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Abstract

Rayleigh criterion has been the unbreakable rule for direct imaging. In the past few decades, new

imaging techniques emerged to circumvent Rayleigh limit by changing the imaging conditions.

By analysing the optical field in image plane with quantum optics, one can find quantum Fisher

information for estimating the distance between two light sources remains constant, which means

one can always estimate this distance with finite error. This discovery makes Rayleigh criterion

irrelevant to quantum optimal measurements. Inspired by the theoretical analysis, we propose

an experimental implementation to achieve sub-Rayleigh resolution. Using optical heterodyne

detection with a local oscillator in TEM01, we can measure the single slit position within 0.0015

and 0.012 of Rayleigh limit for coherent and incoherent light. We can also measure the distance

between two slits emitting incoherent light within 0.019 of Rayleigh limit. By engaging more

Hermite-Gaussian modes, we can reconstruct the full image.
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Chapter 1

Introduction

Since the invention of the first microscope in the 16th century, scientists have been trying to im-

prove the resolution of microscopes. In the early days, scientists thought they could achieve arbi-

trary resolution by making perfect optics. It was not until the 1870s, when Ernst Abbe[1] and Lord

Rayleigh[2] published their research on optical imaging systems, that people realized the funda-

mental resolution limit due to diffraction. For the next century, Rayleigh criterion became the un-

breakable rule for microscope designs. Things changed in the past few decades, when talented pio-

neers started challenging the diffraction limit. Various successful imaging methods[3, 4, 5, 6, 7, 8]

that work below Rayleigh limit have been invented and applied to biology and chemistry research.

Such techniques are named super-resolution microscopy, highlighting their ability of sub-Rayleigh

resolution. In 2014, the Nobel Prize in Chemistry was awarded to Eric Betzig, Stefan W. Hell and

William E. Moerner for their development of super-resolved fluorescence microscopy, acknowl-

edging the importance for super-resolution techniques. We begin with a review of resolution limit

of direct imaging system and mostly used super-resolution techniques.

1.1 Resolution limit

1.1.1 Point spread function

Point spread function[9] is the diffraction pattern of a point light source in the image plane of an

optical system. We can model a direct imaging system with a circular objective lens with focal

length f and diameter D. For a single point light source located on the optical axis of the lens, the

diffraction pattern in the image plane is a bright circular disc with series of concentric rings. This

1



-3 -2 -1 0 1 2 3
Λ�H2NAL

0.2

0.4

0.6

0.8

1.0
arbitrary unit

Figure 1.1: Airy pattern

diffraction pattern is called Airy pattern[10]. We normalize Airy pattern in one dimension as

I(x) = I0

[
J1(πx)

πx

]2

, (1.1)

where J1(x) is the 1st order Bessel function of first kind. The Airy pattern is shown in Figure 1.1.

The bright disc in Airy pattern is called Airy disc, whose radius is given by

r = 1.22n
f λ

D
, (1.2)

where λ is the wavelength of the light in vacuum, while n is the refractive index. An extended

object can be thought as comprising of many point light sources, and the image of the object is the

sum of the point spread functions from all points of the object.

1.1.2 Rayleigh criterion

Rayleigh criterion has been the convention to determine the resolution limit for direct imaging.

It states that two point light sources are just resolvable when the maximum of the Airy disc of

one point source coincide with the first minimum of the other. The minimum resolvable distance

between the two emitters is

dr = 1.22n
f λ

D
. (1.3)

2



-3 -2 -1 0 1 2 3
Λ�H2NAL

0.2

0.4

0.6

0.8

1.0

arbitrary unit

Figure 1.2: Illustration of Rayleigh criterion

This distance is called Rayleigh limit. For microscopes, the objective lens is typically characterized

by its numerical aperture (NA) which is defined as

NA = nsinθ , (1.4)

where θ is the half angle of the cone of light collection by the objective lens. For D� f , which is

the case of our experiment, the numerical aperture can be approximated by

NA = n
D
2 f

. (1.5)

We use the expression in equation 1.5 for the rest of the thesis. We can rewrite Rayleigh criterion

in term of NA as

dr = 1.22
λ

2NA
. (1.6)

This resolution limit is the result of the wave nature of light. In Figure 1.2, we show the intensity

distribution in the image plane when two point light sources are separated by Rayleigh limit. The

intensity in the centre is approximately 74% of the maximum.

1.1.3 Comparison of various resolution limits

People may use slightly different definitions of resolution limit depending on their field of study.

Here we show that all the conventional definitions are equivalent in terms of diffraction. The most

3
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Figure 1.3: Comparison of various conventional resolution limits.

commonly referred conventional resolution limits are: Rayleigh, Abbe and Sparrow criteria, which

are compared in Figure 1.3. The difference between those definitions is just the relative intensity at

the centre compared to the maximum, which are 74%, 98% and 100%, respectively. Rayleigh and

Abbe criteria are mostly used in conventional microscopy, while Sparrow criterion is often used in

astronomy. We use Rayleigh criterion as the standard definition.

1.1.4 Gaussian approximation of Airy pattern

Airy pattern is mathematically complicated for calculations. We can approximate Airy pattern by

a Gaussian function if we are not concerned with the concentric rings. The optimal approximation

with the same central intensity is give by

I(x) = I0e−x2/2σ2
, (1.7)

where σ = 0.21λ/NA[32]. The difference between these two functions is shown in Figure 1.4.

The blue curve is the Airy pattern, while the red one is the Gaussian approximation.

1.2 Abbe theory of imaging

In 1867, Ernst Abbe demonstrated the imaging process for an infinite periodic object[9]. This

theory can be generalized to objects of any shape. To understand the imaging process, we first

discuss Abbe’s demonstration in an intuitive way, and then formalize the result as a double Fourier

transform.

4
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Figure 1.4: Gaussian approximation of Airy pattern. Blue: Airy pattern, Red: Gaussian approxi-
mation.

Consider an infinite periodic object located in the object plane. Each diffraction order from this

object, in the paraxial approximation, can be treated as a plane wave. After transmitting through

the objective lens, the plane waves are focused at different points on focal plane and continue to

propagate and overlap again, forming an image in the image plane. There are two stages in the

process. On the first stage, Fraunhofer diffraction pattern is formed on the focal plane; on the

second stage, the diffraction orders on the Fourier plane behaves like equally spaced point sources

and their diffraction pattern is the image. An object of arbitrary shape can be described as the sum

of a series of infinite periodic patterns. Thus, the above-mentioned process can be applied to any

object.

We can understand the distortion of the image as follows. For an infinite lens, all the diffraction

orders are collected by the objective lens. When they interfere and form the image, no information

is lost. However, for a lens of finite size, higher orders of diffraction cannot transmit the objective

lens. Those diffraction orders contain information of the fine structure of the object. Loss of this

information results in a distorted blurry image.

Next, we formalize this process in one dimension with a double Fourier transform. It can be

easily extended to two dimensions. Suppose the spatial distribution of the optical field in the object

5



plane is E(x). The optical field on the focal plane is the Fourier transform of E(x),

Ẽ(k⊥) =
+∞∫
−∞

E(x)eik⊥xdx, (1.8)

where k⊥ is the orthogonal component of the wavevector. The change of optical phase and the

normalization factor are neglected. In the image plane, the inverse Fourier transform is applied,

resulting in the field distribution

E ′(x′) =
+∞∫
−∞

Ẽ(k⊥)T̃ (k⊥)e−ik⊥x′dk⊥

=

+∞∫
−∞

+∞∫
−∞

E(x)T̃ (k⊥)eik⊥(x−x′)dxdk⊥,

where T̃ (k⊥) is the transmissivity of the lens. If the transimissivity is constant, we have E ′(x′) =

E(x). This means the image formed by an infinite lens is identical to the object. In reality, a lens

with a finite width makes the image distorted according to

E ′(x′) =
+∞∫
−∞

E(x)T (x′− x)dx, (1.9)

where

T (x′− x) =
+∞∫
−∞

T̃ (k⊥)eik⊥(x−x′)dk⊥ (1.10)

is the Fourier image of the lens. In other words, the image is a convolution of the object with T (x).

T (x) is called the transfer function of the objective lens.

1.3 Review of super-resolution techniques

Many super-resolution techniques have been used in biology research with great success. Here we

present a brief review of these techniques and discuss why new techniques are still needed.

1.3.1 Super-resolution with nonlinear optics

One way to achieve sub-Rayleigh resolution is to take advantage of nonlinearities in optical media.

The most successful techniques are two-photon excitation microscopy[3] and stimulated emission

6



depletion microscopy[4].

Two-photon excitation was first theoretically analysed by Maria Göppert Mayer in 1931[12]

and observed in experiments by Kaiser and Garrett in 1961[13]. Denk et al.[3] first combined

microscopy with two-photon excitation in 1990. In two-photon excitation microscopy, one flo-

rescence photon is precedent with a two-photon absorption. This process requires simultaneous

absorption of the two photons, therefore has a extremely low probability. To increase the number

of excitations, a strong flux of photons is required. In experiments, one can maximize the two-

photon excitation efficiency by focusing a powerful laser beam to its diffraction limit, which is

typically achieved by focusing a 1W pulsed laser to 10−9 cm2. Two-photon excitation is a non-

linear process, whose probability is proportional to the square of optical intensity. For a highly

focused beam, the intensity in the vicinity of the focal point decreases quadratically with the dis-

tance along the direction of propagation z. As a result, only the small region around the focal point

is excited. By scanning the focal point of the laser on the object, we can obtain the image with an

increased resolution.

Stimulated emission depletion (STED) microscopy was developed by Stefan W. Hell and Jan

Wichmann in 1994[4]. They achieve super-resolution by inhibiting the fluorescence process in

the outer region of the excitation point. A pair of synchronized pulsed lasers are used in STED

microscopy. Each pair of laser pulses comprises of an excitation pulse and a depletion pulse. The

first pulse excite the sample, creating a spot still within the diffraction limit. The depletion pulse

(also called STED pulse) is sent immediately after the excitation pulse. The STED pulse is red

shifted to the emission spectrum of the sample and clears the excitation by stimulated emission.

By manipulating the spatial profile of the STED pulse to a doughnut shape with a zero intensity in

the centre, the excitations in the periphery of the spot are depleted while the centre spot remains

unaffected. By making the central zero intensity region smaller than the diffraction limit, one can

achieve sub-Rayleigh resolution in the transverse plane.

7



1.3.2 Near-field super-resolution

Rayleigh criterion only applies to far-field imaging and we can circumvent this limit by detection

in near-field. Such a technique is called scanning near-field optical microscopy (SNOM)[5, 6].

E. H. Synge first proposed the idea of near field imaging in 1928[14]. But this proposal was

soon forgotten due to its technical challenges. In 1984, Pohl et al. implemented this method in

experiments for the first time. In SNOM, a sub-wavelength aperture is placed in the near-field of an

object. This small aperture acts as a light source, whose dimension to a great extend determines the

spatial resolution of the microscope. The aperture is usually implemented by a tapered nanofibre

with metal coating around the tip. By scanning the aperture on the surface of the object, an image

with resolution beyond diffraction limit can be obtained.

1.3.3 Localization microscopy

Another branch of super-resolution techniques is localization microscopy. In localization mi-

croscopy, the position of an individual point source can be measured with high precision, which

is not restricted by diffraction limit. One can isolate fluorophores located within diffraction limit

from each other by turning on only a fraction of photo-switchable fluorophores. The position

of those fluorophores are measured in one imaging cycle. By repeating the imaging cycles with

different fluorophores, one can reconstruct the image with a resolution higher than direct imag-

ing. Such techniques include stochastic optical reconstruction microscopy (STORM)[7], photon

activated localization microscopy (PALM)[8], etc.

1.3.4 Discussion

All these aforementioned super-resolution techniques have found successful applications in bio-

physics. While two-photon excitation microscopy typically achieves a resolution two to three

times better than direct imaging, all the other techniques can achieve a resolution of ∼ 20 nm,

about ten times better than Rayleigh limit. However, they do not violate Rayleigh criterion, but

8



rather circumvent the diffraction limit by changing the imaging conditions. Rayleigh criterion

holds on two conditions: far-field detection and simultaneous emitting of light sources. None of

these techniques can achieve sub-Rayleigh resolution without violating one of the two conditions.

These techniques also suffer from high cost and difficulty of operation due to their complicated

methodology. Two-photon excitation microscopy and STED microscopy requires sub-picosecond

laser pulses; SNOM works only for the surface of an object; STORM and PALM can be used

only if the object is photo-switchable. In many cases, imaging in far-field is required and simple

operation is expected. In this thesis, we demonstrate a new technique to achieve super-resolution

with linear optics in far-field. Inspired by the theoretical proposal by Tsang et al.[15], we achieve

sub-Rayleigh resolution without breaking either of the two conditions for Rayleigh criterion to

hold. The theoretical analysis by Tsang et al. and our experimental result fundamentally change

the understanding of diffraction limit.

9



Chapter 2

Theory

In direct imaging system, the indistinguishability of two point sources within Rayleigh limit comes

from the unlimited estimation error of their separation distance. In statistics, the precision to esti-

mate an unknown parameter θ from an observable random variable X is described by Cramér-Rao

bound, which can be calculated from Fisher information. Tsang et al.[15] find that Fisher informa-

tion does not vanish for estimating separation distance of two light sources even they are closer than

the Rayleigh limit if we describe the imaging process quantum mechanically. By counting photon

numbers in each Hermite-Gaussian mode, one can acquire classical Fisher information equal to its

quantum counterpart. Therefore, the resolution is only limited by quantum noise, making Rayleigh

criterion irrelevant to the problem. Inspired by their analysis, we implement the detection in a dif-

ferent fashion. We measure field amplitudes of the image in higher Hermite-Gaussian modes by

optical heterodyne detection, circumventing the technical challenge to count photon numbers in

different transverse electromagnetic modes (TEMs).

2.1 Parameter estimation in statistics

Before introducing quantum description of the imaging process, it is useful to understand classical

Fisher information and Cramér-Rao bound in statistics[16].

2.1.1 Fisher information

In parameter estimation problems, we obtain information about an unknown parameter θ from an

observable random variable X , whose distribution depends on θ . Consider a probability density

10



function f (x|θ). Fisher information is defined as

I(θ) = Eθ

[(
∂

∂θ
log f (x|θ)

)2
]

=
∫ +∞

−∞

[
∂

∂θ
log f (x|θ)

]2

f (x|θ)dx,

(2.1)

where Eθ [·] represents the expectation of X with parameter θ . We can define the likelihood func-

tion to estimate θ . The likelihood to obtain a given outcome of x with varying θ is

L(θ |x) = f (x|θ). (2.2)

Different from f (x|θ), the likelihood function is a function of θ with parameter x, and therefore it

is not a probability distribution. The partial derivative of log-likelihood function with respect to θ

S =
∂

∂θ
logL(θ |x) (2.3)

is called score in statistics. It is easy to find that the expectation value of score is zero,

Eθ

[
∂

∂θ
log f (x|θ)

]
=
∫ +∞

−∞

[
∂

∂θ
log f (x|θ)

]
f (x|θ)dx

=
∫ +∞

−∞

∂

∂θ
f (x|θ)

f (x|θ)
f (x|θ)dx

=
∫ +∞

−∞

∂

∂θ
f (x|θ)dx = 0.

(2.4)

Therefore, Fisher information is the variance of the score. In most experiments, f (x|θ) is twice

differentiable. In this case, we can write Fisher information in terms of the second derivative of

the log-likelihood function. Notice that

∂ 2

∂θ 2 log f (x|θ) =
∂ 2

∂θ 2 f (x|θ)
f (x|θ)

−
(

∂

∂θ
log f (x|θ)

)2

(2.5)

and

Eθ

[
∂ 2

∂θ 2 f (x|θ)
f (x|θ)

]
=
∫ +∞

−∞

∂ 2

∂θ 2 f (x|θ)dx =
∂ 2

∂θ 2

∫ +∞

−∞

f (x|θ)dx =
∂ 2

∂θ 2 1 = 0. (2.6)

We can write Fisher information as

I(θ) =−Eθ

[
∂ 2

∂θ 2 log f (x|θ)
]
. (2.7)
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Fisher information tells us the precision of a maximum likelihood estimator (MLE). We can

intuitively understand this as follows. For an MLE, the likelihood function reaches its maximum

and the score vanishes. The precision of MLE depends on the curvature of the log-likelihood

function around its extremum. For a big curvature a slightly different estimator corresponds to a

much lower likelihood, while for a small curvature the likelihood is almost the same. Larger Fisher

information means a lager curvature, therefore a better precision of MLE.

We can also extend the definition of Fisher information for N unknown parameters θi, i =

1,2, ...N. In this case, Fisher information takes the form of an N×N matrix. The elements of the

matrix are defined as the covariance of the score

I(θ)i j = Eθ

[(
∂

∂θi
log f (x|θ)

)(
∂

∂θ j
log f (x|θ)

)]
(2.8)

If the matrix is diagonal, each diagonal element I(θ)i,i represents the Fisher information of the

corresponding parameter θi and each parameter can be estimated independently. If the off diagonal

element I(θ)i, j is does not vanish, the corresponding parameters θi and θ j are not independent.

2.1.2 Cramér-Rao bound

We introduce Cramér-Rao bound to calculate the variance of an unbiased MLE. An estimator is

unbiased if its expectation value is the true value of the parameter. Cramér-Rao bound is defined

as the lower bound of the variance of any unbiased estimator θ̂ , which is the reciprocal of Fisher

information:

Var(θ̂)≥ 1
I(θ)

. (2.9)

We prove this relation as follows. The covariance of estimator θ̂ and the score is

Covθ

[
θ̂ ,

∂

∂θ
log f (x|θ)

]
= Eθ

[
(θ̂ −Eθ (θ̂))

(
∂

∂θ
log f (x|θ)−Eθ

[
∂

∂θ
log f (x|θ)

])]
= Eθ

[
(θ̂ −θ)

∂

∂θ
log f (x|θ)

]
=
∫

∞

−∞

θ̂
∂

∂θ
f (x|θ)dx

=
∂

∂θ
Eθ (θ̂) = 1.

(2.10)
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Here we used the fact that the expectation of score is zero and the expectation of an unbiased

estimator is the parameter itself. From Cauchy-Schwartz inequality, we have(
Covθ

[
θ̂ ,

∂

∂θ
log f (x|θ)

])2

≤Var(θ̂)Var
(

∂

∂θ
log f (x|θ)

)
=Var(θ̂)I(θ). (2.11)

Comparing equation 2.10 and 2.11, we obtain the Cramér-Rao bound in equation 2.9. By using

Cramér-Rao bound, we can describe the estimation precision in terms of its variance, which is the

same as the standard way one describes experimental error.

2.2 Quantum parameter estimation

We can extend the concept of Fisher information to quantum metrology, and use quantum Cramér-

Rao bound to calculate estimation precision. Quantum Fisher information[17] is defined as

I(Q)(ρ) = tr[L(ρ)2
ρ], (2.12)

where ρ is the density matrix of the quantum state while L(ρ) is the symmetric logarithmic deriva-

tive (SLD). The SLD is defined by the following equation

∂

∂θ
ρ =

1
2
(ρL+Lρ) (2.13)

In the eigenbasis of ρ , where

ρ = ∑
i

pi |ei〉〈ei| , (2.14)

we can derive SLD as follows. From equation 2.13, we have〈
ei

∣∣∣∣ ∂

∂θ
ρ

∣∣∣∣e j

〉
=

〈
ei

∣∣∣∣12 (ρL+Lρ)

∣∣∣∣e j

〉
. (2.15)

Replacing ρ with equaiton 2.14 on the right hand side of equation 2.15, we have〈
ei

∣∣∣∣ ∂

∂θ
ρ

∣∣∣∣e j

〉
=

〈
ei

∣∣∣∣12
(

∑
k

pk |ek〉〈ek|L+L∑
k

pk |ek〉〈ek|

)∣∣∣∣e j

〉

=
1
2

(
∑
k

pk 〈ei|ek〉〈ek|L|e j〉+∑
k

pk 〈ei|L|ek〉〈ek|e j〉

)

=
1
2
(pi 〈ei|L|e j〉+ p j 〈ei|L|e j〉)

=
pi + p j

2
〈ei|L|e j〉 .

(2.16)
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Therefore, the matrix element of L in the basis of the eigenstates of ρ is

〈ei|L|e j〉=
2

pi + p j

〈
ei

∣∣∣∣ ∂

∂θ
ρ

∣∣∣∣e j

〉
. (2.17)

The complete form of the SLD is

L(ρ) = ∑
i, j

2
pi + p j

〈ei|
∂ρ

∂θ
|e j〉 |ei〉〈e j| . (2.18)

Quantum Cramér-Rao bound takes the same form as its classical counterpart in equation 2.9,

with I(θ) replaced by I(Q)(ρ).

2.3 Quantum theory of super-resolution

We analyse the imaging process with quantum optics theory following the theoretical proposal by

Tsang et al.[15]. We show that Fisher information remains constant for estimating the separation

distance of two simultaneously emitting incoherent light sources regardless of their separation

distance. This allows us to estimate the separation distance with finite error even the light sources

are located within Rayleigh limit. For simplicity, we show all calculations in one-dimension. One

can easily extend it to two dimensions.

2.3.1 Quantum description of weak thermal sources

We describe the light in the image plane with quantum optics by assuming quasi-monochromatic

paraxial light with one polarization. The incoherent light in the image plane can be described by a

multimode thermal state with density matrix ρ . We can write ρ in the multimode Fock basis. Let

us denote n-photon multimode Fock state as |n〉= |n1〉 |n2〉 ... |nJ〉, where n j is the photon number

in the jth mode and n = ∑ j n j is the total photon number. Due to the random phase correlation of

incoherent light, ρ is diagonal in the multimode Fock basis (see Appendix A)

ρ =
∞

∑
n=0

πnρn, . (2.19)
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where ρn is the density matrix of the multimode n-photon Fock state, while πn is the correspond-

ing probability. Within the short coherence time of thermal state, we assume the average photon

number ε in the image plane is much smaller than one. In this case, ρ can be approximated to the

leading order of ε as follows (see Appendix A)

ρ = (1− ε)ρ0 + ερ1. (2.20)

The vacuum state ρ0 does not contain any information, so we focus on ρ1. Assume we have two

light sources at position x = xq, q = 1,2. The multimode single photon Fock state of light source

xq is

|ψq〉= ∑
j

ψ j,xq |1 j〉 , (2.21)

where |1 j〉 is the single photon Fock state in the jth mode and ψ j,xq is the wavefunction. We can

also write the single photon state |ψq〉 in the position basis as

|ψq〉=
∫

∞

−∞

dxψq(x) |x〉 . (2.22)

Because the light is incoherent, we can write ρ1 as the mixture state of |ψ1〉 and |ψ2〉 (see Appendix

A)

ρ1 =
1
2
(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|) (2.23)

Notice that the two single photon states are not orthogonal

〈ψ1|ψ2〉 6= 0. (2.24)

This gives us the fundamental difficulty to discern the two states.

2.3.2 Image plane photon counting

To reconstruct the density matrix in the image plane, we can count photon numbers ni each pixel.

With the assumption of ε � 1, the photon statistics follows Poissoin distribution. In a photon

counting time interval that is the same as the coherence time, the photon number distribution is

P(n1,n2, ...,nN) = ∏
i

e−εΛi
(εΛi)

ni

ni!
, (2.25)
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where εΛi is the average photon number in the ith pixel while

Λi =
1
2
(|ψi,x1|

2 + |ψi,x2|
2) (2.26)

is the probability of detecting a photon in the ith pixel. For a time interval m times of the coherence

time, the photon statistics is still approximately Poissonian,

P(m)(n1,n2, ...,nk) = ∏
i

e−NΛi
(NΛi)

ni

ni!
, (2.27)

where N = mε is the average number of photons arriving in the image plane during this time

interval. By reconstructing the photon number distribution in each pixel, we can estimate the

probability of a photon detected in the ith pixel and the position of each light source.

2.3.3 Estimation of separation distance

We can analyse the estimation error of separation distance from quantum Cramér-Rao bound. The

density matrix ρ in the image plane depends on two unknown parameters: the centroid θ1 and

separation distance of the two sources θ2 in the image plane. For image plane photon counting, we

use photon numbers to estimate Λi, and then use Λi to estimate θ1 and θ2. Since we can estimate Λi

with arbitrary precision with sufficiently many counting intervals, we can treat Λi as the observable

random variable when estimating θ1 and θ2. The classical Fisher information is therefore

Iµν = E
[(

∂

∂θµ

logΛi

)(
∂

∂θν

logΛi

)]
= ∑

i

1
Λi

∂Λi

∂θµ

∂Λi

∂θν

,µ,ν = 1,2.
(2.28)

In the continuous limit, one can count photon numbers at each position in the image plane. The

single photon Fisher information becomes

Iµν =
∫

∞

−∞

1
Λ(x)

∂Λ(x)
∂θµ

∂Λ(x)
∂θν

dx, (2.29)

where

Λ(x) =
1
2
[|ψ1(x)|2 + |ψ2(x)|2] (2.30)
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is the probability of detecting a photon at position x. We can calculate the Fisher information for

direct imaging. For simplicity, we assume a Gaussian transfer function

T (x) =
1

(2πσ2)1/4 e−x2/4σ2
(2.31)

with σ = 0.21λ/NA. In most cases, this is a good approximation for the typical Airy pattern of an

imaging system.

For two light sources at positions x = x1 and x = x2, we assume the imaging system is spatially

invariant, and the wavefunction of a light source at x = 0 is ψ(x). We have ψβ = ψ(x− xβ ). The

wavefunction ψ(x) with a Gaussian transfer function becomes

ψ(x) =
1

(2πσ2)1/4 e−x2/4σ2
. (2.32)

To estimate θ2, we calculate the Fisher information as follows.

∂Λ(x)
∂θ2

=
1

2
√

2πσ3

[
(x−θ1−

θ2

2
)e−(x−θ1−

θ2
2 )2/2σ2

− (x−θ1 +
θ2

2
)e−(x−θ1+

θ2
2 )2/2σ2

]
(2.33)

vanishes at θ2 = 0, while Λ(x) remains nonzero, resulting in a zero classical Fisher information at

θ2 = 0. The classical Fisher information is

I22 =
∫ +∞

−∞

e−θ2(x−θ1)/σ2

8σ5
√

2π

[θ2 +2(x−θ1)+θ2eθ2(x−θ1)/σ2−2(x−θ1)eθ2(x−θ1)/σ2
]2

e(x−θ1−θ2/2)2/2σ2
+ e(x−θ1+θ2/2)2/2σ2 dx, (2.34)

which can be calculated numerically. This classical Fisher information is just associated with direct

imaging. There is no restriction to increasing it by changing the detection method.

The best performance of all possible quantum measurements is quantified by quantum Fisher

information. If we choose centroid θ1 and separation θ2 as unknown parameters, quantum Fisher

information matrix is diagonal. The diagonal elements of single photon quantum Fisher informa-

tion are (see Ref. [15] for derivation)

I(Q)
11 = 4(∆k2− γ

2), (2.35)

I(Q)
22 = ∆k2, (2.36)
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Figure 2.1: Comparison of quantum optimal measurement and direct imaging. a)Fisher informa-
tion b) Cramér-Rao bound

where

∆k2 =
∫

∞

−∞

dx
[

∂ψ(x)
∂x

]2

, (2.37)

γ =
∫

∞

−∞

dx
∂ψ(x)

∂x
ψ(x−θ2). (2.38)

∆k2 is the spatial-frequency invariance of point spread function. When θ2→∞, γ2→ 0 and I(Q)
11 =

4∆k2 is the standard shot noise limit for localization estimation of single source (see section 4.3

for discussion).

Assuming the same Gaussian transfer function expressed in equation 2.31, I(Q)
22 becomes

I(Q)
22 =

1
4σ2 (2.39)

As we can see from equation 2.39, the quantum Fisher information for separation distance esti-

mation remains constant, which means the estimation error remains constant and finite regardless

of the distance. This is a surprising result, because it proves that Rayleigh limit does not exist for

optimal quantum measurement.

To compare quantum optimal measurement and direct imaging, we plot the quantum and clas-

sical Fisher information and their corresponding Cramér-Rao bounds in Figure 2.1. Without loss

of generality, we assume θ1 = 0. As we can see, classical Cramér-Rao bound goes to infinity for

θ2→ 0, while quantum Cramér-Rao bound remains constant.
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2.3.4 Spatial-mode demultiplexing

We have proven that for quantum optimal measurements, quantum Cramér-Rao bound for separa-

tion distance estimation is constant. However, direct imaging cannot achieve the quantum Cramér-

Rao bound. In this section, we introduce a measurement proposed by Tsang et al.[15], which could

reach the quantum limit.

Instead of counting photons at different positions in the image plane, Tsang et al. proposed to

count photons in discrete Hermite-Gaussian modes. The Hermite-Gaussian modes |ψn(x)〉, in the

position basis, can be expressed as

|φn(x)〉=
∫

∞

−∞

φn(x) |x〉 dx, (2.40)

φn(x) =
1

(2πσ2)1/4
√

2nn!
Hn

(
x√
2σ

)
exp
(
− x2

4σ2

)
, (2.41)

where

Hn(x) = (−1)nex2 dn

dxn e−x2
(2.42)

are the Hermite polynomials. All the Hermite-Gaussian modes, together with vacuum state |vac〉,

constitute the following positive-operator valued measure (POVM),

E0 = |vac〉〈vac| ,Ei = |φi〉〈φi| , i = 0,1,2, ... (2.43)

For a single detection event, the probability of detecting photons in qth mode is

P(q) =
1
2
(| 〈φq|ψ1〉 |2 + | 〈φq|ψ2〉 |2) (2.44)

Since the centroid θ1 can be measured with high precison by direct imaging, we assume it is known

for separation estimation and set θ1 = 0. For a Gaussian transfer function, equation 2.44 becomes

P(q) = e−Q Qq

q!
,Q =

θ 2
2

16σ2 , (2.45)

which is a Poisson distribution with parameter Q. The classical Fisher information for detection of

N photons is

I(HG)
22 = N

∞

∑
q=0

P(q)
[

∂

∂θ2
logP(q)

]2

=
N

4σ2 , (2.46)
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which is the same as quantum Fisher information. Therefore counting photon numbers in each

Hermite-Gaussian mode is a quantum optimal measurement. This measurement method is named

spatial-mode demultiplexing (SPADE) by Tsang et al.. For photon counting in M trials, we detect

nq photons in the qth Hermite-Gaussian mode. The unbiased maximum likelihood estimators for

Q and θ2 are

Q̂ML =
1
M ∑

q
nq, θ̂2ML = 4σ

√
Q̂ML, (2.47)

Maximum likelihood estimation can asymptotically approach Cramér-Rao bound[20].

2.4 Optical heterodyne detection in TEM01

Spatial-mode demultiplexing is a quantum optimal measurement. With maximum likelihood es-

timation, we can asymptotically approach quantum Cramér-Rao bound. Tsang et al. proposed to

use a multimode waveguide to separate the Hermite-Gaussian modes. However, this is technically

challenging due to the sophistication of the setup. It also suffers from lossy waveguides and dark

counts of single photon counting modules.

Here we propose an alternative way to detect image plane optical field in different TEMs.

Instead of counting photon numbers, we measure the optical field amplitude associated with each

Hermite-Gaussian mode via optical heterodyne detection[21]. Our technique cannot obtain photon

number distribution, so we use a different way to estimate the separation distance.

2.4.1 Optical heterodyne detection

The schematic for balanced heterodyne detection is shown in Figure 2.2. A local oscillator (LO)

beam and a signal beam with frequency difference Ω interfere on a 50:50 beamsplitter. The output

beams from the beamsplitter are incident on the two photodiodes of the heterodyne detector. The

photocurrents generated by the two photodiodes are subtracted by an electronic circuit and ampli-

fied before being sent to detector output. The detector output is proportional to the multiplication

of signal and LO amplitudes[22]. Heterodyne detection is sensitive only to the spatial mode of
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Figure 2.2: Schematic of balanced optical heterodyne detection

the LO[22]. Depending on the electronic noise of the heterodyne detector, this measurement is

sensitive up to single photon level[23].

2.4.2 Heterodyne detection in TEM01

From equation 2.45, we know that the probability of a photon being in a Hermite-Gaussian mode

decreases dramatically as the mode order increases. So we focus on the first nontrivial mode

TEM01 and calculate the heterodyne output for a LO in this mode. Quantum description of light is

not needed. We treat the light field as a classical electromagnetic wave and use a Gaussian transfer

function to approximate Airy pattern (cf. section 1.4)

T (x) =
1

(2πσ2)1/4 e−x2/4σ2
, (2.48)

where σ = 0.21λ/NA.

Consider a field amplitude distribution E(x) in the object plane. in the image plane, the field is

the convolution of E(x) and transfer function T (x)

E ′(x′) =
∫

∞

−∞

E(x)T (x′− x)dx. (2.49)

The heterodyne detector generates a current that is proportional to the overlap between LO and

signal fields

J =
∫

∞

−∞

E ′(x′)ELO(x′)dx′, (2.50)
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where ELO(x′) is the spatial profile of the LO on image plane. Suppose the LO is aligned such that

the corresponding TEM00 is matched to the image of a point source located at x = 0, the LO profile

in TEM01 becomes

ELO(x′) =
1

(2π)1/4σ3/2 x′e−x′2/4σ2
. (2.51)

Consider a pointed source located at position xp with E(x) = δ (x− xp). In this case, heterodyne

current becomes

J(xp) =
∫

∞

−∞

T (x′− xp)ELO(x′)dx′. (2.52)

For a Gaussian transfer function, it reduces to a simple expression

J(xp) =
1

2σ
xpe−x2

p/8σ2
. (2.53)

The corresponding electronic output power is

P(xp) ∝ J2(xp) =
1

4σ2 x2
pe−x2

p/4σ2
, (2.54)

which vanishes at xp. This zero output enables sensitive null measurement of the position of

a single source. This result is also extremely useful for estimating the distance d between two

incoherent light sources. Suppose the sources are located at x = ±d/2. For two incoherent light

sources, the output signal power is P(d/2)+P(−d/2), which is proportional to d2 to the leading

order. The intensity of direct imaging is given by

I(x′) = S(x′+d/2)+S(x′−d/2) (2.55)

where S(x) = |T (x)|2 is the point spread function of the imaging system. If we approximate S(x′±

d/2) with the Taylor expansion

S(x′±d/2) = S(x′)± d
2

∂

∂x
S(x′)+O(d2), (2.56)

the image plane intensity distribution becomes

I(x′) = 2S(x′)+O(d2). (2.57)
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It is also on the order of d2, but with a macroscopic zeroth-order background. Noise in this back-

ground is detrimental to the precision to estimate d.

To calculate the output power of heterodyne detector for incoherent light, we need to take

average of all possible realizations of E(x)

〈P〉=

〈(∫
∞

−∞

E ′(x′)ELO(x′)dx
)2
〉

=
∫

∞

−∞

∫
∞

−∞

〈E ′(x′)E ′(x′′)〉ELO(x′)ELO(x′′)dx′dx′′
(2.58)

Using equation 2.49, we have

〈E ′(x′)E ′(x′′)〉=
∫

∞

−∞

∫
∞

−∞

〈E(x1)E(x2)〉T (x′− x1)T (x′′− x2)dx′dx′′. (2.59)

For fully incoherent light, the spatial correlation function on object plane is a delta function

〈E(x1)E(x2)〉= I(x1)δ (x1− x2), (2.60)

if we assume equal brightness of two sources. Hence,

〈P〉=
∫

∞

−∞

∫
∞

−∞

∫
∞

−∞

I(x)T (x′− x1)T (x′′− x2)ELO(x′)ELO(x′′)dxdx′dx′′. (2.61)

If we cover the objective lens with a round diaphragm, under paraxial approximation, the trans-

fer function in Fourier plane is

T (k⊥) = θ(k⊥max−|k|) (2.62)

where θ(·) is the Heaviside step function with k⊥max = 2πR/(Lλ ). In spatial domain, it becomes

T (x′− x) =
J1(k⊥max(x− x′))

x− x′
≈ e−(x−x′)2/4σ2

, (2.63)

where J1(·) is 1st order Bessel function of first kind. This result is still approximately Gaussian.

The signal power for single coherent source is

〈P〉=
(∫

∞

−∞

xE(x)e−x2/8σ2
dx
)2

. (2.64)
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Figure 2.3: Comparison of the theoretical predictions for the signal power of single light source.
The only visible difference between the infinitely small slit and finite slit is that the curve for
incoherent source with a finite size does not reach zero at xp = 0. a) Coherent case, b) incoherent
case.

For incoherent case, the mean signal power is

〈P〉=
∫

∞

−∞

x2I(x)e−x2/4σ2
dx. (2.65)

The result is valid for any distribution of E(x). To illustrate this, we plot output power for a single

source with both finite and infinitely small size for coherent and incoherent light in Figure 2.3.

The blue thin solid line takes into account the finite size of the light source assuming a diameter

of 150µm while the yellow thick dashed line assumes an infinitely small source. The only visible

difference between the two models is that the curve for incoherent source with a finite size does

not reach zero at xp = 0. This is because an incoherent source with finite size, which can be seen

as a combination of multiple mutually incoherent point sources, makes a nonzero contribution to

TEM01.

Using equation 2.65, we find the signal power for two incoherent sources separated by d by

adding up signals of each source,

〈P〉=
〈

P
(

d
2

)〉
+

〈
P
(
−d

2

)〉
= 2

∫
∞

−∞

(
d
2

)2

I
(

d
2

)
e−(

d
2)

2
/4σ2

.

(2.66)
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Figure 2.4: Dependence of the signal in TEM01 on the separation distance. A finite size of 150µm
is assume for each light source

We plot the signal power of two sources centered at x = 0 separated by distance d in Figure 2.4,

taking into account of the finite size of the light sources.

2.4.3 Application to super-resolution

Performing optical heterodyne detection in TEM01 mode, we can measure position of single source

and separation distance of two sources from the output power of heterodyne detector. By fitting

the heterodyne power to the theory, we can achieve much higher precision than direct imaging, and

also circumvent the technical difficulty associated with photon counting in each Hermite-Gaussian

mode.
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Chapter 3

Experiment

Hermite-Gaussian modes are orthogonal and optical heterodyne detection is sensitive only to the

mode of LO. By preparing LO in TEM01, we can detect the component of signal beam in the

same mode. We implement our technique in various settings. First, we measure the position of a

single source emitting coherent and incoherent light, respectively. Second, we measure the distance

between two incoherent light sources separated below Rayleigh limit.

3.1 Experimental setup

The schematic of the experimental setup is shown in Figure 3.1. We use a home-made external

cavity diode laser operating at optical wavelength λ = 780 nm. Both LO and signal beam come

from the same laser.

AOM

slits

cavity

iris 

laser

card

local oscillator

signal

heterodyne detector

objective lens 

Figure 3.1: Experimental setup
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Figure 3.2: Schematic of Littrow configuration external cavity diode laser

3.1.1 External cavity diode laser

External cavity diode laser (ECDL) is commonly used in optics research due to its relatively low

price and high performance. ECDL has good tunability and stability, and it is easy to modulate.

These features perfectly meet our needs for this experiment. The schematics of an ECDL is shown

in Figure 3.2. ECDL makes use of an electrically pumped semiconductor laser, called a diode

laser to generate the light beam. We use an aspherical lens to collimate the highly divergent beam

emitted by the laser diode. To narrow the linewidth of the laser and select wavelength, a diffraction

grating is introduced to give feedback to the laser diode. The first order diffraction is reflected

back to the laser diode, while the zeroth order diffraction goes to the output. This design is called

Littrow configuration. The wavelength of the reflected beam is determined by the angle of the

grating

λ =
2d
n

sinθ , (3.1)

where θ is the incident angle of the laser beam. A piezo-electric transducer (PZT) is attached to

the grating to change the incident angle and select the desired wavelength. An optional mirror is

placed parallel to the grating to redirect the output beam. We can modulate the laser by changing

the voltage on the PZT or the current sent to the laser diode. Multiple ways of modulation makes

ECDL easy to lock with Pound-Drever-Hall technique (see section 3.1.3). The temperature of the

laser diode is maintained by a electronic temperature controller to achieve the maximum stability

of laser frequency. A linewidth of tens of kilohertz can be achieve from our home-made ECDL.
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3.1.2 Preparation of LO in TEM01

We prepare LO in TEM01 by transmitting it through a temperature stabilized monolithic cavity,

which was made by P. Palittapongarnpim et al.[24] previously in our laboratory. This cavity is

made from a BK7 plano-convex lens with high reflectivity coating on both surfaces. The cavity

linewidth is ∼80 MHz and the finesse is ∼275. Its temperature is controlled by a temperature

controller (Thorlabs ICT102), which can be fine tuned to 0.1◦C. The cavity is put into a thick

metal case, which works as a heat sink and isolates the heat transfer between cavity can the envi-

ronment. Because of Gouy phase shift and its dependence on Hermite-Gaussian modes, different

TEMs are resonant with cavity at different frequencies[25]. The frequency fmn of TEMmn is given

by fmn = f00 +(m+n)δ f , where δ f is the frequency difference due to different Gouy phase shift

of different TEMs. By adjusting the temperature, we can change the cavity length and therefore

change the transmitted mode. We first align the cavity to transmit TEM00. Then we increase

the temperature to transmit TEM01. Minor adjustment of optics is required for maximum trans-

missivity after changing temperature. The transmitted power is maintained at ∼ 2.5 mW for all

measurements.

3.1.3 Laser lock

We lock the laser frequency to the cavity resonance by Pound-Drever-Hall (PDH) technique[26]

to maintain maximum transmission power of LO. We modulate the current sent to the laser diode

through a bias tee at fm =45 MHz, which is still within the linewidth of the cavity. A modulation

frequency higher than the linewidth is expected for best performance of PHD lock. However, high

frequency modulation also reduces the stability of the laser. A trade-off is made here. We find this

modulation frequency works sufficiently for our experiment without introducing extra noise. The

modulation of current results in a phase modulation of the laser, generating two sidebands with

frequency f ± fm, where f is the optical frequency without modulation. f is also called the carrier

frequency. The sidebands are far from the cavity resonance, and are reflected with no phase shift.
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Figure 3.3: Schematic of acousto-optic modulator

On the contrary, the carrier reflected from the cavity acquires a frequency dependent phase. One

can use the phase of the sidebands as a reference to detect the phase of the reflected carrier. The

interference between the sidebands and the carrier results in an amplitude modulation of the carrier,

which can be detected by a photodetector. The output of the photodetector is sent to an electronic

circuit. This circuit multiplies the signal from photodetector (RF) with the modulation signal to the

laser diode current (electronic local oscillator). If the laser is resonant with the cavity, no carrier is

reflected, and the output from the circuit is zero. When the laser is slightly off resonance, the circuit

gives an error signal depending on the frequency of the laser. The error signals are opposite when

the laser is below and above resonance. In experiments, one needs to adjust the phase between RF

and electronic local oscillator to obtain the desired error signal. We amplify this error signal and

send it to the PZT in the laser to give a negative feedback to the laser frequency, locking it to the

cavity transmission line.

3.1.4 Acousto-optic modulator

To reduce flicker noise in balanced detection, we shift the frequency of the signal beam with an

acousto-optical modulator(AOM). An AOM can be used to change the frequency and propagating

direction of a laser beam. The schematic of an AOM is shown in Figure 3.3. A PZT is attached to a
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transparent crystal. The PZT is driven by an AC electrical voltage (RF signal), generating a sound

wave at the same frequency. The sound wave produces a periodical modulation of the refractive

index of the crystal. The sound wave is absorbed at the other end of the crystal, resulting in a

travelling wave instead of a standing wave. The AOMs are typically operated in the Bragg regime,

where most of the power is deflected to the first diffraction order. In this regime, the incident and

the refractive angles are identical, this angle is called Bragg’s angle. Bragg’s angle θB is given by

Bragg’s law

sinθB =
λ

2nλs
, (3.2)

where λs is the wavelength of the sound wave, while n is the refractive index of the crystal without

modulation. The first order diffraction also experiences a frequency shift equal to the frequency

of the sound wave. The frequency and power of the diffracted beam can be controlled by the

frequency and power of the RF signal.

3.1.5 Light sources on object plane

To implement our technique in one dimension, a point-like light source is not required. We use a

diaphragm with four pair of slits separated by d = 0.25, 0.5, 0.75 and 1 mm (3B Scientific U14101)

as the light sources. The width of each slit is 150 µm. The slits are placed such that the long edge

is orthogonal to the displacement. The signal beam is modulated by an AMO operating at 40 MHz.

The modulated beam is collimated to about 5 mm diameter before being sent to the diaphragm,

so that the power distribution is relatively uniform for all the positions of the slits and the little

variance of the optical power does not effect the overall results. To generate spatially incoherent

light, we place a paper card right in front of the slits. During the acquisition time, the paper card is

moved in the transverse plane by a motorized translation stage to average over the incoherent light

statistics. The optical power transmitted through each pair of slits is ∼ 200 µW for coherent case,

and ∼ 10 µW for incoherent case.
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3.1.6 Generation of incoherent light

To generate incoherent light from the laser beam, we introduce random spatial phase distribution

by transmitting the laser beam through a thick paper card. Different points of the card introduce

random optical phases to the beam depending on the structure of the card, therefore the spatial

field is highly uncorrelated. This transmitted beam shows an static speckle pattern. To average all

the speckle patterns, we move the card in the transverse plane by attaching it to a translation stage

with two pieces of metal sticks. The translation stage is attached to a stepper motor, whose motion

speed and travel distance are programmed by a microcontroller (Arduino Uno). An example code

and tutorial can be found on the Sparkfun website[27]. The microcontroller sends the control

sequences to a stepper motor driver (Sparkfun ROB-12779), which converts the control sequences

to a readable form by the stepper motor. The translation stage moves back and forth by a few

millimetres in each motion circle. If the motor moves too fast, it may skip a few steps in each

motion circle, resulting the translation stage to slide to one direction. Manual adjustments are

required when the accumulated slide distance is comparable to the maximum travel distance of the

translation stage.

3.1.7 Mode matching

Mode matching between LO and signal beam is crucial for optical heterodyne detection. To

achieve best mode matching, we adjust the signal beam profile by two separate optical telescopes

to match the beam size and divergence of LO. In this stage, we prepare LO in TEM00 and use a

coherent signal beam. Once we obtain maximum interference visibility between LO and signal,

we adjust the temperature of the monolithic cavity and switch LO to TEM01. By slightly adjusting

the direction of LO and minimizing the interference visibility, we achieve optimal mode matching

between signal and LO in TEM01.
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3.1.8 Optical path design

The modulated signal beam transmits through the slits. The diffracted light propagates in free

space for about L = 84 cm and passes through an iris before the objective lens. The measurement

error of L is on the scale of millimetres, which is negligible considering that L is almost a metre and

is the denominator when calculating the numerical aperture. This distance is sufficient for far-field

approximation, since L�W 2/λ = 2.88cm, where W = 0.15 mm is the width of each slit. We use

the iris to adjust the numerical aperture of the imaging system. Due to the macroscopic separation

of the slits, we minimize the numerical aperture to demonstrate that our technique can work below

Rayleigh limit. The iris size is measured under an optical microscope with a vernier scaler and the

diameter is measured to be 0.8±0.1 mm, which corresponds to a numerical aperture of 0.48×10−3

and a Rayleigh distance of 0.99 mm. This is a relatively rough estimation, we subsequently use the

experimental data to estimate the iris size with higher precision. The measurement error associated

with the diameter of the iris is less than 10% with this rough estimation, and does not harm the

result that we can achieve super-resolution well-below the Rayleigh limit. The light transmitted

through the objective lens is then mode matched with the LO and subjected to heterodyne detection.

3.1.9 Detection

We use a commercial balanced detector (Thorlabs PDB150A-SP) for heterodyne detection. The

bandwidth is set to 50 MHz with a corresponding gain of 104 A/W, enabling it to operate at low

optical power. To average the heterodyne detector output, which is at 40 MHz, over the acquisition

time, we acquire output power of the detector on a spectrum analyser set to zero span at 40 MHz

with a resolution bandwidth of 1 kHz and a video bandwidth of 100 Hz. The sweep time is set to

be 50 ms for coherent light and 500 ms for incoherent light. One hundred traces on the spectrum

analyser are averaged for each measurement.
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3.2 Measurement procedure

We first measure the position of a single slit in both coherent and incoherent cases. We cover all

but one slit with thick black cards, so that the light can only transmit through one slit. We place

the slit on a translation stage with precision of 10 µm and record output power from heterodyne

detector at each position for a ∼5 mm travel distance.

For the coherent case, we measure the signal power at each position only once except for a

small region around x = 0. This is because the signal in coherent case shows little fluctuation. We

measure the signal ten times at each position around the centre to estimate the stochastic experi-

mental error. This is used to calculate Fisher information for small displacement.

For incoherent light, the signal light exhibits a time dependent speckle pattern, as the paper

card moves in front of the slits. We observe large fluctuations on the signal due to the change of

the speckle pattern. The fluctuations are reduced by averaging the detector output over time. We

take three measurements at each position to estimate the stochastic experimental error.

At last, we measure the separation distance between two slits with incoherent light. Each pair

of slits is centered at x = 0. The output signal is averaged to reduce fluctuations associated with

incoherent light and twelve measurements are made for each pair of slits to estimate experimental

error. To compare our result with direct imaging, we use a CCD camera to take the images of each

pair of slits with the same objective lens and iris size.
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Chapter 4

Results and discussion

We see an excellent agreement between the experimental results and our theoretical prediction.

With heterodyne detection in TEM01, we can measure the single slit position within 0.0015 and

0.012 of Rayleigh limit in coherent and incoherent cases, respectively. We can determine the

separation of two incoherent light sources located within 0.019 of Rayleigh limit.

4.1 Single slit position measurement

Our technique is sensitive to single slit position measurement.

4.1.1 Coherent case

The result for single slit position measurement with coherent light is shown is Figure 4.1. The

detector output is converted to electronic power. The dots are the experimental data while the

solid line shows the fitting to the experimental data. The inset shows the detector output around

x = 0, roughly corresponding to the red circle in the main plot. The error bars show the standard

deviations of experimental data at each position. We fit the experimental data to our theoretical

predictions by varying both vertical scale and iris size, taking into account of the finite width of

the slit. Here we measure the iris size by fitting the heterodyne signal to the theoretical prediction.

The fitting results to different data sets show great agreement. The diameter of the iris is calculated

to be 0.87±0.01 mm. This value is used for data analysis in the rest of the chapter. This diameter

corresponds to a numerical aperture of 0.52×10−3 and a Rayleigh distance of 0.912 mm.

To estimate the performance of our technique, we analyse the stochastic error around x = 0.

Two different types of experimental imperfections contribute to this error. First, mode matching

between LO and signal is imperfect, which is affected by air movements and vibrations of optics.
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Figure 4.1: Single slit position measurement in coherent case.

This results in a constant fluctuation of detector output at each position of the slit. Second, the

power of LO fluctuates due to the instability of the PDH lock. Because the heterodyne signal is

proportional to the product of signal and LO amplitudes, the fluctuations of LO power are mapped

directly to the fluctuations of detector output, proportional to the signal power. Considering these

two types of effects, which can be treated independently from each other, we model the error of

our experiment by

σ
2
ε = c2 +(gP)2, (4.1)

where c is the error due to imperfect mode matching and gP is due to the fluctuations of the power

of LO with a fitting parameter g.

We use the above model and fitting parameters to calculate Fisher information and the corre-

sponding Cramér-Rao bound of our measurements. To this end, we suppose the position of the slit

is unknown, and we estimate it by the heterodyne signal. According to central limit theorem[28],

we suppose the heterodyne signal obeys Gaussian distribution with an unknown parameter xp

f (P,xp) =
1√

2πσε

e−[P−P(xp)]
2/2σ2

ε . (4.2)

The Fisher information is

I(xp) =
∫ +∞

−∞

[
∂ f (P,xp)

∂xp

]2/
f (P,xp)dP. (4.3)
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Figure 4.2: Single slit position measurement in incoherent case. Solid line: fitting of the experi-
mental data.

In the neighbourhood of xp = 0, the output power P(xp) is a quadratic function of xp, P(xp) = ax2
p,

with a variance according to equation 4.1. With the constants a, c and g acquired from experimental

data, we find the Fisher information in the limit of g� 1

I(xp) =
4a2x2

p

a2g2x4
p + c2 . (4.4)

Next, we calculate the slit position where the Fisher information reaches its maximum, by

taking the derivative of I(xp) with respect to xp. We find Imax = 2a/gc at xp =
√

c/ag. For the

coherent position measurement data, Fisher information reaches maximum at xp = 0.012 mm.

From the corresponding Cramér-Rao bound, we find the uncertainty of the measurement to be

δxp =
√

Var(xp) ≥ 1√
I(xp)

= 1.4µm. This means the best precison we can get is 0.0015 of

Rayleigh limit.

4.1.2 Incoherent case

The result for single slit position measurement with incoherent light is shown is Figure 4.2. The

inset also shows the detector output around x = 0, roughly corresponding to the red circle in the

main plot. The error bars show the standard deviation of the experimental data and the solid line is

the fitting to the data by varying the signal power and iris size. We see a nice agreement between
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Figure 4.3: Double slit separation measurement with incoherent light.

theoretical prediction and experimental data.

When taking the data, we observe that without averaging, the fluctuations of the heterodyne

signal are comparable to the signal itself. For the averaged data, this effect is significantly reduced,

but it still dominates the error at high signal power. The error bars in the plot show the standard

deviation of heterodyne signal at each position. The standard deviation is significantly larger than

that in the coherent case, as we expected. In the vicinity of xp = 0, the error model in equation 4.1

is still valid, while the parameters should be adjusted accordingly.

We calculate Fisher information and Cramér-Rao bound in the same way as for the coherent

case. Fisher information reaches its maximum at xp = 0.14 mm, corresponding to δxp = 11 µm.

This result shows that we can locate the slit with a precision of 0.012 of Rayleigh limit.

4.2 Separation of two slits

At last, we measure the distance between two slits separated below Rayleigh limit. The results

are shown in Figure 4.3. The output power is measured when the centres of each pair of slits

are at position xp = 0. The error bars show the standard deviation of twelve measurements. The

experimental error increases with detector output power, as we expected. For incoherent light,

the heterodyne signal follows similar patterns for both single-slit and double-slit measurements.
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Figure 4.4: Direct imaging result on a CCD camera

Therefore, we can calculate the Fisher information in the similar way using the error model in

equation 4.1. The Fisher information reaches maximum at d = 0.18 mm, corresponding to a Cramŕ-

Rao bound of δd = 17 µm. Our technique has a precision up to 0.019 of Rayleigh limit.

To show the advantage of our technique, we compare our results with direct imaging. We take

images of each pair of slits with the same optical imaging system on a CCD camera. The images

are shown in Figure 4.4. The distances between the slits are d = 0.25, 0.50, 0.75, 1.00 mm, from

left to right. The top row shows the images without iris. The diameter of the objective lens is 25.4

mm, corresponding to a numerical aperture of 1.51×10−2 and a Rayleigh limit of 31.5 µm. The

four pairs of slits are clearly resolved. However, when the iris is inserted in front of objective lens,

the numerical aperture reduces by more than 30 times. The pairs of slits are not resolved for d < 1

mm, as is shown in the bottom row.

4.3 Discussion

We have shown in section 4.1 that the Fisher information in our experiment decreases to zero as

d goes to zero. We can improve the measurement precision by reducing fluctuations of mode

matching with more stable optics. We can also use spatial light modulators to prepare the LO in

the desired mode to increase the stability of LO power. However, the fundamental limit to the

precision of our technique is the shot noise, which comes from the quantum feature of light. This

can be suppressed by using squeezed light. The photon counting method gives the photon statistics.

In practice, detector dark counts will affect the photon statistics, therefore reducing the precision
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of measurements.

After finishing our experiments, we found a similar implementation for displacement measure-

ment of coherent beam by Hsu et al.[29]. Hsu et al. proposed to use homodyne detection with a

LO in TEM01 to measure small displacement of a coherent beam in TEM00, which is very similar

to our technique to measure single slit position with coherent light. They analysed such measure-

ment theoretically and found that in the limit of small displacement, it could reach the quantum

limit.

A Gaussian beam in TEM00 displaced by distance d has amplitude profile

u0(x−d) =
(

2
πw2

0

)1/4

e−
(

x−d
w0

)2

, (4.5)

where w0 is the beam waist. The photon position distribution is therefore

P(x) =
(

2
πw2

0

)1/2

e−2
(

x−d
w0

)2

. (4.6)

The quantum optimal measurement of displacement of a coherent TEM00 beam can be achieved

by calculating the mean position of the detected photons. The sensitivity of such measurement can

be defined as the derivative of the mean position with respect to the displacement divided by the

standard deviation. In this case, the quantum limit of the sensitivity is

SQL =
1

∆dQL
=

2
√

N
w0

, (4.7)

where N is the number of detected photons. For balanced homodyne detection with a LO in TEM01,

Hsu et al. found the output of the homodyne detector, which is the difference of the photocurrent

of the two photodiodes, is

n̂− =
√

NLO

(
2
√

N
w0

d +δ X̂
)
, (4.8)

where δ X̂ = δa+ δa† is the amplitude quadrature noise operator of the TEM01 component of

the signal beam and NLO is the photon number of the LO. For coherent state, when d � w0, the

sensitivity of homodyne detection is[29]

SHD =
2
√

N
w0

, (4.9)
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which is the same as the quantum limit. Therefore homodyne detection with a LO in TEM01 is

a quantum optimal measurement for displacement of a coherent beam. Hsu et al. also argued by

introducing squeezing to the signal beam, one can reach sensitivity higher than this quantum limit.

However, Hsu et al. did not realise their setup in experiments and focused only on coherent light.

Our experiments prove the validity of their proposal and extend the scope to super-resolution with

incoherent light.

We can also interpret such analysis in terms of Fisher information. For a small displacement,

the Gaussian mode can be approximated as follows

u0(x−d) = u0(x)−d ·u′0(x)

= u0(x)+
d

w0
u1(x).

(4.10)

where u′0(x) is the derivative of u0(x) and u1(x) is the profile of TEM01. With a small displacement,

TEM01 is illuminated with an amplitude that is d/w0 of the amplitude of TEM00. If we assume

the TEM00 beam to be in coherent state |α〉, the state of TEM01 is therefore | d
w0

α〉. Performing

homodyne detection with a LO in TEM01, we can measure the quadrature distribution of | d
w0

α〉.

Without loss of generality, we can assume α to be real, the probability distribution of quadrature x

is

P(x,d) =
∣∣∣∣〈x
∣∣∣∣ d
w0

α

〉∣∣∣∣2 = 1√
π

e−
(

x− d
w0

√
2α

)2

. (4.11)

The Fisher information to estimate d is

Iα(d) = E

[(
∂

∂d
logP(x,d)

)2
]

=−E
[(

∂ 2

∂d2 logP(x,d)
)]

=−E
[
−4

α2

w2
0

]
= 4

α2

w2
0

(4.12)

For coherent state α =
√

N where N is expectation of photon number. Noticing that w0 = 2σ , we
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can rewrite the Fisher information as

Iα(d) =
N
σ2 = S2

QL. (4.13)

The single photon Fisher information is

I(d) =
1

σ2 . (4.14)

This is the same as quantum Fisher information in equation 2.35, which gives the shot noise limit

of displacement measurement. From this result, we can conclude that our single slit position

measurement with coherent light is quantum optimal for small displacement, when no experimental

error is presented.

To measure the displacement of a single beam, one can also measure the mean position of all

the photons in this beam. This is the same technique as direct imaging. If the position of each

photon can be measured with arbitrary precision, the Fisher information can be calculated using

equation 2.29. In this case, Λ(x) is given by

Λ(x) = |ψ(x−d)|2, (4.15)

where ψ(x) is given by equation 2.32. The single photon Fisher information to estimate d is

I(d) =
1

σ2 , (4.16)

which also equals the quantum limit. But this Fisher information cannot be obtained in experiments

due to the finite size of the pixels on the detector. Any displacement smaller than the pixel size

cannot be detected, which sets a fundamental limit for the precision of displacement measurement.

However, homodyne detection with a LO in TEM01 is not restrict by such limit in experiments,

and it can reach the quantum limit in practice.

To estimate the centroid and separation of two coherent beams displaced by ±d, the Fisher

information depends on the relative phase of the two beams. If the two beams are in phase, the

beam profile is

u0(x−d)+u0(x+d) = u0(x)−d ·u′0(x)+u0(x)+d ·u′0(x) = 2u0(x). (4.17)
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No information is contained in TEM01. However, if the two beams are out of phase

eiπu0(x−d)+u0(x+d) =−u0(x)+d ·u′0(x)+u0(x)+d ·u′0(x) = 2
d

w0
u1(x). (4.18)

The amplitude is TEM01 is doubled and more information can be obtained. Without a priori

knowledge of the phase, we cannot determine the Fisher information.

For incoherent light, the TEM00 beam is described by the intensity profile

U0(x) = u0(x)2 =

(
2

πw2
0

)1/2

e−2
(

x
w0

)2

. (4.19)

where d is the displacement of one light source and w0 = 2σ , σ being the width of the point spread

function. For two TEM00 beams displace by ±d, the intensity profile is give by

U = |u0(x−d)|2 + |u0(x+d)|2

= [u0(x)−
d

w0
u1(x)]2 +[u0(x)+

d
w0

u1(x)]2

= 2u0(x)2 +2
d2

w2
0

u1(x)2

= 2[U0(x)+
d2

w2
0
U1(x)].

(4.20)

For two incoherent beams, with small displacement±d, TEM01 is illuminated with intensity d2

w2
0

of

the total intensity of the two TEM00 beams. We can use homodyne detection with a LO in TEM01

to measure TEM01 component of the signal beam. Assume the total intensity of two TEM00 beams

to be I0, the intensity of TEM01 is I1 =
d2

w2
0
I0. If we average the homodyne output, the intensity of

TEM01 is measured directly. The output signal of the homodyne detector is

P =
θ 2

2
4w2

0
I0, (4.21)

where θ2 = 2d is the separation between the two beams. The output signal can be used to estimate

θ2.
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Chapter 5

Application to imaging

In our experiment, we performed heterodyne detection with only one Hermite-Gaussian mode

TEM01. The result is sufficient to measure the separation distance of two incoherent light sources

significantly below Rayleigh limit. By engaging more TEMs, we can further improve the resolution

and apply our technique to full imaging.

5.1 Heterodyne detection in higher Hermite-Gaussian modes

In chapter 2, we derived the output current from a heterodyne detector with a LO in TEM01. In this

section, we generalise our result to a LO in any Hermite-Gaussian mode for an extended object. A

Gaussian transfer function is assumed for the calculations. The heterodyne detector output with a

LO in TEM0n for an extended light source is

J0n =
∫ +∞

−∞

E(x)J(x)dx, (5.1)

where J(x) is the response of heterodyne detector to a point source at x defined by equation 2.52.

The field distribution of LO in TEM0n is

ELO,n(x) =
Hn(x/

√
2σ)

(2π)1/4
√

2nn!σ
e−x2/4σ2

, (5.2)

where Hn(·) is the Hermite polynomial. Noticing that equation 2.52 is a Weierstrass transform of

the Hermite polynomial, we can simplify the expression of J(x) as

Jn(x) =
1√
n!

( x
2σ

)n
e−x2/8σ2

. (5.3)

We see that, for objects of size < σ , photocurrent J0n approximates the nth moment of the field in

the object plane.
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5.2 Hermite-Gaussian Microscopy

We propose a new imaging technique for coherent light in this section. The current J0n(x) is propor-

tional to the component of E(x) in TEM0n. Measurement with LO in all Hermite-Gaussian modes

performs a decomposition of E(x) in the Hermite-Gaussian basis. This allows us to reconstruct the

full image with a resolution beyond Rayleigh limit. We can write E(x) in the Hermite-Gaussian

basis with coefficients βk as

E(x) =
∞

∑
k=0

βkHk

( x
2σ

)
e−x2/8σ2

. (5.4)

We can calculate coefficients βk to reconstruct field distribution E(x) as follows. Let us write

Hermite polynomial of degree k as

Hk(x) =
k

∑
n=0

αknxn, (5.5)

where αkn are the coefficients of the Hermite polynomial. The coefficients βk become

βk =
∫ +∞

−∞

E(x)Hk

( x
2σ

)
e−x2/8σ2

dx

=
∫ +∞

−∞

E(x)
k

∑
n=0

αkn

( x
2σ

)n
e−x2/8σ2

dx

=
k

∑
n=0

√
n!αkn

∫ +∞

−∞

E(x)J(x)dx

=
k

∑
n=0

√
n!αknJ0n.

(5.6)

After acquiring J0n in experiments, we can use equation 5.6 to calculate coefficients βk, and subse-

quently reconstruct E(x) from equation 5.4. We name such imaging technique Hermite-Gaussian

microscopy (HGM). This technique allows us to reconstruct the image with arbitrary resolution

when sufficiently many Hermite-Gaussian modes are engaged in experiment. In practice, the first

few tens of Hermite-Gaussian modes can be obtained using spatial light modulators (SLMs). We

compare HGM with direct imaging in Figure 5.1. The first twenty one Hermite-Gaussian modes

are used for HGM in this comparison. Two point light sources are separated by Rayleigh limit,
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Figure 5.1: Comparison of direct imaging and HGM. a): Direct imaging result. b): HGM result
with TEM00 to TEM0,20.

and the point spread function is approximated by Gaussian function. We can see a significant

improvement on resolution.

When two light sources are separated by Rayleigh limit, the intensity in the image plane at the

centre is∼ 26.3% less than the maximum intensity. Following this feature, we define the resolution

of HGM as the distance between two objects when the image intensity in the centre is 75% of the

maximum intensity. In Figure 5.2, we plot the resolution as a function of the number of Hermite-

Gaussian modes used in HGM. The resolution increases dramatically when we begin to include

higher-order Hermite-Gaussian modes. Above a certain threshold, including higher modes ceases

to provide much benefit, but brings technical challenges in experiments.

We can easily extend HGM to two dimensions by varying both indices of TEMmn. After

measuring the photoncurrent Jmn, we can apply the same algorithm to reconstruct field distribution

E(x,y).

5.3 Hermite-Gaussian microscopy for incoherent light sources

For more general applications, we can extend HGM to incoherent light. We demonstrate the re-

construction algorithm in one dimension. In this case, since we can only observe the intensity of
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Figure 5.2: Resolution of HGM as a function number of Hermite-Gaussian modes used.

the light field instead of amplitude, the average power of the detector output should be used for

image reconstruction. The output power from heterodyne detector is

〈P〉 ∝ 〈J2
0n〉=

∫ +∞

−∞

〈E(x1)E(x2)〉J(x1)J(x2)dx1dx2

=
∫ +∞

−∞

I(x)J2(x)dx

=
∫ +∞

−∞

I(x)
1
n!

( x
2σ

)2n
e−x2/4σ2

dx.

(5.7)

We obtain only even moments of the field distribution, which means we can obtain only the even

coefficients of the decomposition of I(x) in the Hermite-Gaussian basis. In this case, a “ghost” im-

age I(−x) is added to the original image, and we recover 1
2 [I(x)+ I(−x)]. For two-dimensional mi-

croscopy, three ghost images, I(x,−y), I(−x,y), I(−x,−y), are added to the original image I(x,y).

We can resolve the original image by avoiding the overlap between the original and ghost images.

In practice, we can place the object in a single quadrant of the x− y plane, whose origin and axes

are defined by the Hermite-Gaussian modes.
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5.4 Comparison of HGM and optical state tomography

We can compare HGM with optical state tomography (OST)[30]. In quantum optics, the optical

field is described by a harmonic oscillator, which can be decomposed in Fock basis. The wave-

function of the n-photon Fock state in position basis is also given by Hermite-Gaussian polynomial

of degree n

ψn(x) =
1

π1/4
√

2nn!
Hn(x)e−x2/2. (5.8)

In OST via balanced homodyne detection, the density matrix of the optical state is usually re-

constructed in the Fock basis. In the inverse linear transformation reconstruction method, the

pattern functions in Fock basis are calculated. The elements of the density matrix can be calcu-

lated through the pattern functions[22] and the quadrature distributions, which are obtain from the

homodyne output current. We can reconstruct the optical state to the desired precision by trun-

cating the Fock basis to the corresponding photon number. In HGM, the Fock basis is replace

by Hermite-Gaussian modes, which have the same mathematical expression. The reconstruction

method is in analogy to OST.

47



Chapter 6

Conclusion and outlook

6.1 Summary

Microscopes are of great importance for biology and astronomy research. Since the invention of

microscopes in the 16th century, scientists have put numerous efforts to increasing the resolution of

microscopes. In late 19th century, Ernst Abbe and Lord Rayleigh discovered the resolution limit of

an imaging system due to diffraction of light. This fundamental restriction has been an unbreakable

rule for microscope design for more than a century. Microscopy resolution is improved mainly by

using shorter wavelength such as in scanning electron microscopy, or larger numerical aperture

by oil immersion of objective lens. Successful attempts to achieve sub-Rayleigh resolution have

emerged in the last few decades. Those techniques circumvent Rayleigh criterion by nonlinear

optics, near-field optics or photo-switchable fluorephores. All these new techniques contributed

significantly to biology research. However, a new technique with linear optics in far-field remains

an important problem.

By interpreting the far-field image with quantum optics, Tsang et al. show that there is no

resolution limit in a quantum optimal measurement of the image in far-field, rendering Rayleigh

criterion irrelevant to separation estimation of incohrent light sources. Tsang et al. subsequently

proposed a quantum optimal measurement by counting photon numbers in each Hermite-Gaussian

mode. With this method, one can approach quantum Cramér-Rao bound asymptotically. The

experimental setup for this measurement is sophisticated and difficult to implement in experiments.

Inspired by the proposal by Tsang et al., we propose an alternative way to measure optical field

in each Hermite-Gaussian mode via optical heterodyne detection. Taking advantage of the fact

that heterodyne detection is only sensitive to the local oscillator mode, we can separate the com-

ponents of the optical field in the Hermite-Gaussian basis. This technique is implemented with
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TEM01. We first meausre the position of a single slit with coherent and incoherent light, respec-

tively. The precision is within 0.0015 and 0.012 of Rayleigh limit. Subsequently, we apply our

technique to measure the distance between two incoherent light sources within 0.019 of Rayleigh

limit. Our technique can be implemented with a relatively simple setup and low cost, which is a

great advantage over the existing super-resolution techniques.

After demonstration of plausibility of our technique with TEM01, we theoretically analyse the

technique with higher Hermite-Gaussian modes. The result shows that we can acquire full image of

an object emitting coherent and incoherent light below Rayleigh limit. This method is reminiscent

to optical state tomography with decomposition in Fock basis.

6.2 Outlook

We demonstrate our method with macroscopic objects and a low numerical aperture of ∼ 10−3.

In the future, we plan to implement our technique with microscopic objects with a dimension of

∼ 100 nm and a numerical aperture of ∼ 1. This numerical aperture is typical in the state-of-the

art microscopes. A resolution on nanometer scales can be expected.

We will include more Hermite-Gaussian modes in our measurements. The LO is currently

prepared in TEM01 by a monolithic cavity. The transmission through the cavity decreases signifi-

cantly with the order of TEMs, limiting the Hermite-Gaussian modes attainable with our setup. On

the contrary, SLMs do not suffer from such problems. Two SLMs can be used to prepare the LO in

the desired TEM, with one modulating the spatial distribution, the other modulating the phase of

the optical field. We will reconstruct full image of an object by engaging higher orders of TEMs.

Due to the similarity of HGM with OST, successful results can be expected.

6.3 New progress in this field

After Tsang et al. proposed SPADE, they found another measurement method, named super lo-

calization by image inversion interferometry (SLIVER), to achieve sub-Rayleigh resolution[31].

49



The imaged is sent through an inversion interferometer, so that the inverted image is overlapped

with the original image. Therefore the field distribution of the original image E(x) is separated

into symmetric component Es(x) and antisymmetric component Ea(x). Two photodetectors collect

spatially-unresolved photons in the symmetric and antisymmetric components. The photocurrent

detected in M detection windows are processed to get the estimate of the separation distance.

Since one can obtain both amplitude and phase information of the image, Fisher information re-

mains constant regardless of the separation distance. This proposal, together with the original

SPADE proposal, has sparked various implementations of super-resolution. SLIVER has been im-

plemented recently by Zhang et al.[32] and inspired the work by Tham et al.[33]. Paur et al.[34]

realised an implementation inspired by SPADE. We expect more progress in this field.
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Appendix A

Quantum description of weak thermal sources

We describe the light in the image plane with quantum optics by assuming quasi-monochromatic

paraxial light with one polarization. We denote the multimode complex amplitude as a column

vector α = (α1,α2, ...,αJ)
T and α† = (α∗1 ,α

∗
2 , ...,α

∗
J ) as the conjugate transpose of α , where α j

is the complex amplitude of the jth mode. |α〉 = |α1〉 |α2〉 ... |αJ〉 is the multimode coherent state

with complex amplitude α . According to Sudarshan-Glauber representation[18], any multimode

optical state with density matrix ρ can be expressed in terms of P representation[19],

ρ =
∫

P(α) |α〉〈α|d2
α, (A.1)

where d2α =
n
∏
j=1

d Re(α j)d Im(α j) .

The P representation of thermal light is given by a multivariate Gaussian distribution with

complex variate α of zero mean[19]

P(α) =
1

det(πΓ)
e−α†Γ−1α , (A.2)

where Γ = E[αα†] is covariance matrix of α with phase space distribution P(α), which can be

interpreted as the correlation function in quantum optics. E[·] is defined by

E[ f (α)] =
∫

P(α) f (α)d2
α, (A.3)

which is the expectation value of an arbitrary function f (α) with phase space distribution P(α).

Because the complex amplitudes α j of different modes are not statistically independent in general

for thermal light[19], Γ is not necessarily diagonal.

We can calculate the matrix element of ρ in multimode Fock basis |n〉= |n1〉 |n2〉 ... |nJ〉, where
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n = ∑ j n j, as follows.

〈m1,m2, ...mJ|ρ |n1,n2, ...,nJ〉=
∫

P(α)〈m1,m2, ...mJ|α1,α2, ...,αJ〉〈α1,α2, ...,αJ|n1,n2, ...,nJ〉d2
α

=
∫

P(α)e−|α|
2

∏
j

α
m j
j (α∗j )

n j√
m j!n j!

d2
α

=
e−|α|

2

√
m1!m2!...mJ!n1!n2!...nJ!

E[∏
j

α
m j
j (α∗j )

n j ]

(A.4)

According to Gaussian moment theorem for complex variates[19], if ∑ j m j 6= ∑ j n j,

E[∏
j

α
m j
j (α∗j )

n j ] = 0. (A.5)

Therefore 〈m|ρ |n〉= 0, if m 6= n. The density matrix of thermal state can be written as an incoher-

ent mixture of n-photon Fock state[15]

ρ =
∞

∑
n=0

πnρn, (A.6)

where ρn is the multimode n-photon Fock state, while πn is the corresponding probability. Within

the short coherence time of thermal state, we assume the average photon number ε at image plane

is much smaller than one

ε = ∑
j

Trρa†
ja j = ∑

j
E[|α j|2] = E[∑

j
|α j|2] = E[|α|2]� 1, (A.7)

where a j and a†
j are annihilation and creation operators of jth mode. Under this assumption, we

calculate the probability of detecting n photons in the image plane within the coherence time. The

probability of detecting n photons is given by [19]

πn = Tr(ρ |n〉〈n|) = E

[
∏

j

|α j|2n je−|α j|2

n j!

]
, (A.8)

Therefore, the probability of detecting zero photon is

π0 = E[∏
j

e−|α j|2] = E[e−∑ j |α j|2] = E[e|α|
2
] = 1− ε +O(ε2). (A.9)
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The probability of detecting one photon in jth mode is

π
( j)
1 = E[|α j|2e−|α j|2 ∏

i 6= j
e−|αi|2] = E[|α j|2 ∏

i
e−|αi|2] = E[|α j|2e−∑i |αi|2] = E[|α j|2e−|α|

2
]. (A.10)

The probability of detecting one photon mulitmode state is

π1 = ∑
j

π
( j)
1 = ∑

j
E[|α j|2e−|α|

2
] = E[∑

j
|α j|2e−|α|

2
] = E[e−|α|

2
|α|2] = ε +O(ε2). (A.11)

The probability of detecting more than one photon is

∞

∑
n=2

πn = 1−π0−π1 = O(ε2), (A.12)

and we can rewrite the density matrix to the leading order of ε ,

ρ = (1− ε)ρ0 + ερ1. (A.13)

Define |1 j〉 = a†
j |vac〉 as the single photon Fock state in the jth mode, where |vac〉 is the

vacuum state. We can write ρ1 in terms of {|1 j〉}

〈1i|ρ |1 j〉= 〈vac|aiρa†
j |vac〉

= 〈vac|ai(
∫

P(α) |α〉〈α|d2
α)a†

j |vac〉

=
∫

P(α)〈vac|ai |α〉〈α|a†
j |vac〉d2

α

=
∫

P(α)〈vac|αi |α〉〈α|α∗j |vac〉d2
α

=
∫

P(α)αiα
∗
j | 〈α|vac〉 |2d2

α

=
∫

P(α)αiα
∗
j e−|α|

2
d2

α

= E[αiα
∗
j e−α†α ]

= Γi j +O(ε2),

(A.14)

where Γi j is the matrix element of Γ. From equation A.13 and A.14, we have

〈1i|ρ |1 j〉= 〈1i| [(1− ε)ρ0 + ερ1] |1 j〉= ε 〈1i|ρ1 |1 j〉 , (A.15)

〈1i|ρ1 |1 j〉=
1
ε
[Γi j +O(ε2)]. (A.16)
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We approximate ρ1 to the first order of ε , and obtain

ρ1 =
1
ε

∑
i, j

Γi, j |1i〉〈1 j| . (A.17)

It is easier to calculate Γ using the relation between the correlation function in the image plane

and object plane. Let us write the complex amplitude in the object plane as column vector α(O) =

(α
(O)
1 ,α

(O)
2 , ...,α

(O)
K )T . The modes in the object plane and image plane are not necessarily the

same, so J and K can be different. For a linear optical system, the complex amplitudes in the

image plane and the object plane is related by a unitary transform

α = Sα
(O), (A.18)

where S is a unitary J×K matrix, called the field scattering matrix or S-matrix. The correlation

function in the image plane and the object plane is related by the S-matrix as follows[19]

Γ = SΓ
(O)S†, (A.19)

where Γ(O) is correlation function on object plane. For two point emitters at positions u = u1 and

u = u2, the matrix element of the spatial correlation function in the object plane is

Γ
(O)
i j (u,v) = ε0δuv(δuu1 +δuu2), (A.20)

where ε0 is the average photon number of each light source. Here we assume equal brightness of

two emitters, and this assumption is used for the rest of the chapter. For point emitters at different

positions in the object plane, the S-matrix can be written as a function of position x as S = S(x).

According to equation A.19, noticing that S is a unitary matrix, we find the correlation function in

the image plane to be

Γi j = ε0[Si(x1)S∗j(x1)+Si(x2)S∗j(x2)], (A.21)

where Si(xq) = ∑k Sik(xq) is the sum of ith row of S(xq) and S∗j(xq) is the complex conjugate of

S j(xq).
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We can define the quantum efficiency of the optical system as

η = ∑
i
|Si(xq)|2. (A.22)

Therefore, the photon number on the image plane is ε = 2ε0η . The multimode single photon state

in the image plane can be written as

|ψq〉= ∑
i

ψi,xq |1i〉 , (A.23)

where

ψi,uq =
Si(xq)√

η
(A.24)

is the wavefunction of the single photon state in the ith mode from emitter uq. Replacing Γi j in

equation A.17 with equation A.21 and using equation A.23, we can write ρ1 as follows

ρ1 =
ε0η

ε
∑
i, j
(ψi,x1ψ

∗
j,x1

+ψi,x2ψ
∗
j,x2

) |1i〉〈1 j|

=
1
2 ∑

i, j
ψi,x1 |1i〉〈1 j|ψ∗j,x1

+∑
i, j

ψi,x2 |1i〉〈1 j|ψ∗j,x2

=
1
2
(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|).

(A.25)
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