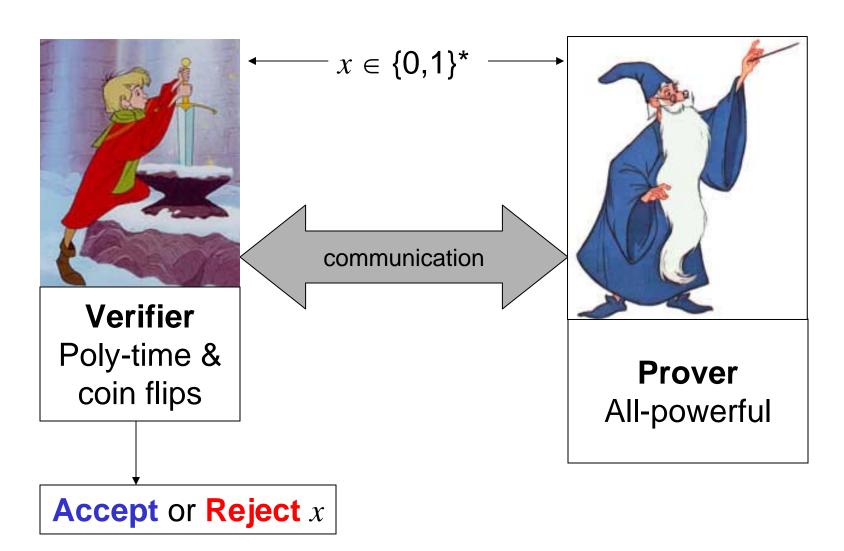
Upper Bounds for Quantum Interaction

Gus Gutoski
University of Calgary
Calgary, Alberta, Canada

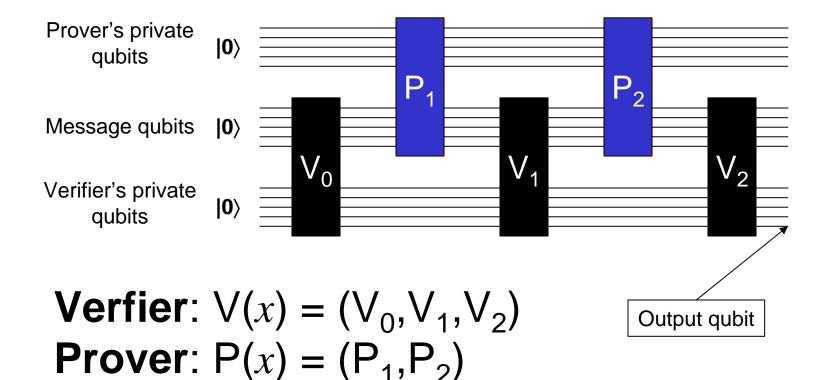
Interactive Proofs



Interactive Proofs

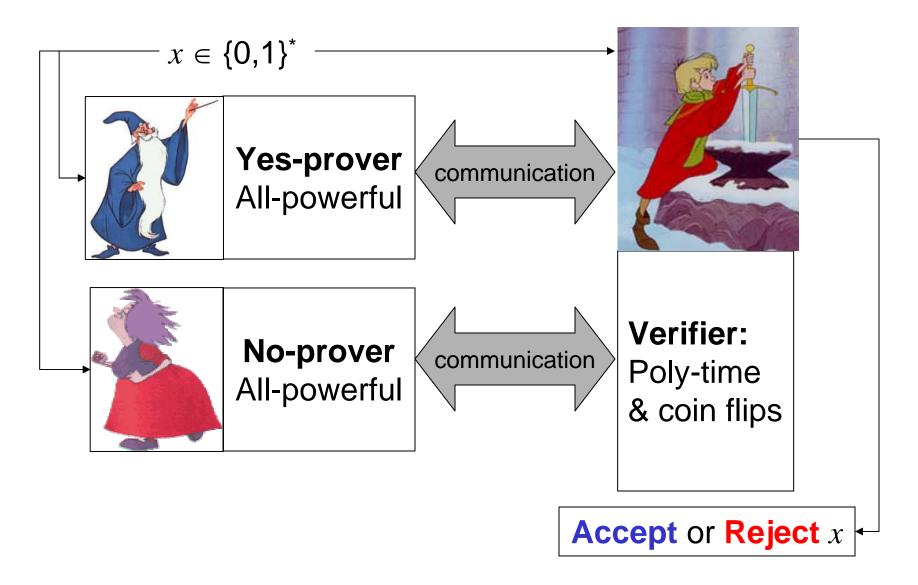
- A language L has an interactive proof if there exists a verifier V such that:
- 1. (completeness condition) If $x \in L$ then there exists a prover P that can convince V to accept x with probability > 3/4.
- 2. (soundness condition) If $x \notin L$ then <u>no</u> prover can convince V to accept x except with probability < 1/4.
- IP = PSPACE [LFKN92] [S92].

Quantum Interactive Proofs



 $\mathsf{PSPACE} \subseteq \mathsf{QIP} \subseteq \mathsf{EXP}$ [KW00].

Refereed Games

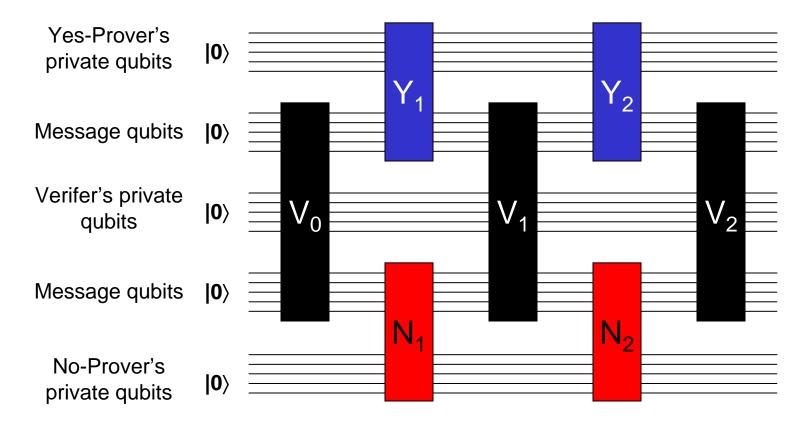


Refereed Games

A language *L* has a refereed game if there exists a verifier V such that:

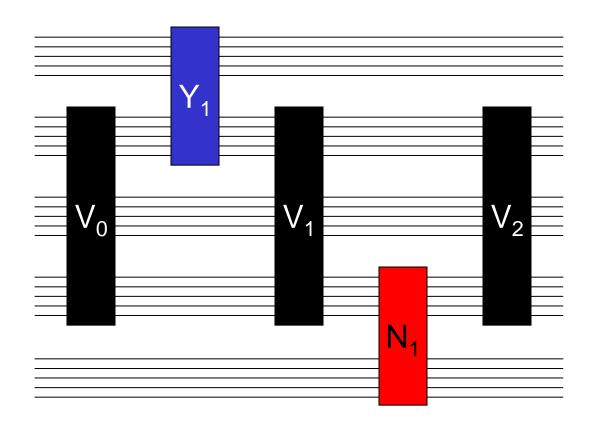
- 1. (completeness condition) If $x \in L$ then there exists a yes-prover Y that can convince V to accept x regardless of the no-prover with probability > 3/4.
- 2. (soundness condition) If $x \notin L$ then there exists a no-prover N that can convince V to reject x regardless of the yes-prover with probability > 3/4.
- RG = EXP [KM92] [FK97].

Quantum Refereed Games



New complexity class: QRG

Short Quantum Games

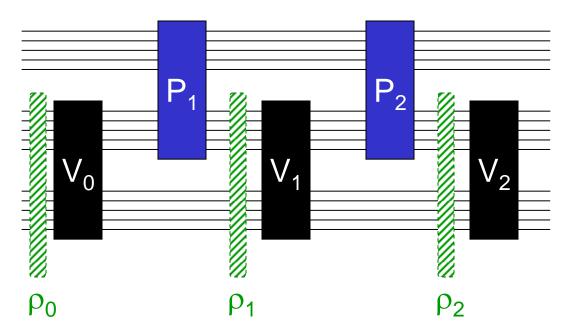


- New complexity class: SQG
- QIP \subseteq SQG [GW05].

Background and Overview

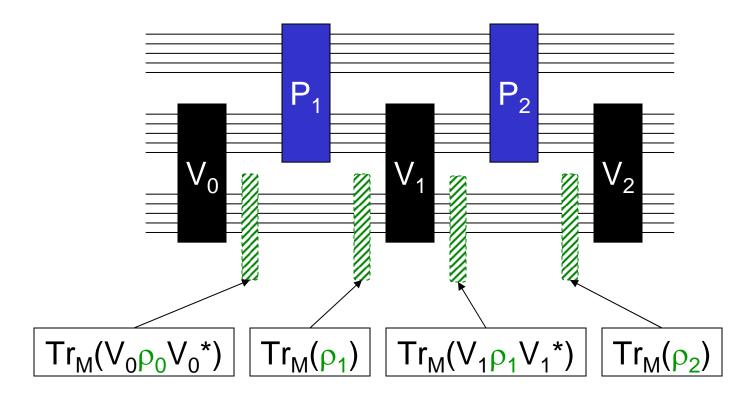
- QIP ⊆ SQG [GW05].
- QIP ⊆ EXP [KW00].
- How does SQG relate to EXP?
- We prove SQG ⊆ EXP.
 - First, we review QIP \subseteq EXP.
 - Next, we note that $QRG \subseteq NEXP$.
 - Finally, we show $SQG \subseteq EXP$.

Consider the states ρ_0, ρ_1, ρ_2 :



- 1. $\rho_0 = |0\rangle\langle 0|$; and
- 2. The verifier accepts x with probability $Tr(\Pi_{accept}V_2 \rho_2 V_2^*)$ (linear function of ρ_2).

What else can we say about ρ_0, ρ_1, ρ_2 ?



(linear constraints on ρ_0, ρ_1, ρ_2 .)

It turns out that ρ_0, ρ_1, ρ_2 can be <u>any</u> states with this property!

Proof:

- Given any ρ_0, ρ_1 , let $|\mathbf{u}_0\rangle$, $|\mathbf{u}_1\rangle$ be purifications.
- Then $V_0|u_0\rangle$ purifies $Tr_M(V_0\rho_0V_0^*)$.
- As

$$\begin{aligned} \text{Tr}_{M}(V_{0}\rho_{0}V_{0}^{*}) &= \text{Tr}_{M}(\rho_{1}), \\ \text{there must exist a unitary } P_{1} \text{ with} \\ P_{1}V_{0}|u_{0}\rangle &= |u_{1}\rangle. \end{aligned}$$

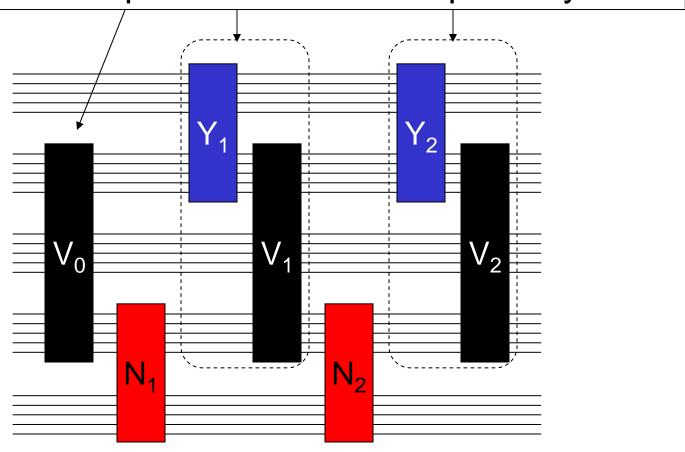
Similar construction for P₂.

This characterization can be expressed as a <u>semidefinite program (SDP)</u>:

maximize linear function of ρ_r subject to linear constraints on $\rho_0, ..., \rho_r$; $\rho_0, ..., \rho_r$ pos. semidefinite

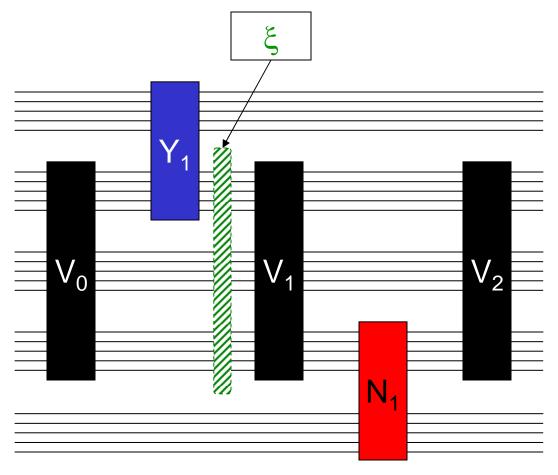
- SDPs can be solved in poly-time.
- Our matrices have size exponential in |x|.
- QIP ⊆ EXP

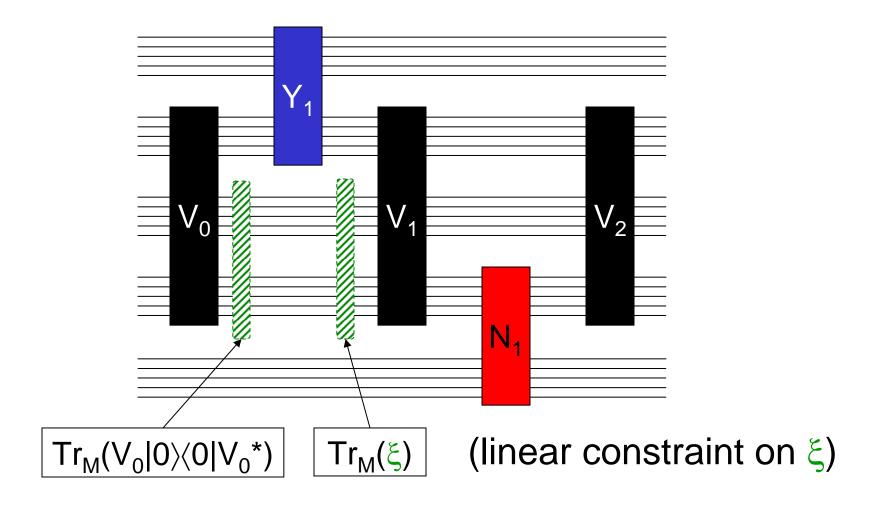
Verifier for a quantum interactive proof system!



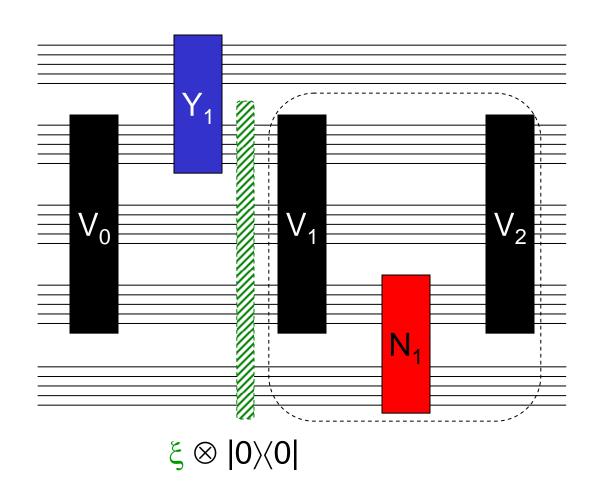
- Nondeterministic strategy: Guess the unitaries $(Y_1,...,Y_r)$ for the yes-prover and solve the induced QIP as before.
- QRG ⊆ NEXP

Suppose ξ is given. What can we say about ξ ?





The verifier rejects x with probability $Tr(\Pi_{reject}V_2N_1V_1 (\xi \otimes |0)\langle 0|) V_1^*N_1^*V_2^*)$ (given N_1 , it's a linear function of ξ).



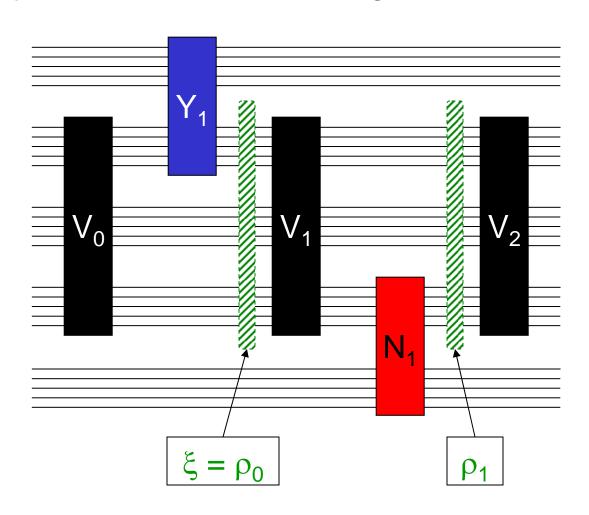
The Set of Winning Yes-Provers

Define **Win** to be the set of all density matrices ξ such that:

- $\operatorname{Tr}_{M}(V_{0}|0)\langle 0|V_{0}^{*}\rangle = \operatorname{Tr}_{M}(\xi)$; and
- Pr. rejection $< \frac{1}{4} \quad \forall \text{ unitaries } N_1$.

Then *Win* is nonempty iff $x \in L$.

Given ξ , view the rest of the game as a QIP:



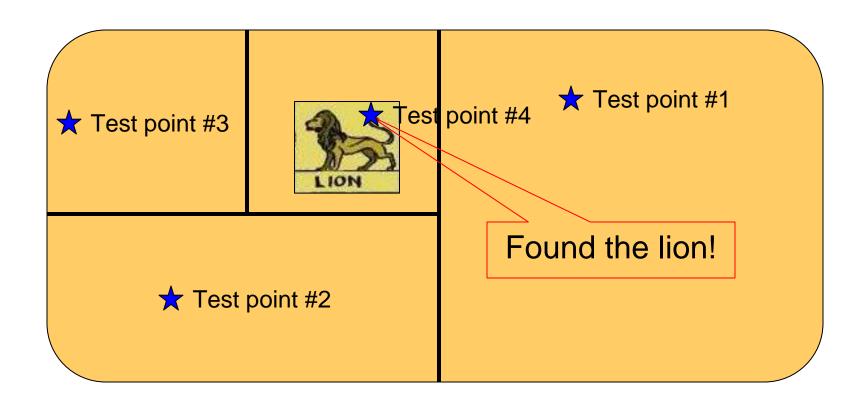
- Given $\rho_0 = \xi$, solve the SDP for (ρ_0, ρ_1) to maximize Pr. rejection (linear in ρ_1).
- If maximum Pr. rejection is $< \frac{1}{4}$ then $\xi \in \textit{Win}$ $\Rightarrow \textit{Win}$ is nonempty
 - $\Rightarrow x \in L$
- Otherwise, deduce a no-prover N that yields ρ₁ (easy).

• N is a witness that $\xi \notin Win$: linear_N(ξ) > $\frac{1}{4}$ and linear_N(ξ ') < $\frac{1}{4}$ $\forall \xi$ ' $\in Win$ $\Rightarrow \exists \text{ a <u>hyperplane</u>}$ that separates ξ from Win.

- Recap: Given ξ , we can use our SDP to decide if $\xi \in Win$ or to find a separating hyperplane for ξ .
- How does that help?

The Ellipsoid Method

How to find a lion in the desert...



- Given a poly-time <u>separation oracle</u>, the ellipsoid method can decide the emptiness of a convex set in poly-time!
- Poly-time separation oracle: the SDP
- Convex set: Win
- Dimension of **Win** is exponential in |x|
- SQG ⊆ EXP

Conclusion

 We used SDP [KW00] to decide QIPs and QRGs:

QIP
$$\subseteq$$
 EXP. QRG \subseteq NEXP.

 We used the ellipsoid method to decide short quantum games

$$SQG \subseteq EXP.$$

The emerging complexity map:

$$\begin{array}{c} \mathsf{PSPACE} \subseteq \mathsf{QIP} \subseteq \mathsf{SQG} \\ \subseteq \mathsf{EXP} \subseteq \mathsf{QRG} \subseteq \mathsf{NEXP}. \end{array}$$