Quantum Walks

Entanglement and the Measurement Model

Lana Sheridan IQC – University of Waterloo

Introduction

- Part I
 - Expressing the basic evolution of quantum walks
 - Quantum walks with two particles
 - Entanglement effects
- Part II
 - The measurement-based / one-way / cluster state model
 - Converting circuits to the model
 - The quantum walk and this model

One-particle Random Walk on a Line

Initial state: position 0

Evolution: flip a coin and...

... move to the right

... move to the left

One-particle Random Walk on a Line

One-particle Quantum Walk on a Line

Each step of the walk is given by (discrete time): $\hat{U} \equiv \hat{S}(\hat{I}_P \otimes \hat{U}_C)$ First step of the quantum walk with a Hadamard coin:

$$\hat{U}_{C} = \hat{H} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$\hat{S} = \left(\sum_{i} |i+1\rangle\langle i|\right) \otimes |\uparrow\rangle\langle\uparrow| + \left(\sum_{i} |i-1\rangle\langle i|\right) \otimes |\downarrow\rangle\langle\downarrow|$$

Let us choose the following initial state:

$$\begin{array}{c|c} |0\rangle \otimes |\uparrow\rangle & \xrightarrow{\hat{H}} |0\rangle \otimes \frac{1}{\sqrt{2}} \left(|\uparrow\rangle + |\downarrow\rangle\right) \\ & \xrightarrow{\hat{S}} \frac{1}{\sqrt{2}} \left(|1\rangle \otimes |\uparrow\rangle + |-1\rangle \otimes |\downarrow\rangle\right) \end{array} \right\} \hat{U} \equiv \hat{S} \left(\hat{I}_{P} \otimes \hat{H}\right)$$

Implementation: Beam Splitter Array

Beam Splitter Array – A Further Note

One-particle Quantum Walk on a Line with *asymmetric* initial conditions

Classical vs. Quantum Random Walk with *symmetric* initial conditions

$$|\psi_{sym}\rangle = |0\rangle \otimes \frac{1}{\sqrt{2}} ||\uparrow\rangle + i |\downarrow\rangle)$$

Quantum Walks and Quantum Algorithms:

Quantum Walks and Quantum Algorithms:

• Exponential algorithmic speedup by quantum walk, A. M. Childs *et al*, *Proc. 35th ACM Symposium on Theory of Computing (STOC)*, 59 (2003)

Oracular problem, continuous time quantum walk on a graph:

Quantum Walks and Quantum Algorithms:

• Exponential algorithmic speedup by quantum walk, A. M. Childs *et al*, *Proc. 35th ACM Symposium on Theory of Computing (STOC)*, 59 (2003)

Oracular problem, continuous time quantum walk on a graph.

• Quantum walk algorithm for element distinctness, A. Ambainis, *quant-ph/0311001*

The problem of finding two equal items amongst *N*, Number of necessary queries improved:

$$O\left(N^{\frac{3}{4}}\right) \longrightarrow O\left(N^{\frac{2}{3}}\right)$$

Quantum Walk on a Line with two Particles

Work with: Yasser Omar, Nikola Paunkovic, & Sougato Bose

Quantum Walk on a Line with two Particles

Now we can have entanglement: new correlations !

Implementation: Beam Splitter Array

Let us consider the following initial states

In the case of two particles with *separable* states:

$$\left|\psi_{0}^{sep}
ight
angle_{12}=\left|0,\uparrow
ight
angle_{1}\left|0,\downarrow
ight
angle_{2}$$

For maximally entangled states:

The + State (aka. Bosonic State)

$$\left|\psi_{0}^{+}\right\rangle_{12} = \frac{1}{\sqrt{2}}\left(\left|0,\uparrow\right\rangle_{1}\right|\left|0,\downarrow\right\rangle_{2} + \left|0,\downarrow\right\rangle_{1}\left|0,\uparrow\right\rangle_{2}\right)$$

The - State (aka. Fermionic State)

$$\left|\psi_{0}^{-}\right\rangle_{12} = \frac{1}{\sqrt{2}}\left(\left|0,\uparrow\right\rangle_{1}\right|\left|0,\downarrow\right\rangle_{2} - \left|0,\downarrow\right\rangle_{1}\left|0,\uparrow\right\rangle_{2}\right)$$

and the evolution $\hat{U}_{12} \equiv \hat{U} \otimes \hat{U}$ with a Hadamard coin.

Beam Splitter Effects

Further Results for N=30

	+ State (Bosons)	- State (Fermions)	Separable; Distinguishable
$\langle x_1 - x_2 \rangle$	17.843	26.054	21.948
$\langle x_1 - x_2 \rangle$	0	0	16.722
$\langle x_1 \rangle$	0	0	8.3611
$\langle x_2 \rangle$	0	0	-8.3611
$\langle x_1 x_2 \rangle$	13.661	-153.48	-69.908
$\langle x_1 x_2 \rangle - \langle x_1 \rangle \langle x_2 \rangle$	13.661	-153.48	0

Expectation value $\langle \Delta_{12}^{sep,\pm} \rangle$ after N steps								
Nb. of steps N	10	20	30	40	60	100		
Init. cond. $ \psi_0^-\rangle_{12}$	8.8	17.5	26.0	34.9	52.2	87.0		
Init. cond. $ \psi_0^{sep}\rangle_{12}$	7.1	14.7	21.9	29.5	44.3	73.9		
Init. cond. $ \psi_0^+\rangle_{12}$	5.5	11.9	17.8	24.1	36.3	60.8		

Table 1: Average distance $\langle \Delta_{12}^{S,\pm}\rangle$ after N steps.

Part II

Work with: Yasser Omar, Elham Kashefi, Niel de Beaudrap

Measurement-Based QC

- This is a new model for universal quantum computation
- Entanglement is created at the start of the computation and is a resource expended in performing the computation.
- It consists of 4 stages:
 - Preparation
 - Entanglement
 - Measurement
 - Correction

Measurement-Based QC

- 1. Preparation set all qubits into the $|+\rangle$ state (with the exception of the input qubits)
- 2. Entanglement form a graph state particular to the intended calculation by applying Control-Z operations on the qubits
- 3. Measurement perform a series of conditional single qubit measurements on the entangled qubits, destroying the entanglement of all but the output qubits
- 4. Corrections perform a series of conditional Pauli corrections on the output qubits

The Toffoli

$$V = \frac{1}{2} \begin{pmatrix} 1 - i \ 1 + i \\ 1 + i \ 1 - i \end{pmatrix}, \qquad V = X^{1/2}$$

The Toffoli

Summary

- Adding multiple particles to walks can increase the portion of the walk covered in a given amount of time.
- Setting the particles into the walk in the singlet Bell state can further increase this.
- There are frameworks in which quantum walks are very easily expressed.
- The circuit model is not one of them.
- The measurement model may provide a more intuitive framework.

References

- General overview of quantum walks:
 - 'Quantum Random Walks An Introductory Overview', J. Kempe, quantph/0303081
- For further analysis and statistical properties of two particle walks:
 - 'Quantum Walk on a Line with Two Particles', Y. Omar, N. Paunkovic, L. Sheridan, & S. Bose, quant-ph/0411065
 - 'Discrete Time Quantum Walk on a Line with two Particles', same, International Journal of Quantum Information
- One-Way / Measurement-Based / Cluster state model:
 - 'Computational Model Underlying the One-Way Quantum Computer', Raussendorf & H.-J. Briegel, quant-ph/0108067
 - 'The Measurement Calculus', V. Danos, E. Kashefi, & P. Panangaden, quant-ph/0412135
 - 'Optical Quantum Computation Using Cluster States', M. Nielsen, quantph/0402005

Joint Probability Distributions for N = 60

Table 1: Average distance $\langle \Delta_{12}^{S,\pm} \rangle$ after N steps.

Slide in Anticipation of Nathan's Dissatisfaction.

