] M.Fleischhauer et al Quantum memory for photons: Dark-state polaritons Phys. Rev. A 65,

022314 (2002)

[36] S.A.Moiseev et al Complete Reconstruction of the Quantum State of a Single-Photon Wave

Packet Absorbed by a Doppler-Broadened Transition Phys. Rev. Lett. 87, 173601 (2001)

[37] B.Kraus et al Quantum memory for nonstationary light fields based on controlled reversible

inhomogeneous broadening Phys. Rev. A 73, 020302(R) (2006)

[38] A.L.Alexander et al Photon Echoes Produced by Switching Electric Fields Phys. Rev. Lett.

96, 043602 (2006)

[39] G.Hetet et al Electro-Optic Quantum Memory for Light Using Two-Level Atoms Phys. Rev.

Lett. 100, 023601 (2008)

[40] J.J.Longdell et al Analytic treatment of controlled reversible inhomogeneous broadening

quantum memories for light using two-level atoms Phys. Rev. A 78, 032337 (2008)

[41] B.Lauritzen et al Telecommunication-Wavelength Solid-State Memory at the Single Photon

Level Phys. Rev. Lett. 104, 080502 (2010)

[42] M.Afzelius et al Demonstration of Atomic Frequency Comb Memory for light with spin wave

storage Phys. Rev. Lett. 104, 040503 (2010)

[43] M.Sabooni et al Efficient Quantum Memory Using a Weakly Absorbing Sample Phys. Rev.

Lett. 110, 133604 (2013)

[44] I.Usmani et al Mapping multiple photonic qubits into and out of one solid-state atomic en-

semble Nature Communications 1: 12 (2010)

50



[45] M.Bonarota et al Highly multimode storage in a crystal New J. Phys. 13, 013013 (2011)

[46] C.Laplane et al Multiplexed on-demand storage of polarization qubits in a crystal New J.

Phys. 18 013006 (2016)

[47] M.Gundogan et al Coherent storage of temporally multimode light using a spin-wave atomic

frequency comb memory New J. Phys. 15 045012 (2013)

[48] J.S.Tang et al Storage of multiple single-photon pulses emitted from a quantum dot in a solid-

state quantum memory Nature Communications 6, 8652 (2015)

[49] E.Saglamyurek et al Broadband waveguide quantum memory for entangled photons Nature

469, 512(2011)

[50] S.Guha et al Rate-loss analysis of an efficient quantum repeater architecture Phys. Rev. A 92,

022357 (2015)

[51] Z.Q.Zhou et al Quantum Storage of Three-Dimensional Orbital-Angular-Momentum Entan-

glement in a Crystal Phys. Rev. Lett. 115, 070502 (2015)

[52] S.Y.Lan et al A Multiplexed Quantum Memory Optics Express ,17, 16, 13639 (2009)

[53] Alain Aspect, Philippe Grangier Optique quantique 2 : Photons et atomes Course in Ecole

Polytechnique, France

[54] P.W.Shor , J.Preskill Simple Proof of Security of the BB84 Quantum Key Distribution Protocol

Phys.Rev.Lett.85,441 (2000)

[55] Xing Ding et al On-Demand Single Photons with High Extraction Efficiency and Near-Unity

Indistinguishability from a Resonantly Driven Quantum Dot in a Micro pillar Phys. Rev. Lett.

116, 020401 (2016)

[56] A.Dousse et al Ultrabright source of entangled photon pairs Nature 466, 217 (2010)

51



[57] Y.Kodriano et al Radiative cascade from quantum dot metastable spin-blockaded biexciton

Phys. Rev. B 82, 155329 (2010)

[58] M.A.M Versteegh Observation of strongly entangled photon pairs from a nanowire quantum

dot Nature Communications 5, 5298 (2014)

[59] M.D.Eisaman et al Single-photon sources and detectors Rev. Sci. Instrum. 82, 071101 (2011)

[60] Morgan P Hedges et al Efficient quantum memory for light Nature 465, 1052(2010)

[61] M. Hosseini High efficiency coherent optical memory with warm rubidium vapour Nature

Communications 2, 174 (2011)

[62] Dana Rosenberg et al Noise-free high-efficiency photon-number-resolving detectors Physical

Review A, 71, 061803(R) (2005)

[63] Claudia Wagenknecht et al Experimental demonstration of a heralded entanglement source

Nature Photonics 4, 549 (2010)

52



Appendix A

CALCULATIONS

Here we give the expressions of the figures of merit under the imperfections considered showing

the calculation steps

A.1 Initial state

A.1.1 Description of the photons

The initial state for the photons emitted from the jth source can be given by

ρi j = (1− ε1) |0〉 j j 〈0|+ ε1(1− ε2) |1〉 j j 〈1|+ ε1ε2 |2〉 j j 〈2|∀ j = (1,2,3,4) (A.1)

Thus the initial joint state of the photons is given by

ρi =
4

∏⊗
j=1

ρi j (A.2)

In this thesis we approximate that at most one of the sources can emit two photons. With this

approximation we can write

ρinitial = lim
ε2

2→0
ρi (A.3)

With this assumption we note that

tr[ρinitial] = 1 (A.4)

A.1.2 Pure state calculation

Given a Hilbert space H with finite dimension d, we can write any density matrix in its eigen

expansion as

ρ =
d

∑
i=1

pi |φ〉ii 〈φ | (A.5)
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where ∑i pi = 1 and 0≤ pi ≤ 1 ∀i. The vectors (|φi〉) forms an orthonormal basis of H

If we define ∣∣φ ′〉= d

∑
i

p
1
2
i eiθi |φ〉i (A.6)

ρ
′ =
∣∣φ ′〉〈φ ′∣∣ (A.7)

we can see that ρ is equal to the diagonal elements of ρ ′.

A.1.3 Description of the initial state

Following this idea, we can shift our calculation to the pure state formalism. In this way we can

write joint pure state of the photons emitted from the jth source

|ψ〉i =
4

∏
⊗ j=1
|ψ〉 j (A.8)

where
∣∣ψ j
〉
, which is the initial pure state of any one of the source and is given by

|ψ〉 j = [
√

(1− ε1)e
iθ
′
0 jI +

√
ε1(1− ε2)e

iθ
′
1 ja†

j +

√
ε1ε2

2
eiθ
′
2 ja†

j
2
] |0〉∀ j ⊂ (1,2,3,4) (A.9)

where a†
j represents the creation operator for each source j and θ

′
0 j,θ

′
1 j,θ

′
2 j are arbitrary phase

angles.

From here we can construct ρ ′ = |ψ〉i 〈ψ|i (equation A.7) and only choose the diagonal elements

to retrieve our density matrix ρi (equation A.7).

A.2 Circuit

A.2.1 Half Wave Plate

Assuming all the source emit horizontally polarized photons, the half wave plate induce the fol-

lowing transformation on the incoming modes

a†
j = cosθa†

jh + sinθa†
jv for half wave plates j = 1,4

a†
j = sinθa†

jh + cosθa†
jv for the half wave plates j = 2,3.
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A.2.2 RPBS

If the detector modes are denoted by d1h†,d1v†,d2h†,d2v† then the role of RPBS is inducing the

following mode transformation



a†
1h

a†
2v

a†
3v

a†
4h


=



1
2

1
2

1
2 −1

2

1
2

1
2 −1

2
1
2

1
2 −1

2
1
2

1
2

−1
2

1
2

1
2

1
2





d1h†

d1v†

d2h†

d2v†


(A.10)

A.2.3 Modelling imperfect detectors

Using the beam splitter model of loss (as shown in Appendix A section 6), the lossy detectors can

be modelled as

d1h† =
√

ηdd1h†
d +
√

1−ηmd1h†
l (A.11)

d1v† =
√

ηdd1v†
d +
√

1−ηmd1v†
l (A.12)

d2h† =
√

ηdd2h†
d +
√

1−ηmd2h†
l (A.13)

d2v† =
√

ηdd2v†
d +
√

1−ηmd2v†
l (A.14)

where modes with subscript d corresponds to cases where the photon has been detected and modes

with subscript l corresponds to cases where the photon has not been detected.

A.2.4 Revisiting intial pure state

Now with all the tools in hand, we can re write the initial pure state |ψ〉i (equation A.8) with in the

mode expansion involving (a†
1v,a

†
2h,a

†
3h,a

†
4v,d1h†

d,d1h†
l ,d1v†

d,d1v†
l ,d2h†

d,d2h†
l ,d2v†

d,d2v†
l )

Now we can construct ρ ′ = |ψ〉i 〈ψ|i (equation A.7) and only choose the diagonal elements to

retrieve our density matrix ρi.
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A.3 Evaluating figures of merit

A.3.1 Probability of desired joint detection

We have limited ourselves to cases where only one photon emits two photon but we have assumed

that this can happen to any source. In our calculation we have checked, that the figures of merit will

have the same value for any choice of detector combination d1h−d2h,d1h−d2v,d1v−d2h,d1v−

d2v.

We choose the detector combination d1h−d2h for the rest of our calculation.

Now, our aim is to evaluate the density matrix of the state after such a desired joint detection ρs

which we do in the following steps.

We define ρ2 as follows

ρ2 = tr[ρiPD] (A.15)

PD = [d†
1hd |0〉〈0|d1hd]⊗ [d†

2hd |0〉〈0|d2hd] (A.16)

ρ2 is the density matrix after one (and only one) detection in each of the detector pairs d1h and

d2h. Now we eliminate all terms in ρ2 which has any of the terms (d1v,d1v2,d1v3,d2v,d2v2,d2v3).

This can be easily done using a computer program. Let us call the remnant density matrix after

this elimination ρ3.

We are still left with the losses that has occurred through any of the detectors. We wish to trace

over these losses and it is done as follows. We define

Pd1hl = [|0〉〈0|+d1h†
l |0〉〈0|d1hl +

1
2

d1h2†
l |0〉〈0|d1h2

l +
1
6

d1h3†
l |0〉〈0|d1h3

l ] (A.17)

Pd1vl = [|0〉〈0|+d1v†
l |0〉〈0|d1vl +

1
2

d1v2†
l |0〉〈0|d1v2

l +
1
6

d1v3†
l |0〉〈0|d1v3

l ] (A.18)

Pd2hl = [|0〉〈0|+d2h†
l |0〉〈0|d2hl +

1
2

d2h2†
l |0〉〈0|d2h2

l +
1
6

d2h3†
l |0〉〈0|d2h3

l ] (A.19)

Pd2vl = [|0〉〈0|+d2v†
l |0〉〈0|d2vl +

1
2

d2v2†
l |0〉〈0|d2v2

l +
1
6

d2v3†
l |0〉〈0|d2v3

l ] (A.20)

With this definition we have

ρs = tr[tr[tr[tr[ρ3Pd1hm]Pd1vm]Pd2hm]Pd2vm] (A.21)

56



We can evaluate ps from in equation 3.4

A.3.2 Scheme efficiency

Modelling imperfect memories

So far we have not considered the memory efficiency as it does not affect the probability of de-

sired joint detection. However the memory efficiency does affect our scheme efficiency. Here we

can model the memory efficiency using the beam splitter model of loss. This is exhibited in the

following equations

a†
1v =
√

ηma†
1vmr

+
√

1−ηma†
1vml

(A.22)

a†
2h =

√
ηma†

2hmr
+
√

1−ηma†
2hml

(A.23)

a†
3h =

√
ηma†

3hmr
+
√

1−ηma†
3hml

(A.24)

a†
4v =
√

ηma†
4vmr

+
√

1−ηma†
4vml

(A.25)

where modes with subscript mr corresponds to cases where the outgoing photon has been retrieved

from the quantum memory and modes with subscript ml corresponds to cases where the outgoing

photon in the quantum memory are lost.

We define

Pmr1 =
1
4
[(a†

1vmr
+a†

2hmr
) |0〉〈0|(a1vmr +a2hmr)+

1
2
(a†

1vmr
+a†

2hmr
)2 |0〉〈0|(a1vmr +a2hmr)

2] (A.26)

Pmr2 =
1
4
[(a†

4vmr
+a†

3hmr
) |0〉〈0|(a4vmr +a3hmr)+

1
2
(a†

4vmr
+a†

3hmr
)2 |0〉〈0|(a4vmr +a3hmr)

2] (A.27)

Pmr = Pmr1⊗Pmr2 (A.28)

This way we can define

ρE1 = tr[ρsPmr] (A.29)

The above step is done to ensure that at least one photon is extracted from each output. Now we

again have to trace over the losses incurred due to the inefficiency of the memories. For that, we
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again define

Pa1vml
= [|0〉〈0|+a†

1vml
|0〉〈0|a1vml +

1
2

a2†
1vml
|0〉〈0|a2

1vml
+

1
6

a3†
1vml
|0〉〈0|a3

1vml
] (A.30)

Pa2hml
= [|0〉〈0|+a†

2hml
|0〉〈0|a2hml +

1
2

a2†
2hml
|0〉〈0|a2

2hml
+

1
6

a3†
2hml
|0〉〈0|a3

2hml
] (A.31)

Pa3hml
= [|0〉〈0|+a†

3hml
|0〉〈0|a3hml +

1
2

a2†
3hml
|0〉〈0|a2

3hml
+

1
6

a3†
3hml
|0〉〈0|a3

3hml
] (A.32)

Pa4vml
= [|0〉〈0|+a†

4vml
|0〉〈0|a4vml +

1
2

a2†
4vml
|0〉〈0|a2

4vml
+

1
6

a3†
4vml
|0〉〈0|a3

4vml
] (A.33)

(A.34)

Expression for scheme efficiency

Thus

ρE = tr[tr[tr[tr[ρE1Pa1vml
]Pa2hml

]Pa3hml
]Pa4vml

] (A.35)

Es can be evaluated from equation 3.7

A.3.3 Conditional fidelity

Once we have ρE , we can evaluate conditional fidelity from equation 3.8.

A.4 Final expressions

We have

ρs = ρBS +ρv +ρ1 +ρ211 +ρ212 +ρ22 +ρ31 +ρ32 (A.36)

where

ρd =CBS |Ψ〉〈Ψ| (A.37)

see equation 3.1. This is the case where the outgoing state is a desired bell state

ρv =Cv |0〉〈0| (A.38)
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This is the case where there is no photon in the output

ρ1 =C1(|V 〉s1 〈Vs1|+ |Hs2〉〈Hs2|+ |Hs3〉〈Hs3|+ |Vs4〉〈Vs4|) (A.39)

This is the case where there is one photon in the output

ρ211 =C211(|Vs1Hs3〉〈Vs1Hs3|+ |Vs1Vs4〉〈Vs1Vs4|+ |Hs2Hs3〉〈Hs2Hs3|+ |Hs2Vs4〉〈Hs2Vs4|)(A.40)

ρ212 =C212(|Vs1Vs4〉〈Vs1Vs4|+ |Hs3Hs2〉〈Hs3Hs2|) (A.41)

These are the cases where there is two photons one in each output but they are not in the bell state

ρ22 =C22(|Vs1Vs1〉〈Vs1Vs1|+ |Vs1Hs2〉〈Hs1Vs2|+ |Hs3Hs3〉〈Hs3Hs3|+ |Hs2Vs4〉〈Hs2Vs3|) (A.42)

This is the case where there is two photons in the output but they are in the same output mode

ρ31 =C31(|Vs4Hs3Hs2〉〈Vs4Hs3Hs2|+ |Vs1Hs3Hs2〉〈Vs1Hs3Hs2|

+ |Vs1Vs4Hs2〉〈Vs1Vs4Hs2|+ |Vs1Hs2Hs3〉〈Vs1Hs2Hs3|)

(A.43)

ρ32 =C32(|Vs1Vs1Vs4〉〈Vs1Vs1Vs4|+ |Vs1Vs4Vs4〉〈Vs1Vs4Vs4|

+ |Hs3Hs3Hs2〉〈Hs3Hs3Hs2|)+ |Hs2Hs2Hs3〉〈Hs2Hs2Hs3|) (A.44)

These are the cases where there are three photons and at least one in each output mode. The

expressions for the coefficients are

CBS =
1
2
(cos4

θ)(sin4
θ)ε4

1 (1−4ε2)η
2
d (A.45)
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Cv =
1
2

η
2
d (1−ηd)

2
ε

4
1 (1−4ε2)(cos8

θ)+(1− ε1)
2
ε

2
1 (1−2ε2)(cos4

θ)η2
d (A.46)

+4ε
3
1 (1− ε1)(1−3ε2)η

2
d (1−ηd)(cos6

θ)+

ε2[
1
2
(1− ε1)

3
ε1(cos4

θ)η2
d +

7
2
(1− ε1)

2
ε

2
1 (cos6

θ)ηd(1−ηd)

+
13
2
(1− ε1)ε

3
1 η

2
d (1−ηd)

2 cos8
θ

+
9
2

ε
4
1 η

2
d (1−ηd)

3(cos10
θ)]

C1 =
1
4
(cos6

θ)sin2
θη

2
d (1−ηd)ε

4
1 (1−4ε2)+

1
4
(1− ε1)ε

3
1 (1−3ε2)(cos4

θ)sin2
θη

2
d

+ε2[
7
8

ε
2
1 (1− ε1)

2(cos4
θ)sin2

θη
2
d +

13
4

ε
3
1 (1− ε1)(cos6

θ)sin2
θη

2
d (1−ηd)+

21
8

ε
4
1 (cos8

θ)sin2
θη

2
d (1−ηd)

2] (A.47)

C211 = ε2[
5
4
(cos4

θ)sin4
θε

3
1 (1− ε1)η

2
d +

5
4

ε
4
1 (cos6

θ)sin4
θη

2
d (1−ηd)] (A.48)

C212 = ε2[
7
4
(cos4

θ)sin4
θε

3
1 (1− ε1)η

2
d +

7
4

ε
4
1 (cos6

θ)sin4
θη

2
d (1−ηd)] (A.49)

C22 = ε2[
1
4
(cos4

θ)sin4
θε

3
1 (1− ε1)η

2
d +

1
4

ε
4
1 (cos6

θ)sin4
θη

2
d (1−ηd)] (A.50)

C31 = ε2[
5
8
(cos4

θ)sin6
θε

4
1 η

2
d ] (A.51)

C32 = ε2[
1
4
(cos4

θ)sin6
θε

4
1 η

2
d ] (A.52)

So we have

ps = 4(CBS +Cv +2C212 +4(C1 +C211 +C22 +C31 +C32)) (A.53)

Again

ρE = ρE1 +ρE2 (A.54)
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where

ρE1 = η
2
mCBS |BS〉〈BS|

+η
2
mC211(|Vs1Hs2〉〈Vs1Hs2|+ |Vs4Hs3〉〈Vs4Hs3|+

+η
2
mC212(|Vs1Vs4〉〈Vs1Vs4|+ |Hs3Hs2〉〈Hs3Hs2|) (A.55)

and

ρE2 = η
3
mC31(|Vs4Hs3Hs2〉〈Vs4Hs3Hs2|

+ |Vs1Hs3Hs2〉〈Vs1Hs3Hs2|

+ |Vs1Vs4Hs2〉〈Vs1Vs4Hs2|

+ |Vs1a2hHs3〉〈Vs1a2hHs3|)

+η
3
mC32(|Vs1Vs1Vs4〉〈Vs1Vs1Vs4|

+ |Vs1Vs4Vs4〉〈Vs1Vs4Vs4|

+ |Hs3Hs3Hs2〉〈Hs3Hs3Hs2|

+ |Hs2Hs2Hs3〉〈Hs2Hs2Hs3|) (A.56)

and

ρbellstate = ρd =CBS |Ψ〉〈Ψ| (A.57)

So we have (from equation 3.7 and equation 3.8)

Es =
4η2

m(CBS +2(C211 +C212)+4ηm(C31 +C32))

ps
(A.58)

fs =
1

1+ ε2
f 1
f 2

(A.59)

where
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f 1 =
1
ε2
(2(C211 +C212)+4ηm(C31 +C32) (A.60)

f 2 =CBS (A.61)

We can see that for small values of ε2 we can write

fs = 1− ε2
f 1
f 2

(A.62)

A.5 Additional- an interesting property of the RPBS

Figure A.1: Schematic diagram of a rotated polarizing beam splitter. A rotated polarizing beam

splitter is an ordinary polarizing beam splitter with half wave plates with an angle π/4 at each of

its entry and exit. The annihilator operator of the incoming modes are denoted as a1 and a2 while

the annihilator outgoing modes are denoted as a3 and a4

Here we consider a few properties of the RPBS where two photons are entering and emerging from

it.
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A.5.1 Two photons from same input

First we ask the question what happens if we we have two photons incoming from one end and

none from the other? In the case we can write the incoming state as 1
2(α1a1†

h+β1a1†
v)

2+(α2a2†
h+

β2a2†
v)

2 |0〉 and expanding it after the mode transformation, as described above, we have the final

state in the linear combinations of the terms (a32†
h ,a32†

v ,a42†
h ,a42†

v ,a3†
ha3†

v ,a4†
ha4†

v) acting on |0〉.

As we can see that each of the terms are either in a3† OR in a4†, but there are no terms which are

in product of a3† and a4†, we can say that if we have two incoming photons from the same input

in the RPBS, then they will emerge at the same output of RPBS.

A.5.2 Two photons from different input

If they arrive at different output, then we can write the incoming state as (α1a1†
h+β1a1†

v)(α2a2†
h+

β2a2†
v) |0〉 and and expanding it after the mode transformation, as described above, we have the fi-

nal state in the linear combinations of the terms (a32†
h ,a32†

v ,a42†
h ,a42†

v ,a3†
ha4†

h,a3†
ha4†

v ,a3†
va4†

h,a3†
va4†

v)

acting on |0〉. This clears the fact that if we have two photons emerging from different outputs in

the RPBS, i.e. the outgoing terms are in product form of the modes a3† and a4†, then they must

have entered the RPBS from different inputs.

A.5.3 Polarization parity and RPBS

Here we stick to the case where two photons are incoming on the RPBS from two different input.

A photon in each of these mode can either be horizontally polarized or vertically polarized. Thus

the RPBS matrix performs the following transformation

|H〉a3 |H〉a4

|H〉a3 |V 〉a4

|V 〉a3 |H〉a4

|V 〉a3 |V 〉a4


=



1
2

1
2

1
2 −1

2

1
2

1
2 −1

2
1
2

1
2 −1

2
1
2

1
2

−1
2

1
2

1
2

1
2





|H〉a1 |H〉a2

|H〉a1 |V 〉a2

|V 〉a1 |H〉a2

|V 〉a1 |V 〉a2


(A.63)
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Thus if the incoming state has same polarization, either both horizontally polarized or both verti-

cally polarized with the same probability, i.e. if the initial (un-normalized) vector is (1,0,0,1)T

then the RPBS transforms it into the outgoing vector (0,1,1,0)T which implies that the outgoing

state has opposite polarization.

Similarly if the incoming state has opposite polarization, either both horizontally polarized or

both vertically polarized with the same probability, i.e. if the initial (un-normalized) vector is

(0,1,1,0)T then the RPBS transforms it into the outgoing state (1,0,0,1)T which implies that the

outgoing state has same polarization.

A.6 Additional - beam splitter model of loss

An optical element, such as a detector or a quantum memory with an efficiency η can be modelled

using a perfect element and a beam splitter with a transitivity
√

η placed in front of it.

ain =
√

ηa†
e f f +

√
1−ηa†

loss (A.64)

If a photon is transmitted through this beam splitter, it is equivalent to the scenario where the

optical element functions efficiently (denoted by subscript e f f ) and the if the photon is reflected

through this beam splitter, it is equivalent to the scenario where the optical element fails to function,

(denoted by subscript loss).

A.7 Additional - Entanglement swapping

Entanglement swapping [19] is a measurement technique to create entanglement between two

subsystems which have not interacted previously. If the joint system A,B and C,D are previously

entangled, the idea behind entanglement swapping is to interfere subsystems B and C to create

entanglement between subsystems A and D who have not previously entangled. Quantum repeaters

rely on entanglement swapping either by one photon or two photon detections as described below.
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Via one photon detection

Figure A.2: Schematic diagram of entanglement swapping via one photon detection

Let us assume that subsystems A and B are optically entangled via de-localization of a single

photon among them. We can write

|Ψ〉AB =
1√
2
(a†

A +a†
B) |0〉 (A.65)

Similarly subsystems C and D are optically entangled via de-localization of a single photon among

them. We can write

|Ψ〉CD =
1√
2
(a†

C +a†
D) |0〉 (A.66)

Thus their joint subsystem can be written as

|Ψ〉= |Ψ〉AB⊗|Ψ〉CD (A.67)

If photons from B and C are allowed to be incident on the beam splitter (figure A.2), then denoting

the beam splitter output modes as a†
E and a†

F , the joint system can be written as

|Ψ〉= 1
2
[
1
2

a2†
E −

1
2

a2†
F +a†

Aa†
D +a†

E
1√
2
(a†

A +a†
D)−a†

F
1√
2
(a†

A−a†
D)] |0〉 (A.68)

The last two terms corresponds to the case where a single photon is detected either along the

detector in the mode a†
E or in the mode a†

F and subsystems A and D are subsequently entangled

and this happens with a 50% probability. Single photon entanglement swapping is employed in

quantum repeater protocols such as the DLCZ protocol [14]
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Via two photon detection

Figure A.3: Schematic diagram of entanglement swapping via two photon joint detections

In this case let us assume that two photons, one in each subsystems A and B, are entangled in their

polarization mode. We can write

|Ψ〉AB =
1√
2
(a†

AHa†
BH +a†

AV a†
BV ) |0〉 (A.69)

Similarly subsystems C and D, are entangled in their polarization mode. We can write

|Ψ〉CD =
1√
2
(a†

CHa†
DH +a†

CV a†
DV ) |0〉 (A.70)

Thus their joint subsystem can be written as

|Ψ〉= |Ψ〉AB⊗|Ψ〉CD (A.71)

If photons from B and C are allowed to be incident on the beam splitter followed by two polarizing

beam splitters, one in each outgoing mode (figure A.3), then denoting the polarizing beam splitter
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output modes as (a†
EH ,a†

EV ) and (a†
FH ,a†

FV ), the joint system can be written as

|Ψ〉= 1
2
[
1
2

a2†
EHa†

AHa†
DH

−1
2

a2†
FHa†

AHa†
DH

+
1
2

a2†
EV a†

AV a†
DV

−1
2

a2†
FV a†

AV a†
DV

+
1√
2

a†
EHa†

EV
1√
2
(a†

AHa†
DV +a†

AV a†
DH)

− 1√
2

a†
FHa†

FV
1√
2
(a†

AHa†
DV +a†

AV a†
DH)

+
1√
2

a†
EV a†

FH
1√
2
(a†

AHa†
DV −a†

AV a†
DH)

− 1√
2

a†
EV a†

FH
1√
2
(a†

AHa†
DV −a†

AV a†
DH)] |0〉 (A.72)

The last four terms corresponds to the case where two photons are detected, one in each detectors.

One can see that such a joint detection creates entanglement between subsystems A and D with

a probability of 50%. Entanglement swapping via two photon detection is used in the quantum

repeater protocol discussed in this thesis [15].
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Appendix B

Scheme using parametric down conversion source

In this chapter we outline an alternate scheme where deterministic entangled photon pairs can be

generated using parametric down conversion source and give expressions of the figures of merit

B.1 Description

Figure B.1: Deterministic entangled photon pair source using parametric down conversion source

This alternative approach is based on the heralded entanglement scheme proposed by Sliwa and

Banaszek [16]. A parametric down conversion source emits three polarization entangled photon

pairs in the mode a and b. Each mode is incident on a beam splitter where each photon can be

transmitted and subsequently stored in quantum memories marked QM. Or they can be reflected

back to a polarizing beam splitter whose output modes lead to a pair of photon number resolving

detectors. A half wave plate is placed before the polarizing beam splitter of any of the one mode,
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here along mode e. A fourfold detection, one in each four detectors, heralds storage of a pair of

polarization entangled photons in the output mode.

It is trivial from the scheme that if the PDC source emits one pair of photon, it cannot lead to a

fourfold detection. If it emits two pair of photons, and if all of them are reflected from the respective

beam splitters along modes e and f , the presence of the half wave plate in mode e ensures that the

two photons along e are both directed to any one of the detectors due to the Hong Ou Mandel

effect. Thus such a four fold detection is not possible. In the ideal case, if the PDC source emits

three pairs of photons, then the fourfold detection ensures storage of one photon in each of the

output modes c and d. As the stored photons can have any of the two orthogonal polarizations with

equal probability, they are in a bell state.

The notions of probability of fourfold detection psP, rate of joint detection RsP scheme efficiency

EsP and conditional fidelity fsP can similarly defined in this case.

B.2 Imperfections

Imperfection in this scheme can arise from non unit detector efficiency ηd , memory efficiency

ηm, and emission of four pairs of photons instead of three pairs. Another source of error is the

non unit heralding efficiency of the PDC source. Although in this thesis, we have considered a

perfectly heralded PDC source. If the probability of emission of one photon pair in a spontaneous

parametric down conversion is p then probability of three photon pair emission is proportional to p3

and the probability of four pair emission is proportional to p4. Here one can note that the success

probability (p3) and the probability of multiple emissions (p4) cannot be treated independently,

unlike the case in the scheme described in this thesis.
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B.3 Figures of merit

Assuming a perfectly heralded PDC source which can emit a pair of polarization entangled pair of

photons with a probability p, and photon number detectors with detector efficiency ηd , memory

efficiency ηm and reflectivity of each of the beam splitters as sinθ we give the expressions for

probability of desired detection psP,conditional fidelity fsP, scheme efficiency EsP.

If we consider emission upto four pair of photons, the trace of the input state is given by

tr[ρinputP] = 1+ p+
3
4

p2 +
1
2

p3 +
5

16
p4 (B.1)

As the probability of emission of a pair from a PDC ∼ 10−2, we can approximate tr[ρinputP] ≈ 1.

With this approximation, the probability of desired detection psP is given by

psP =
p3

4
η

4
d sin8

θ(1−ηd sin2
θ)2(1+

13
4

p(1−ηd sin2
θ)2) (B.2)

Thus

RsP = psP×Rrep (B.3)

where Rrep is the repetition rate of the PDC which is taken to be∼ 100MHz The scheme efficiency

for the PDC scheme EsP

EsP =
η2

m cos4 θ

(1−ηd sin2
θ)2

(1+ p13
8 η4

d sin8
θ(η2

m cos4 θ +4ηm(1−ηd)cos2 θ sin2
θ +4(1−ηd)

2 sin4
θ)

1+ 13
4 p(1−ηd sin2

θ)2
(B.4)

The conditional fidelity fsP is given by

fsP =
1

1+13p(1
4 cos4 θη2

m +(1−ηd)cos2 θ sin2
θηm +(1−ηd)2 sin4

θ)
(B.5)

B.4 Additional - PDC

The wave function of a perfectly heralded parametric down conversion source emitting n pairs of

polarization entangled photons along modes a and b with orthogonal polarization directions x and
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y can be described as

|ψ〉=
∞

∑
n=0

λn |ψn〉 (B.6)

where

λn =
√

n+1
tanhn r
coshn r

(B.7)

the probability amplitude of generating n photon pairs. Here r is a dimensionless parameter pro-

portional to the interaction time. And |ψn〉 is the normalised n pair component wave function given

by

|ψn〉=
1

n!
√

n+1
(a†

xb†
y−a†

yb†
y)

n |0〉 (B.8)
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