vision
To be a world leader in research and education in pure and applied quantum science and technology.

mission statement
To advance quantum science and technology through interdisciplinary research, teaching, and outreach.

key facts

<table>
<thead>
<tr>
<th>20</th>
<th>postdoctoral fellows</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>graduate students</td>
</tr>
<tr>
<td>23</td>
<td>undergraduate students</td>
</tr>
<tr>
<td>41</td>
<td>visiting researchers</td>
</tr>
<tr>
<td>37</td>
<td>invited talks at national and international conference/workshops including 1 keynote and 2 plenary talks</td>
</tr>
<tr>
<td>4.572 million dollars</td>
<td>revenue</td>
</tr>
</tbody>
</table>
executive director’s report 4
a message from the chair 6
highlights of 2015/2016 8
 RESEARCH ACHIEVEMENTS 8
 AWARDS 9
 KEY PERFORMANCE INDICATORS 10
research groups ... 13
management and membership 20
 INSTITUTE STRUCTURE 20
 GOVERNANCE 21
 STUDENTS 23
 POSTDOCTORAL FELLOWS 25
 RESEARCH ASSOCIATES 25
 ADMINISTRATION AND SUPPORT 25
publications and presentations 26
 REFEREEED JOURNALS 26
 CONFERENCE PROCEEDINGS 30
 BOOK CHAPTERS 30
 INVITED CONFERENCE/ WORKSHOP PRESENTATIONS 31
 STUDENT THESIS 33
linkage .. 34
 COLLABORATION 34
 VISITORS 36
 AFFILIATION 37
services and outreach 38
 GRADUATE COURSES 38
plans for next year 43
finances ... 42
 RESEARCH GRANTS (UNAUDITED) 42
 OPERATING ACCOUNT (UNAUDITED) 42
appendices .. 46
 APPENDIX 1: CHARTER OF THE INSTITUTE FOR QUANTUM SCIENCE AND TECHNOLOGY 47
 APPENDIX 2: IQST USE OF SPACE 50
The Institute for Quantum Science and Technology has enjoyed another year of excellence in research, training and outreach. The Highlights section of this Annual Report elaborates on some of the key achievements but I give an overview of the highlights here.

The publication and graduate student metrics provide a quantitative summary of the achievements. The fourteen research groups within the Institute have had 66 papers published including 14 in the top-tier journals of *Nature, Nature Communications, Physical Review Letters, Physical Review X, Optica, Nano Letters*. Eleven students enrolled in the graduate studies programs in 2015/2016. Three MSc students and nine PhD students completed their research and moved on to academic and industrial positions.

The quality of the students and postdocs in the Institute is excellent as evidenced by them winning awards and prizes. Hoan Bui Dang received a postdoctoral fellowship from NSERC, and two graduate students held NSERC Vanier Scholarships plus two Masters students received NSERC Canada Graduate Scholarships. Seven Alberta Innovates Graduate Student Scholarships were held by students in the Institute, and five postdocs were supported by Eyes High Postdoctoral Fellowships jointly supported by Alberta Innovates Technology Futures and the University of Calgary.

Four graduate students held University of Calgary Queen Elizabeth II Graduate Scholarships, and one graduate student was the recipient of a University of Calgary Silver Anniversary Scholarship. One student benefitted from the Dean’s International Doctoral Recruitment Scholarship and two graduate students obtained Eyes High Doctoral Recruitment Scholarships. One PhD student held a competitive award from Kuwait and a visiting graduate student was supported by a China Scholarship Council Award. Faculty member Gilad Gour was awarded
the Faculty of Science Early Career Research Scholarship Award.

The Institute prioritizes outreach as well as research and training. Hosting conferences and holding Quantum Public Lectures serve as the main outreach instruments. From 11 to 14 June 2016, the Institute hosted Theory Canada 10. Theory Canada is the annual conference for theoretical physics in Canada. Also the Institute hosted the annual Quantum Information Processing conference (QIP 2016), which is the leading theoretical conference in quantum information with strong computer science, mathematics and physics participation. QIP 2016 was held at the Banff Centre from 10 to 15 January 2016 preceded by tutorials at the University of Calgary on 9 and 10 January.

The Quantum Public Lectures serve to convey leading breakthroughs in quantum science and technology to the general public. The public appetite is indeed high for learning the latest advances in the quantum world. One of the Institute’s Public Lectures was held in conjunction with the national conference Theory Canada 10: former University of Calgary postdoc Shohini Ghosh, who is now a Faculty Member of Wilfred Laurier University and a TED Fellow, gave a public lecture on “Seeing the Invisible: Journey into the Quantum World” on 11 June 2015 to an audience of 120.

Seth Lloyd from the Massachusetts Institute of Technology delivered a public lecture titled “Teleportation, Time Travel and Escape from Black Holes” to 320 persons on 18 November 2015, and this event was supported by the Faculty of Science Alumni Relations team as a joint outreach effort. In addition to this public lecture, a pan-Alberta public lecture, organized by the nascent Quantum Alberta initiative, was hosted at the University of Alberta and broadcasted by interactive video to the Universities of Calgary and Lethbridge. Twenty persons in Calgary attended this Public Lecture by Nobel Laureate William Phillips. This Public Lecture is Quantum Alberta’s first foray into province-wide outreach.

The Quantum Alberta initiative, which hosted the pan-Alberta Public Lecture by Phillips, is an AITF-sponsored effort to create a pan-Alberta network of academic and industry experts whose collective aim is to elevate Quantum Science research, development and commercialization in Alberta. Quantum Alberta’s home page is http://quantumalberta.ca/. Ultimately the Institute for Quantum Science and Technology could become a branch of the Quantum Alberta umbrella if events unfold according to the Quantum Alberta plan.

The Institute operates efficiently with just one Administrator and a part-time webmaster. The Institute has been working on revamping its database and web presence by subsuming these information resources within the Quantum Alberta superstructure. The aim is to replace the Institute database and web pages by virtual pages that are served from the Quantum Alberta host but selected to show only the University of Calgary data.

In summary the Institute is performing well in research, training and outreach and taking new initiatives with respect to web page and database management and the development of the Quantum Alberta initiative. Quantum science and technology are becoming increasingly important for sensing, secure communication and computation, and the Institute’s formidable presence on the international scene augurs well for Calgary and for the province of Alberta to benefit greatly from University and provincial investments in “quantum” over the past 13 years.
As the new Dean of the University of Calgary’s Faculty of Science, I also serve as the Chair of the Institute’s Board of Directors. This Board guides and assesses the performance of the Institute, which is one of two Institutes hosted within The Faculty of Science: the Institute for Quantum Science and Technology and the Institute for Security, Privacy and Information Assurance. The Faculty is also host to the University of Calgary branch of the Pacific Institute for the Mathematical Sciences. Each of these Institutes are strategically important to the Faculty of Science’s directions in research, training, and outreach.

The Institute for Quantum Science and Technology has put the University of Calgary firmly on the map of global leaders in quantum science and technology. The Institute has activities of excellence in each of four Science Departments: Chemistry, Computer Science, Mathematics and Statistics, and Physics and Astronomy. As quantum science is becoming increasingly important on the world stage, especially for potential applications to sensing, metrology, secure communication, and computing, this Institute ensures that the University of Calgary plays a key role in the advancements of this field and partners with other leaders.

In addition to the excellent science and training undertaken in the Institute, I applaud the Institute’s outreach effort. Members of the Institute are active in outreach efforts to schools nationally, and the Quantum Public Lectures draws large crowds each year to hear leaders in the quantum field. The Faculty of Science plays an important organizational role in facilitating the Quantum Public Lectures through the Faculty of Science Alumni Relations Office. Many Science alumni come each year to hear these popular lectures by leaders in the field of quantum science.

“In addition to the excellent science and training undertaken in the Institute, I applaud the Institute’s outreach effort.”

LESLEY RIGG

a message from the chair
The Institute for Quantum Science and Technology is an exemplar within the Faculty for how an Institute should operate. In addition to the research, training, and outreach excellence, the Institute is managed well through its governance structure. The Board ensures strategic direction and accountability. The Executive Director and the Administrator ensure effective day-to-day management supported by an Executive Committee. The Council, which is convened thrice annually, is an integral part of ensuring a collegial and democratic approach to operations and planning. The long-standing success and growth of the Institute surely depend not only on the quality of its members but also the quality of its management. This Annual Report is an excellent document conveying the formidable achievements of the Institute, and I wish the Institute continued success in the coming year.
The Institute has had a highly successful year of research outcomes. The chief highlights are reported here. In addition to these highlights, every research group continues to make great strides in research and has had substantial outcomes in the past year.

Gilad Gour and collaborators developed a general structure for quantum resource theories, which was published in *Physical Review Letters*. Another key result from Gour’s group has been a model for quantum thermodynamics at low temperature; this result was published in *Nature Communications*. In a *Physical Review A* paper, promoted as an Editors’ Suggestion and highlighted by MIT Technology Review, Christoph Simon and his group showed how to achieve entanglement over global distances based on quantum repeaters with satellite links. Barry Sanders and collaborators derive, in a *New Journal of Physics* paper, an asymptotically tight relation between average gate fidelity, favoured in experimental reporting of quantum gate performance, with an upper bound on the quantum gate error rate, which is the appropriate metric for assessing progress towards fault tolerant quantum computation.

Alex Lvovsky’s group has addressed the challenge of sharing fragile N-photon “N00N” states between multiple particles. In their *Nature Photonics* paper, they explain their technique, which reverses the Hong-Ou-Mandel effect in order to prepare a high-fidelity two-photon N00N state shared between two parties connected by a lossy optical channel.

In a *Physical Review Letters* article promoted as an Editors’ Suggestion, Wolfgang Tittel and his group demonstrated an atomic quantum memory that directly allows for reversible mapping of quantum states encoded in the polarization degree of freedom of a telecom-wavelength photon. Furthermore they showed that heralded polarization qubits at a telecom wavelength are stored and retrieved with near-unity fidelity by implementing the atomic frequency comb protocol in an ensemble of erbium atoms doped into an optical fiber.

Peter Kusalik’s group has contributed an important insight into crystal nucleation of gas hydrates by showing how specific defect (cage) structures can allow cross-nucleation of an otherwise structurally incompatible crystal on the surface on another. Yujun Shi’s group has demonstrated efficient formation of Gold and Platinum nanoparticle arrays on organized dimpled tantalum substrates using the technique of pulsed laser dewetting of thin metal films. These results were published in *Physical Chemistry Chemical Physics* and in *Applied Physics Letters*, respectively.

In a *Nature* paper, Robert Thompson and collaborators bound the charge of the antihydrogen atom by applying stochastic acceleration to a near neutrality by a factor of 20 better than the best previous result. Robert Thompson, in a result reported in *Physical Review Letters*, measures single and double beta-decay Q Values among the Triplet 96Zr, 96Nb, and 96Mo thereby providing valuable empirical results to such beta-decay models.

In *Nano Letters*, Paul Barclay’s team describes how to fabricate easily single-crystal-diamond optical resonators whose wavelength-scale dimensions enable enhanced coupling between light and electron spins. In a *Physical Review X* publication, the team reports diamond devices with ultralow dissipation mechanical resonances that are coupled to an optical fiber and used to demonstrate one of the first instances optomechanics in diamond.
AWARDS

INTERNATIONAL AWARDS

China Scholarship Council Award (People’s Republic of China)
Wei-Wei Zhang (ended December 2015)

PAAET Award (Kuwait)
Hessa Muneef Alotaibi (ended August 2015)

NATIONAL AWARDS

MITACS Globalink
Punit Kumar Jha
Yeyu Tong
Nguyen Dang Tran

NSERC Canada Graduate Scholarships – Master
Tamiko Masuda
Stephen Wein

NSERC Postdoctoral Fellowship
Hoan Bui Dang

NSERC USRA Program
Xining Chen
Celeb John
Stephen Wein

NSERC Vanier Scholarship
Carlos Enriquez-Victorero
Kyle Hall

PIMS Postdoctoral Fellowship
Hoan Bui Dang

PROVINCIAL AWARDS

Alberta Innovates Graduate Students Scholarship
Chris Healey
Sourabh Kumar
Hon-Wai Lau
David Lake
Thomas Lutz
Matthew Mitchell
Stephen Wein

Alberta Innovates Technology Futures (AITF)/Eyes High Postdoctoral Fellowship
Gabriel Aguilar
Ronnie Banerjee
Joydip Ghosh
John Patrick Hadden
Florian Senn

UNIVERSITY OF CALGARY AWARDS

Dean’s International Doctoral Recruitment Scholarship
Sumit Goswami

Eyes High Doctoral Recruitment Scholarship
Andrew Evans
Sourabh Kumar

Faculty of Science Early Career Research Excellence Award
Gilad Gour

Faculty of Graduate Studies Travel Award
Hamidreza Kaviani
David Lake
Thomas Lutz
Matthew Mitchell

Queen Elizabeth II Graduate Scholarship
Alex Cameron
Adam Mayer
Sahar Sheybani-Deloui
Neil Sinclair

Silver Anniversary Graduate Fellowship
Marcelo Wu
KEY PERFORMANCE INDICATORS

Graduate student enrolment and quality of entrants

Note: Two PhD students were transferred from MSc program, so their GPAs were not calculated

Publications and Presentations
(hilight portion with IQST student)
Revenue (unaudited)

- Industry: 17%
- International Funding: 3%
- University of Calgary: 3%
- Provincial Funding: 13%
- National Funding: 64%

External Awards (Chairs, Fellowships and Scholarships)

- Faculty
- Postdoctoral Fellows
- Graduate Students
- Undergraduate Students (NSERC USRA)
Nanoscale Optics

Dr. Paul Barclay

Explores interactions between light and nanoscale systems such as single atoms, electron spins and nanomechanical structures. Employs nanofabrication methods to engineer optical properties of these systems in order to enhance light-matter coupling. The current focus couples single quantum emitters, or “artificial atoms”, to optical nanocavities. The labs are at the University of Calgary and at the NRC National Institute for Nanotechnology in Edmonton, which has advanced nanofabrication tools plus leading quantum optics and nanotechnology researchers.

Practical Quantum Computation

Dr. David Feder

Focuses on understanding intrinsic properties of physical systems, such as ultracold atomic gases or spin lattices, can be employed to construct larger devices able to perform quantum computation. In addition, the group explores alternative models for the implementation of quantum logic, such as one-way quantum computation, quantum walks, and topological quantum computation.
QUANTUM INFORMATION THEORY

Dr. Gilad Gour
Employs sophisticated mathematical methods, such as algebraic geometry, matrix analysis, group theory and C*-algebras, to solve core problems in quantum information science.

QUANTUM COMPUTING

Dr. Peter Høyer
Explores the potential powers of quantum systems to develop quantum algorithms, quantum communication protocols, quantum cryptographic protocols, and quantum computer simulations of quantum mechanical systems. Characterizes the powers and their limitations by studying quantum complexity theory, non-locality, entanglement, and quantum information theory.
MOLECULAR SIMULATIONS OF LIQUIDS & SOLUTIONS, INTERFACES AND CRYSTALLIZATION

Dr. Peter Kusalik
Molecular simulations to examine collections of molecules representing solid or liquid systems. Probes the molecular behaviour to understand properties of liquids and solids and their transformations including nucleation and crystallization. Applications range from atmospheric sciences to molecular biology and glaciation of a cloud. Explores behaviour of the hydroxyl radical in various aqueous environments.

QUANTUM INFORMATION TECHNOLOGY WITH LIGHT AND EXPERIMENTAL QUANTUM OPTICS

Dr. Alex Lvovsky
Concentrates on implementing light for the purposes of quantum information technology — that is, learning to synthesize, control, characterize, and store arbitrary quantum states of the electromagnetic field, as well as causing photons to interact with each other.
SPECTROSCOPY OF HYDROCARBONS AND MOLECULAR CLUSTERS AND COMPLEXES

Dr. Nasser Moazzen-Ahmadi
Measures forces responsible for formation of atomic and molecular clusters. Investigates the intermolecular potential in the region of the potential minimum. Explores non-additive effects on the interaction energy and to determine possible condensation pathways. Relevant to a range of applications from atmospheric chemistry to molecular biology.

MULTISCALE MODELING OF (BIO) CHEMICAL REACTIONS IN COMPLEX ENVIRONMENTS

Dr. Dennis Salahub
Investigates mechanisms and rates of chemical reactions occurring in complex environments. Models enzymatic catalysis, electron transfer between proteins and/or heavy oil upgrading. Employs multiple techniques, from quantum chemistry, to molecular dynamics, to stochastic network analysis, are brought to bear on the problem in a context of High Performance Computing.
QUANTUM INFORMATION SCIENCE

Dr. Barry Sanders
Develops quantum information technologies that have transformative applications and will be feasible within a decade. The research program is divided into five strands: (i) long-distance secure communication, (ii) simulations of complex systems, (iii) implementations of quantum information tasks, (iv) empirical characterization of quantum states and processes, and (v) determining and quantifying all resources for quantum information processing.

CHEMICAL VAPOR DEPOSITION CHEMISTRY

Dr. Yujun Shi
Focuses on chemical and physical processes underpinning the formation of silicon-containing semiconductor thin film materials using hot-wire chemical vapour deposition. Applies technically demanding laser ionization mass spectrometric and laser spectroscopic techniques to investigate this process at the molecular level. Explores gas-phase reaction chemistry in the formation of silicon carbide and silicon nitride and laser spectroscopy of silicon carbide clusters generated using pulsed discharge and laser ablation methods. Applications include superior-quality films for industrial applications.
THEORETICAL QUANTUM OPTICS

Dr. Christoph Simon

Applies fundamentally quantum phenomena. One application is the quantum repeater, which will be essential for long-distance quantum communication, and motivates implementations of quantum memories and of quantum gates between individual photons in various systems. Explores the quantum-classical transition such as quantum amplification of photons to macroscopic levels and controlling quantum optomechanical systems.

TRAPPED ION PHYSICS WITH ATOMS, MOLECULES, AND EXOTIC SPECIES

Dr. Robert Thompson

Develops and measures low-density trapped atoms, molecules and exotic species, especially anti-matter Hydrogen. Collaboration with the Antihydrogen Laser Physics Apparatus (ALPHA) project at CERN involving 40 scientists across 16 institutions. Collaborates with TRIUMF's Ion Trap for Atomic and Nuclear (TITAN) Science, particularly on sympathetic and evaporative cooling.
QUANTUM CRYPTOGRAPHY AND COMMUNICATION

Dr. Wolfgang Tittel
Builds photon-based quantum cryptography systems through optical fibres and targets the development of a quantum repeater to extend quantum cryptography past its current distance limit. Develops novel techniques for practical photonic quantum communication primitives such as quantum teleportation, plus hitherto unrealized means for efficient and reversible transfer of quantum information between photons and atoms for temporal storage.

NANOSCALE MATERIAL

Dr. Simon Trudel
Investigates the synthesis, characterization, and structure-property relationships in inorganic solid-state nanomaterial, such as metal-oxide thin films and multimetallic nanoparticles. Develops high-performance materials in technologically and commercially relevant focus areas such as clean-energy conversion and spin-based electronics. Characterizes materials using state-of-the-art methods, such as electrochemical testing, electron microscopy, x-ray diffraction, and magnetometry based on superconducting quantum interference devices. Properties are analyzed to provide feedback for synthetic approaches for improvement.
management and membership

INSTITUTE STRUCTURE

The Institute is managed on a day-to-day level by the Institute Director and the Institute Administrator. The Director and his research group are additionally supported by an administrative assistant. The Director reports to the Board of Directors and is ex officio a member of this Board. The Board reports to the Dean of Faculty of Science who chairs the Board.

The Director and the Administrator of the Institute work on day-to-day matters of the Institute. The Institute Executive comprises the Director, Administrator and five faculty members other than the Director. The Executive meets monthly to discuss and make decisions on executive matters. The Executive receives advice and guidance from the IQST Council, which comprises all full and affiliate faculty members of the Institute and meets three times annually.

All of the Institute’s research, teaching, service and outreach activities are conducted by faculty members and their research groups.
GOVERNANCE

BOARD OF DIRECTORS

Lesley Rigg
Dean, Faculty of Science, University of Calgary

Marie D’Iorio
Executive Director, National Institute for Nanotechnology (NINT)

Chip Elliott
Chief Engineer, Raytheon BBN Technologies

John Kendall

Sir Peter Knight
Principal, The Kavli Royal Society International Centre

Barry C. Sanders
Professor, Department of Physics and Astronomy, University of Calgary

Carl Williams
Chief of the Quantum Measurement Division (QMD), Physical Measurement Laboratory, National Institute of Standards and Technology (NIST)

Mark Williams
Entrepreneur-in-Residence, Innovate Calgary

EXECUTIVE COMMITTEE

David Feder
(on sabbatical leave from July 2015)
Associate Professor, Department of Physics and Astronomy, University of Calgary

Gilad Gour
Associate Professor, Department of Mathematics and Statistics, University of Calgary

Barry C. Sanders
Professor, Department of Physics and Astronomy, University of Calgary

Yujun Shi
Associate Professor, Department of Chemistry, University of Calgary

Wolfgang Tittel
(on sabbatical leave from July 2015)
Professor, Department of Physics and Astronomy, University of Calgary

Simon Trudel
(on leave from July 2015)
Associate Professor, Department of Chemistry, University of Calgary
COUNCIL

Faculty Members

Paul Barclay
Associate Professor, Department of Physics and Astronomy, University of Calgary

David Feder
Associate Professor, Department of Physics and Astronomy, University of Calgary

Gilad Gour
Associate Professor, Department of Mathematics and Statistics, University of Calgary

Peter Høyer
Associate Professor, Department of Computer Science, University of Calgary

Peter Kusalik
Professor, Department of Chemistry, University of Calgary

Alex Lvovsky
Professor, Department of Physics and Astronomy, University of Calgary

Nasser Moazzen-Ahmadi
Professor, Department of Physics and Astronomy, University of Calgary

Dennis Salahub
Professor, Department of Chemistry, University of Calgary

Barry C. Sanders
Professor, Department of Physics and Astronomy, University of Calgary

Yujun Shi
Associate Professor, Department of Chemistry, University of Calgary

Christoph Simon
Professor, Department of Physics and Astronomy, University of Calgary

Robert I. Thompson
Professor, Department of Physics and Astronomy, University of Calgary

Wolfgang Tittel
Professor, Department of Physics and Astronomy, University of Calgary

Simon Trudel
Associate Professor, Department of Chemistry, University of Calgary

Affiliate Members

Robin Cockett
Professor, Department of Computer Science, University of Calgary

David Hobill
Associate Professor, Department of Physics and Astronomy, University of Calgary

Sergei Noskov
Associate Professor, Department of Biological Sciences, University of Calgary

Reginald Paul
Professor, Department of Chemistry, University of Calgary

Rei Safavi-Naini
Professor, Department of Computer Science, University of Calgary

Renate Scheidler
Professor, Department of Mathematics and Statistics, University of Calgary

Peter Tieleman
Professor, Department of Biological Sciences, University of Calgary

Richard Zach
Professor, Department of Philosophy, University of Calgary
STUDENTS

GRADUATE STUDENTS (PhD PROGRAM)

Hessa Muneef Alotaibi (completed August 2015
Instructor → Public Authority for Applied Education
and Training, Kuwait)
Mohsen Falamarzi Askarani
Nathan Babcock (completed April 2015 → Postdoc,
Simon Fraser University)
Philip Chan
Ish Dhand (completed December 2015 → Postdoc,
University of Ulm)
Harro Dittmar (completed August 2015 → Research
Assistant, University of Calgary)
Catalin Dohotaru
Raphael Dong
Carlos Enriquez-Victorero
Andrew Evans
Akihiko Fujii
Mark Girard
Sumit Goswami
Kyle Hall
Chris Healey
Hamidreza Kaviani
Abdullah Khalid
Behzad Khanaliloo
Mohammad Khazali
Faezeh Kimiae Asadi
Sourabh Kumar
David Lake
Hon-Wai Lau
Pascal Lefebvre
Xingchen Liu
Thomas Lutz
Armando Marenco
Adam Mayer
Matthew Mitchell
James Moncreiff
Farokh Mivehvar (completed February 2016 →
Postdoc, University of Ulm)
Ali Mohandes (completed November 2015)
Varun Narasimhachar
Ebenezer Owusu-Ansah
Pantita Pal Pitta Pongarnpim
Marcel.li Grimau Puigibert
Nafiseh Sang-Nourpour
Issaka Seidu
Sahar Sheybani-Deloui
Neil Sinclair
Mandana Sobhazadeh (completed December
2015 → Senior Laboratory Instructor, Mount Royal
University)
Priyaa Varshinee Srinivasan
Arina Tashchilina
Venkata Ramana Raju Valivarthi
Shakib Vedaie
Dongsheng Wang (completed August 2015
→ Postdoc, University of British Columbia)
Marcelo Wu
Yadong Wu
Navid Yousefabadi (on leave from January 2016)
Ehsan Zahedinejad (completed January 2016
→ Postdoc, University of Calgary)
Parisa Zarkeshian
Rui Zhang
GRADUATE STUDENTS (MSc PROGRAM)

Paul Anderson
Aaron Barclay
Di Chang (completed December 2015)
Chetan Deshmukh
Alison Fulton
Jobin George
Abhirup Goswami (on leave from May 2015)
Masoud Habibi Davijani
Daniel Hogg (terminated April 2015)
Guosheng (Tom) Huo (on leave from September 2015)
Jonathan Johannes (completed January 2016 → Software Developer, AppColony)
Shreyas Janapurkar
Abdullah Khalid (transferred January 2016 → PhD, University of Calgary)

David Lake (transferred September 2015 → PhD, University of Calgary)
Tamiko Masuda
Eugene Moiseev
Alireza Poostindouz
Lohrasp Seify
Randy Squires (transferred September 2015 → part-time MSc, University of Calgary)
Stephen Wein
Venkata Ramana Raju Valivarthi
Weihuang Xu
Fan Yang
Mahdi Yousefi Koopae (completed April 2015)

UNDERGRADUATE STUDENTS

Paul Anderson (Research Assistant)
Branko Bajic (Research Assistant)
Logan Born (Research Assistant)
Bhupinderjit Chana (CHEM 402)
Xining Chen (NSERC USRA)
Logan Cooke (PHYS 598)
Davor Curic (PHYS 598)
Adam Fazekas (Research Assistant)
Alison Fulton (Research Assistant)
Modan Han (Research Assistant)
Nathan Harms (Research Assistant)
Punit Kumar Jha (MITACS Globalink)

Celeb John (NSERC USRA)
Jonathan Kung (CHEM 502)
Robert Mereau (Summer Student)
Kurtis Niedling (Research Assistant)
Casey Platnich (CHEM 502)
Delphine Prinet (Research Assistant)
Yeyu Tong (MITACS Globalink)
Nguyen Dang Tran (MITACS Globalink)
Wyatt Vine (CHEM 502)
Jingyi Yuan (CHEM 402)
Stephen Wein (NSERC USRA)
POSTDOCTORAL FELLOWS

Gabriel Aguilar
Mehdi Ahmadi
Morteza Amirani
Ronnie Banerjee
Hoan Bui Dang
Mercedes Gimeno Segovia (visiting postdoc from University of Bristol)
Joydip Ghosh (completed November 2015 → Postdoc, University of Wisconsin-Madison)
Sandeep Goyal
John Patrick Hadden
Christopher O’Brien (resigned November 2015 → Senior Scientist, Lynntech)
Daniel Oblak (completed April 2015 → Senior Research Coordinator, University of Calgary)
Young Choon Park
Erhan Saglamyurek (completed June 2015 → Postdoc, University of Alberta)
Florian Senn
Sriram Srinivasan (resigned November 2015)
Rim Toukabri
Lucile Veissier
Nathanael Wu (resigned July 2015)
Ehsan Zahedinejad
Qiang Zhou

RESEARCH ASSOCIATES

Stephanie Bovincini
Edelsys Codorniu-Hernandez (completed August 2015)
Harro Dittmar
Mykhaylo Krykunov (completed December 2015)
Tamiko Masuda (completed August 2015 → MSc, University of Calgary)
Daniel Oblak

ADMINISTRATION AND SUPPORT

Vladimir Kiselyov (Senior Electrical Engineer, part-time)
Nancy Jing Lu (IQST Administrator)
Trang Pham (part-time, resigned September 2015)
Priyaa Varshinee Srinivasan (Webmaster, part-time)
Lucia Wang (Administrative Assistant)

I. Badran and Y. J. Shi, “Structure changes in tungsten and tantalum wires in catalytic chemical vapor deposition using 1,3-disilacyclobutane”,

Institute for Quantum Science and Technology

A. de la Lande, N. Gillet, S. Chen and D. R. Salahub, “Progress and challenges in simulating and understanding electron transfer in proteins”, Archives of Biochemistry and Biophysics 582: 28-41, 15 September 2015 (Special issue on “Computer simulations of proteins, from structure to function”).

M. Girard and G. Gour, “Computable entanglement conversion witness that is better than the negativity”, New Journal of Physics 17(9): 093013 (25 pp.), 9 September 2015.

W. Li, S. G. Srinivasan, D. R. Salahub and T. Heine, “Ni on the CeO$_2$(110) and (100) surfaces: adsorption vs. substitution effects on the electronic and geometric structures and oxygen vacancies”, Physical Chemistry Chemical Physics 18: 11139-11149, 20 March 2016.

\textit{N-methyl-Acetamide (NMA) as a model for understanding of Li+ binding to amide plane}, Physical Chemistry Chemical Physics \textbf{18}: 4191-4200, 7 December 2015.

CONFERENCE PROCEEDINGS

BOOK CHAPTERS

D. Chang, “Experiments towards the realization of a nanofiber guided dipole trap” (MSc Thesis), 22 December 2015.

L. Seify, “Evaporative cooling in electromagnetic radio frequency traps” (MSc Thesis), 1 February 2016.

COLLABORATION

INTERNATIONAL INSTITUTIONS

Aarhus University, Denmark
California Institute of Technology, United States of America
Chinese Academy of Sciences (Institute of Geology and Geophysics & Guangzhou Institute of Energy Conversion), People’s Republic of China
CSIR National Laser Centre, South Africa
Durham University, United Kingdom
East China Normal University, People’s Republic of China
École Normale Supérieure and CNRS, France
École Polytechnique Fedérale de Lausanne, Switzerland
Federal University of Rio de Janeiro, Brazil
Institut d’Optique, France
Institute of Physics, Bhubaneswar, India
Instituto per le Applicazioni del Calcolo, Italy
Jacobs University, Germany
Karl-Franzens-Universität Graz, Austria
Karlsruhe Institute of Technology, Germany
Kyung Hee University, South Korea
Macquarie University, Australia
Massachusetts Institute of Technology, United States of America
Montana State University, United States of America
Moscow Institute of Physics and Technology, Russia
National Institute for Standards and Technology, United States of America
National Institute for Theoretical Physics, South Africa
Negev Nuclear Research Centre, Israel
Pohang University of Science and Technology, South Korea
Politecnico di Milano, Italy
Purdue University, United States of America
Singapore University of Technology and Design, Singapore

linkage
Southeast University, People’s Republic of China
Stellenbosch University, South Africa
Stockholm University, Sweden
Swansea University, United Kingdom
Technische Universität München, Germany
The Russian Academy of Science (P. N. Lebedev Physical Institute & G. A. Krestov Institute for Solution Chemistry), Russia
The Russian Quantum Center, Russia
Università della Calabria, Italy
Universität Heidelberg, Germany
Universität Jena, Germany
Universitat Jaume I, Spain
Universität Leipzig, Germany
Universität Münster, Germany
Universität Potsdam, Germany
Universität Wien, Austria
Université Paris-Sud, France
Universidade Estadual de Campinas, Brazil
Universidad de la República, Uruguay
University College Dublin, Ireland
University of California at Berkeley, United States of America
University of Chicago, United States of America
University of Electronic Science and Technology, People’s Republic of China
University of KwaZulu-Natal, South Africa
University of Liverpool, United Kingdom
University of Manchester, United Kingdom
University of New Mexico, United States of America
University of Oregon, United States of America
University of Queensland, Australia
University of Rochester, United States of America
University of Science and Technology of China, People’s Republic of China
University of Technology Sydney, Australia
University of Washington, United States of America
University of Wisconsin – Madison, United States of America
University of the Witwatersrand, South Africa
Weizmann Institute of Science, Israel
Wigner Research Center for Physics, Hungary

CANADIAN INSTITUTIONS
Canadian Institute for Advanced Research
Dalhousie University
Lakehead University
McMaster University
National Institute for Nanotechnology
National Research Council of Canada Ottawa
Perimeter Institute for Theoretical Physics
Simon Fraser University
St. Francis Xavier University
TRIUMF
University of Alberta
University of Waterloo
York University

UNIVERSITY OF CALGARY
Institute for Security, Privacy and Information Assurance
Centre for Molecular Simulation

INDUSTRY & GOVERNMENT
Battelle
BBN Raytheon Technologies
Canadian Microelectronics Corporation
HP Labs
Lumerical Solutions
Microsoft Research
NASA Jet Propulsion Laboratory
Norcada
<table>
<thead>
<tr>
<th>NAME</th>
<th>INSTITUTION NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexandre Blais</td>
<td>Université de Sherbrooke</td>
</tr>
<tr>
<td>Gavin Brennen</td>
<td>Macquarie University</td>
</tr>
<tr>
<td>Alex Brown</td>
<td>University of Alberta</td>
</tr>
<tr>
<td>Aharon Brodutch</td>
<td>University of Waterloo</td>
</tr>
<tr>
<td>Francesco Buscemi</td>
<td>Nagoya University</td>
</tr>
<tr>
<td>Louise Budzynski</td>
<td>École Normale Supérieure de Paris</td>
</tr>
<tr>
<td>Archismanita Dalal</td>
<td>Indian Institute of Technology, Kharagpur</td>
</tr>
<tr>
<td>Andrzej Dragan</td>
<td>University of Warsaw</td>
</tr>
<tr>
<td>Shane Eaton</td>
<td>Politecnico di Milano</td>
</tr>
<tr>
<td>Dirk Englund</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>Andrei Faraoon</td>
<td>California Institute of Technology</td>
</tr>
<tr>
<td>Kate Ferguson</td>
<td>Australian National University</td>
</tr>
<tr>
<td>Kai-Mei Fu</td>
<td>University of Washington</td>
</tr>
<tr>
<td>Raul Garcia-Patron</td>
<td>Université libre de Bruxelles</td>
</tr>
<tr>
<td>Mercedes Gimeno-Segovia</td>
<td>University of Bristol</td>
</tr>
<tr>
<td>Hubert de Guise</td>
<td>Lakehead University</td>
</tr>
<tr>
<td>Matin Hallaji</td>
<td>University of Toronto</td>
</tr>
<tr>
<td>Gaston Hornecker</td>
<td>Institut Néel (CNRS) France</td>
</tr>
<tr>
<td>Punit Kumar Jha</td>
<td>Homi Bhabha National Institute, India</td>
</tr>
<tr>
<td>Mária Kieferová</td>
<td>University of Waterloo</td>
</tr>
<tr>
<td>Jungsang Kim</td>
<td>Duke University</td>
</tr>
<tr>
<td>Lindsay LeBlanc</td>
<td>University of Alberta</td>
</tr>
<tr>
<td>Wenqing Li</td>
<td>Jacobs University</td>
</tr>
<tr>
<td>Xiaohong Li</td>
<td>Henan University of Science and Technology</td>
</tr>
<tr>
<td>Seth Lloyd</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>Guilhem Madiot</td>
<td>Université Paris-Sud</td>
</tr>
<tr>
<td>Duncan O’Dell</td>
<td>McMaster University</td>
</tr>
<tr>
<td>Liang Qiu</td>
<td>China University of Mining and Technology</td>
</tr>
<tr>
<td>Dongxiao Quan</td>
<td>Xidian University</td>
</tr>
<tr>
<td>Jibran Rashid</td>
<td>Habib University</td>
</tr>
<tr>
<td>Michael Revzen</td>
<td>Technion – Israel Institute of Technology</td>
</tr>
<tr>
<td>Grant Salton</td>
<td>Stanford University</td>
</tr>
<tr>
<td>Mohammad Shahid Shaikh</td>
<td>Habib University</td>
</tr>
<tr>
<td>Alexander Smith</td>
<td>University of Waterloo</td>
</tr>
<tr>
<td>Dean Southwood</td>
<td>Macquarie University</td>
</tr>
<tr>
<td>Joseph Thywissen</td>
<td>University of Toronto</td>
</tr>
<tr>
<td>NAME</td>
<td>INSTITUTION NAME</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Yeyu Tong</td>
<td>University of Electronic Science and Technology of China</td>
</tr>
<tr>
<td>Nguyen Dang Tran</td>
<td>Ho Chi Minh City University of Science</td>
</tr>
<tr>
<td>Peter Wittek</td>
<td>ICFO – The Institute of Photonic Sciences</td>
</tr>
<tr>
<td>Wei-Wei Zhang</td>
<td>Beijing University of Posts and Telecommunications</td>
</tr>
<tr>
<td>Huangjun Zhu</td>
<td>University of Cologne</td>
</tr>
</tbody>
</table>

AFFILIATION

<table>
<thead>
<tr>
<th>NAME</th>
<th>TITLE</th>
<th>AFFILIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. I. Lvovsky</td>
<td>Quantum Optics Group Leader</td>
<td>The Russian Quantum Center</td>
</tr>
<tr>
<td>D. R. Salahub</td>
<td>Honorary Professor</td>
<td>Henan University of Technology</td>
</tr>
<tr>
<td>B. C. Sanders</td>
<td>“Qianren” Professor</td>
<td>University of Science and Technology of China</td>
</tr>
<tr>
<td>W. Tittel</td>
<td>Associated Professor</td>
<td>Montana State University</td>
</tr>
</tbody>
</table>
teaching, training and education

GRADUATE COURSES

<table>
<thead>
<tr>
<th>COURSE NAME</th>
<th>INSTRUCTOR</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 673</td>
<td>P. E. Barclay</td>
<td>Fundamentals of quantum and nonlinear optics including atom-photon interactions, coherence, electromagnetically induced transparency, open systems and decoherence, and applications to quantum information technology.</td>
</tr>
<tr>
<td>MATH667</td>
<td>G. Gour</td>
<td>Focus on the mathematical treatment of a broad range of topics in quantum Shannon theory. Topics include quantum states, quantum channels, quantum measurements, completely positive maps, Neumark's theorem, Stinespring dilation theorem, Choi-Jamiolkowski isomorphism, the theory of majorization and entanglement, the Peres-Horodecki criterion for separability, Shannon's noiseless and noisy channel coding theorems, Lieb's theorem and the strong subadditivity of the von Neumann entropy, Schumacher's quantum noiseless channel coding theorem, and the Holevo-Schumacher-Westmoreland theorem.</td>
</tr>
<tr>
<td>CPSC 601.92</td>
<td>P. Høyer</td>
<td>Quantum algorithmics, algorithmics, random walks, quantum random walk, analysis, lower bounds, spectral analysis, duality, boolean functions, quantum information theory, graph theory, learning graphs, electrical networks, algorithmic problems such as triangle finding, mathematical software packages, eigenvectors and complex vector spaces, probabilistic arguments, asymptotic analysis.</td>
</tr>
<tr>
<td>CHEM 619.09</td>
<td>Y. J. Shi</td>
<td>Theoretical and practical aspects of mass spectrometric techniques, instrumentation design, method development and trouble-shooting aspects along with instrument maintenance, hands-on experience with the operation of different types of instruments in acquisition, processing and interpretation of experimental data, recent developments in mass spectrometry instrumentation including hyphenated techniques and their applications in multi-disciplinary fields.</td>
</tr>
</tbody>
</table>
services and outreach

CONFERENCES

<table>
<thead>
<tr>
<th>MEMBER(S)</th>
<th>COMMITTEE</th>
<th>CONFERENCE/WORKSHOP</th>
<th>LOCATION</th>
<th>DATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. Gour</td>
<td>Co-Chair</td>
<td>Theory Canada 10</td>
<td>Calgary, Canada</td>
<td>11–13 Jun 2015</td>
</tr>
<tr>
<td>B. C. Sanders</td>
<td>Chair, Organizing Committee</td>
<td>Workshop on Multi-Photon Interferometry (MPI 2015)</td>
<td>Shanghai, P. R. China</td>
<td>7–10 May 2015</td>
</tr>
<tr>
<td>B. C. Sanders</td>
<td>Chair, Organizing Committee</td>
<td>The 19th Conference on Quantum Information Processing (QIP2016)</td>
<td>Banff, Canada</td>
<td>10–16 Jan 2016</td>
</tr>
<tr>
<td>W. Tittel</td>
<td>Co-Chair</td>
<td>Workshop for Quantum Repeaters and Networks</td>
<td>Pacific Cove, United States of America</td>
<td>15–17 May 2015</td>
</tr>
<tr>
<td>W. Tittel</td>
<td>Co-Chair</td>
<td>QCrypt 2015</td>
<td>Tokyo, Japan</td>
<td>28 Sept–2 Oct 2015</td>
</tr>
</tbody>
</table>

PROFESSIONAL SERVICES

<table>
<thead>
<tr>
<th>NAME</th>
<th>ROLE</th>
<th>JOURNAL/SOCIETY/INSTITUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. E. Barclay</td>
<td>Vice-Chair, Division of Atomic, Molecular and Optical Physics</td>
<td>Canadian Association of Physicists</td>
</tr>
<tr>
<td>P. E. Barclay</td>
<td>Special Issue Editor</td>
<td>Journal of the Optical Society of America B</td>
</tr>
<tr>
<td>P. G. Kusalik</td>
<td>Chair, Chemistry/Biochemistry Resource Allocation Committee</td>
<td>Compute Canada</td>
</tr>
<tr>
<td>A. I. Lvovsky</td>
<td>Member, International Advisory Board</td>
<td>Journal of Physics B</td>
</tr>
<tr>
<td>A. I. Lvovsky</td>
<td>Deputy Editor</td>
<td>Optics Express</td>
</tr>
<tr>
<td>A. I. Lvovsky</td>
<td>Member, Scientific Committee</td>
<td>The Russian Quantum Center</td>
</tr>
<tr>
<td>D. R. Salahub</td>
<td>Member, Editorial Board</td>
<td>Advances in Physical Chemistry</td>
</tr>
<tr>
<td>D. R. Salahub</td>
<td>Member, Editorial Board</td>
<td>Advances in Quantum Chemistry</td>
</tr>
<tr>
<td>D. R. Salahub</td>
<td>Vice Chairman, Editorial Board</td>
<td>Interdisciplinary Science: Computational Life Sciences</td>
</tr>
<tr>
<td>D. R. Salahub</td>
<td>Member, Editorial Board</td>
<td>Journal of Computational Chemistry</td>
</tr>
<tr>
<td>D. R. Salahub</td>
<td>Member, Editorial Board</td>
<td>PLOS-One</td>
</tr>
<tr>
<td>B. C. Sanders</td>
<td>Member, Beijing Research Site Committee</td>
<td>Global Research Initiative in Unconventional Hydrocarbon Resources: Beijing Site</td>
</tr>
<tr>
<td>B. C. Sanders</td>
<td>Member, Editorial Board</td>
<td>IOP ebooks™</td>
</tr>
<tr>
<td>NAME</td>
<td>ROLE</td>
<td>JOURNAL/SOCIETY/INSTITUTION</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>B. C. Sanders</td>
<td>Associate Editor</td>
<td>Physical Review A</td>
</tr>
<tr>
<td>B. C. Sanders</td>
<td>Chair, Steering Committee</td>
<td>QIP Conference Series</td>
</tr>
<tr>
<td>B. C. Sanders</td>
<td>Chair</td>
<td>Quantum Africa Conference Series</td>
</tr>
<tr>
<td>B. C. Sanders</td>
<td>Editor-in-Chief</td>
<td>New Journal of Physics</td>
</tr>
<tr>
<td>Y. J. Shi</td>
<td>Associate Editor</td>
<td>Canadian Journal of Chemistry</td>
</tr>
<tr>
<td>R. I. Thompson</td>
<td>Director, Student Affairs</td>
<td>Canadian Association of Physicists</td>
</tr>
<tr>
<td>R. I. Thompson</td>
<td>Member, Editorial Board</td>
<td>Physics in Canada</td>
</tr>
<tr>
<td>R. I. Thompson</td>
<td>University of Calgary Representative</td>
<td>TRIUMF National Laboratory</td>
</tr>
<tr>
<td>R. I. Thompson</td>
<td>Vice-Chair, Environment, Health, Safety,</td>
<td>University of Calgary</td>
</tr>
<tr>
<td></td>
<td>and Sustainability Committee, Board of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Governors</td>
<td></td>
</tr>
<tr>
<td>R. I. Thompson</td>
<td>Chair, Graduate College Steering Committee</td>
<td>University of Calgary</td>
</tr>
<tr>
<td>R. I. Thompson</td>
<td>Academic Co-Chair, Academic Program and</td>
<td>University of Calgary</td>
</tr>
<tr>
<td></td>
<td>Planning Committee</td>
<td></td>
</tr>
<tr>
<td>W. Tittel</td>
<td>Member, Editorial Board</td>
<td>Quantum Science and Technology</td>
</tr>
<tr>
<td>S. Trudel</td>
<td>Secretary, Materials Division</td>
<td>Canadian Society for Chemistry</td>
</tr>
</tbody>
</table>

QUANTUM PUBLIC LECTURE

The Quantum Public Lectures serve to convey leading breakthroughs in quantum science and technology to the general public. The public appetite is indeed high for learning the latest advances in the quantum world. One of the Institute’s Public Lectures was held in conjunction with the national conference Theory Canada 10: former University of Calgary postdoc Shohini Ghosh, who is now a Faculty Member of Wilfred Laurier University and a TED Fellow, gave a public lecture on “Seeing the Invisible: Journey into the Quantum World” on 11 June 2015 to an audience of 120.

Seth Lloyd from the Massachusetts Institute of Technology delivered a public lecture titled “Teleportation, Time Travel and Escape from Black Holes” to 320 persons on 18 November 2015, and this event was supported by the Faculty of Science Alumni Relations team as a joint outreach effort. In addition to this public lecture, a pan-Alberta public lecture, organized by the nascent Quantum Alberta initiative, was hosted at the University of Alberta and broadcast by interactive video to the Universities of Calgary and Lethbridge. Twenty persons in Calgary attended this Public Lecture by Nobel Laureate William Phillips. This Public Lecture is Quantum Alberta's first foray into province-wide outreach.

OUTREACH LECTURES

12 Jun 2015, R. I. Thompson, “Understanding antimatter: The global connection”, Electrodynamics, Quantum Field Theory to Nobel Prize in Physics: Scientific Contributions of Professor Abdus Salam, University of Calgary, Canada, 12 Jun 2015.

21 Jan 2016, B. C. Sanders, “Symmetries: Salam’s universe to quantum information technologies (Public Lecture)”, The Lahore University of Management Sciences, Lahore, Pakistan.

MEDIA COVERAGE

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>TITLE OF ARTICLE</th>
<th>LOCATION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>UToday</td>
<td>Scientists push innovation frontier as part of $333-million investment: Robert I. Thompson</td>
<td>online</td>
<td>29 May 2015</td>
</tr>
<tr>
<td>UToday</td>
<td>Symposium celebrates Nobel Prize-winning physicist Abdus Salam: Barry C. Sanders</td>
<td>online</td>
<td>12 Jun 2015</td>
</tr>
<tr>
<td>UToday</td>
<td>University awarded $14.5 million in NSERC support: Christoph Simon</td>
<td>online</td>
<td>23 Jun 2015</td>
</tr>
<tr>
<td>Popular Science</td>
<td>The race to prove: Christoph Simon</td>
<td>online</td>
<td>29 Aug 2015</td>
</tr>
<tr>
<td>LaserFocusWorld.com</td>
<td>Russian physicists restore the entanglement of “untangled” quantum light: Alex I. Lvovsky</td>
<td>online</td>
<td>12 Oct 2015</td>
</tr>
<tr>
<td>Deepstuff.org</td>
<td>Physicists have learned how to restore the entanglement of “untangled” quantum light: Alex I. Lvovsky</td>
<td>online</td>
<td>13 Oct 2015</td>
</tr>
<tr>
<td>Offweek.com</td>
<td>Russian physicists restore the entanglement of “untangled” quantum light: Alex I. Lvovsky</td>
<td>online</td>
<td>13 Oct 2015</td>
</tr>
<tr>
<td>Physorg.com</td>
<td>Physicists have learned how to restore the entanglement of “untangled” quantum light: Alex I. Lvovsky</td>
<td>online</td>
<td>13 Oct 2015</td>
</tr>
<tr>
<td>PhotonicsOnline.com</td>
<td>Physicists have learned how to restore the entanglement of “untangled” quantum light: Alex I. Lvovsky</td>
<td>online</td>
<td>13 Oct 2015</td>
</tr>
<tr>
<td>Universities Canada</td>
<td>Christoph Simon and his quantum network research highlighted in Universities Canada Chair Elizabeth Cannon’s inaugural speech: Christoph Simon</td>
<td>online</td>
<td>28 Oct 2015</td>
</tr>
<tr>
<td>Newstalk770</td>
<td>Teleportation, time travel and escape from Black Holes: Seth Lloyd</td>
<td>18 Nov 2015</td>
<td></td>
</tr>
<tr>
<td>UToday</td>
<td>Teleportation, time travel and escape from Black Holes: Seth Lloyd</td>
<td>online</td>
<td>27 Nov 2015</td>
</tr>
<tr>
<td>IOPPublishing.org</td>
<td>New Editor-in-Chief for New Journal of Physics announced as Barry Sanders: Barry C. Sanders</td>
<td>online</td>
<td>9 Dec 2015</td>
</tr>
<tr>
<td>Toudiao.com</td>
<td>Pan team: Barry C. Sanders</td>
<td>online</td>
<td>8 Jan 2016</td>
</tr>
<tr>
<td>Globe and Mail</td>
<td>Antimatter experiment probes for cracks in nature’s mirror: R. I. Thompson</td>
<td>online</td>
<td>20 Jan 2016</td>
</tr>
<tr>
<td>Physicsworld.com</td>
<td>What it’s like collaborating with physicists in China: Barry C. Sanders</td>
<td>online</td>
<td>2 Feb 2016</td>
</tr>
<tr>
<td>Physicsworld.com</td>
<td>Shor’s algorithm is implemented using five trapped ions: Barry C. Sanders</td>
<td>online</td>
<td>4 Mar 2016</td>
</tr>
</tbody>
</table>
finances

RESEARCH GRANTS (UNAUDITED)

Total revenue: $4,572K

OPERATING ACCOUNT (UNAUDITED)

Total expenditures: $73K
PAUL BARCLAY

- Demonstrate optomechanically induced transparency in a diamond device.
- Demonstration of optomechanical control of diamond spins.
- Evaluation of the possibility of observing room temperature quantum effects in diamond optomechanical devices.
- Demonstration of doubly resonant photon down-conversion from 780 nm band to the 1550 nm band using a microcavity.
- Implant and characterize spectral properties of SiV defects in diamond chips.
- Begin development of “next generation” optomechanical torque magnetometers based on silicon photonics technology.
- Publish proposal for detecting optical angular momentum states of light using optomechanical devices.

DAVID FEDER

- Explore the possibility of performing measurement-based quantum computation on entangled resources in the form of symmetry-protected states.
- Study the properties of ultracold atomic gases in optical lattices and high-finesse optical cavities especially the emergence of spin-liquid and symmetry-protected phases driven by infinite cavity-mediated interactions and the potential realization extended Hubbard dynamics in one dimension.
- Completing work begun on continuous-time quantum walks in topologically ordered condensed matter systems.
GILAD GOUR
- Determine necessary and sufficient conditions for converting one state to another under symmetric operations.
- Derive necessary and sufficient conditions for converting an incoherent athermal state to an athermal state with coherence in the energy basis.
- Find an explicit example for non-additivity of the Holevo capacity of a quantum channel.
- Generalize the uncertainty principle from a lone system to a system entangled with quantum memory with applications to quantum cryptography.

ALEX LVOVSKY
- Employ a quantum-inspired technique to demonstrate resolution of an optical microscope beyond the Rayleigh limit.
- Use quantum conditional measurements to increase the size of a superposition of optical coherent states.
- Measure the optical mode of a spontaneously emitted photon.

NASSER MOAZZEN-AHMADI
- Record and analyse laboratory infrared spectra of hydrocarbons relevant to the methane cycle in the atmospheres of Titan and the Giant Planets.
- Construct highly-accurate potential energy surfaces for characterization of intermolecular forces.
- Measure low frequency intramolecular vibrational fundamentals of molecular clusters via combination bands.
- Provide high resolution spectroscopic data to test the onset of superfluidity in CH$_3$COOH-(He)$_4$ as the smallest superfluid cluster.
- Record and analyse laboratory spectra of H$_2^-$ and He-hydrocarbons for elucidation of collisional processes between molecular hydrogen and rare gas with hydrocarbon trace species for planetary applications.
- Perform structural determination of complexes formed from carbon monoxide and carbon dioxide.

PETER KUSALIK
- Determine the stability and reactivity of hemi-bonded complexes of OH radical and Cl$^-$ and Br$^-$ anions.
- Develop and test an effective interaction potential for OH radical in water that faithfully reproduces the key structural features observed in ab initio simulations.
- Explore the behaviour of OH radical in heterogeneous environments such as the surfaces of water and ice.
- Utilize advanced visualization techniques to explore various complex data sets arising from simulation trajectories, featuring atomic coordinates, electronics structure, and/or local parameters (e.g. particle mobility, energy, local structure).
- Determine the key features of the nucleation process of a clathrate hydrate crystal from a mixed CH$_4$ and H$_2$S system of varying compositions.
- Test the reliability of empirical potential models against accurately determination of the potentials of mean force for the interaction of carboxylate ligands with Zn$^{2+}$ cations.

PETER HØYER
- Develop algorithms for generalized quantum walks systems.
- Determine necessary and sufficient conditions for speed up of generalized quantum walks.

DENNIS SALAHUB
- Advance multi-scale modelling methodologies and their implementation in efficient computer codes, with an immediate focus on code for graphics processing units and implementation of the GGA+U methodology for strongly correlated systems.
- Develop multiscale modelling of nanocatalysis for oil sands upgrading by extending our work on molybdenum carbide to include mixed-valence ceria-metal catalysts to split water, using the produced hydrogen for hydrocracking over molybdenum carbide.
- Perform multiscale QM/MM studies of the mechanism of action of important enzymes; complete work on artificial carbonic anhydrases for possible use in converting carbon dioxide to formic acid and initiate studies of the heme peroxidases in order to verify, or falsify, the presence of electron density circuits.

BARRY SANDERS
- Develop a wavelet-based quantum algorithm for quantum computer simulation of a multi-scale renormalizable quantum field theory.
- Devise a feasible continuous-variable quantum optical realization of relativistic spacetime replication of quantum information.
- Construct quantum-control procedures for realizing a broad set of three-qubit gates for three-transmon systems in superconducting circuitry.
- Determine how to postselect a controlled-controlled-not gate with a ten-photon entangled state.
- Create a formal connection between reinforcement learning and a large class of quantum control and adaptive quantum metrology problems.

YUJUN SHI
- Investigate chemical vapor deposition chemistry of silicon nitride using aminosilanes as novel precursors.
- Use resonance-enhanced multiphoton ionization techniques to characterize small silicon carbon clusters.
- Explore the pulsed-laser dewetting method for the formation of core-shell bimetallic nanoparticles.
- Advance the development of a theoretical model in characterizing the temperature profile in the process of pulsed laser dewetting.

CHRISTOPH SIMON
- Derive conditions to create entanglement of many large atomic ensembles.
- Propose techniques to create cat states via quantum walks and Rydberg-state interactions in cold atoms.
- Determine how to implement non-destructive photon detection with single rare-earth ions and with rare-earth ion ensembles.
- Study the potential realization of room-temperature quantum repeaters based on nitrogen-vacancy centres in diamond.
- Explore the possibility of light conduction in axons.
- Propose the creation of chimera states in Bose-Einstein condensates.

ROBERT THOMPSON
- Observe optical transition in trapped atomic antihydrogen.
- Use geochemical techniques to determine double-β half-life for 96Zr.
- Finalize design of ALPHA-g apparatus.

WOLFGANG TITTEL
- Develop and demonstrate key components for quantum repeater-based quantum key distribution especially quantum memory for light, measurement-device-independent quantum key distribution, and quantum teleportation.
- Explore how to map quantum information between superconducting qubits and telecommunication-wavelength photons.

SIMON TRUDEL
- Design experiments and specialized cells to pursue the characterization of amorphous metal-oxide catalysts in in-situ synchrotron x-ray absorption experiments.
- Characterize semiconducting amorphous metal oxide for integration in photovoltaic devices.
- Pursue the development of nanoscale magnetic nanoparticles for magnetic resonance imaging applications.
appendices
APPENDIX 1: CHARTER OF THE INSTITUTE FOR QUANTUM SCIENCE AND TECHNOLOGY

Name and Affiliation

1. The name of the organization shall be the Institute for Quantum Science and Technology (hereinafter referred to as “Institute”). The Institute formally reports to the Faculty of Science and is governed by the Faculty of Science Research Institutes Policy (hereinafter referred to as “Policy”).

Reporting Structure

2. The Institute reports to the Dean, Faculty of Science (s. 4.7).

Approval and Review Bodies

3. The body responsible for approving, reviewing, and renewing the Institute under the Policy (s. 5.1) is the Faculty of Science Executive Committee.

Term of the Institute

4. Under the Policy Institutes are normally established for a five (5) year term (s. 4.3). The current term of the Institute ends 31 December 2018. The Institute is eligible for renewal upon favourable review (s. 4.4).

Goals

5. In keeping with the Policy (s. 4.1) the goals of the Institute shall be:
 a) to conduct leading research in key theoretical and experimental topics of quantum science and technology;
 b) to provide excellent education and training in quantum science and technology and cognate areas;
 c) to foster linkage between the Institute and other quantum science and technology institutes and with industrial partners.

Schedule of Review

6. The review process is specified in the Faculty of Science Research Institutes Procedures (hereinafter referred to as: “Procedures”). Reviews will occur as specified in the Procedures (s. 2.6). The Procedures call for notice of review to be given no later than 9 months before the end of term of the Institute, with a decision no later than 3 months before the end of the term.

The Institute shall submit an annual report (July 15) on its activities to the Dean of the Faculty of Science.
Institute Board of Directors

7. a) The governing body of the Institute shall be referred to as the “Board of Directors” (hereinafter “Board”).

b) Membership of the Board shall comprise:
 i. The Dean of Science (or designate) will Chair the Board and appoint a Vice Chair from among other board members;
 ii. At least 4 “members at large,” drawn from or nominated by
 • companies whose primary operations are synergistic with quantum information science
 • agencies that provide funding for quantum information science research in Alberta; and
 • leading members of the quantum information science academic community.
 At least one (1) “member at large” shall be appointed from each of these three categories.

c) The Dean of Science shall appoint “members at large”. Terms of appointment, commencing on April 1, shall normally be for three years. This length of appointment may be varied to ensure an appropriate staggering of terms. Members of the Board shall be eligible for re-appointment for consecutive terms of office.

d) The Board shall be responsible for the overall success and governance of the Institute. More particularly, its responsibilities include:
 i. approving and/or amending this Charter under the provisions of clause 10 below
 ii. ensuring that relevant University policies are respected (see section 9 below)
 iii. appointing a Director for the Institute
 iv. approving the Institute’s budget and strategic plans
 v. determining membership categories and requirements for the Institute
 vi. determining the procedures and requirements of general meetings of institute members (with at least one such meeting required annually)
 vii. helping to create opportunities for the Institute
 viii. facilitating the periodic reviews and external assessments of the Institute, as required by the Policy and Procedures of the Faculty of Science.

e) The Board shall appoint a Secretary of the Board for a three-year term. The Board can revoke such appointment at any time. The Secretary is not a Board Member and is not eligible to vote.

f) The Board shall meet not less than once in each calendar year, prior to the annual general meeting of Institute members. Special Meetings of the Board shall be convened by the Chair of the Board or upon the written request of at least two (2) members of the Board addressed to the Chair.
 i. At least thirty days notice of any meeting shall be given in writing to each member of the Board. Such notice shall specify the time, place and agenda of the meeting.
 ii. At any meeting of the Board 50 percent of members, present physically or via teleconference, shall constitute a quorum.

g) The cost for Board members of attending Board meetings (annual and special) will be incurred by the Institute.

Director

8. a) The Director reports to the Board and to the University through the Dean of the Faculty of Science (who, directly or through a designate, chairs the Board).
b) The Director exercises a general superintendence over the operational affairs of the Institute in accordance with the goals of the Institute, and within Board-approved budgets and strategic plans.

c) The duties of the Director shall include, but not be limited to, the following:
 i. preparing an annual budget and strategic plan for consideration and approval by the Board;
 ii. preparing periodic financial updates for consideration by the Board;
 iii. ensuring that all Institute policies and procedures adopted by the Board are made widely known among Institute members and stakeholders, including the broader University of Calgary community;
 iv. preparing an annual report on the Institute's affairs, which shall include reporting on measures of success;
 v. making any additional submissions or reports, as appropriate or requested, to the Board or the University of Calgary on any matter affecting the Institute;
 vi. facilitating the periodic reviews and external assessments of the Institute required by the Policy and Procedures of the Faculty of Science.

Policies and Procedures
9. The Institute will operate in accordance with all applicable University of Calgary policies and procedures.

Amendments
10. Amendments to this Charter shall require approval by the Dean and two-thirds of the Board. The Dean will refer proposed amendments to the Faculty of Science Executive Committee.
APPENDIX 2: IQST USE OF SPACE

OFFICES

<table>
<thead>
<tr>
<th>ROOM NUMBER</th>
<th>SIZE (SQUARE METER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI 555</td>
<td>16</td>
</tr>
<tr>
<td>BI 556</td>
<td>17</td>
</tr>
<tr>
<td>BI 557</td>
<td>17</td>
</tr>
<tr>
<td>BI 558</td>
<td>17</td>
</tr>
<tr>
<td>ICT 625A</td>
<td>13</td>
</tr>
<tr>
<td>ICT 627</td>
<td>13</td>
</tr>
<tr>
<td>ICT 653</td>
<td>13</td>
</tr>
<tr>
<td>MS 374</td>
<td>13</td>
</tr>
<tr>
<td>MS 376</td>
<td>12</td>
</tr>
<tr>
<td>MS 436</td>
<td>13</td>
</tr>
<tr>
<td>SA 111</td>
<td>71</td>
</tr>
<tr>
<td>SB 117</td>
<td>45</td>
</tr>
<tr>
<td>SB 135</td>
<td>12</td>
</tr>
<tr>
<td>SB 301</td>
<td>12</td>
</tr>
<tr>
<td>SB 303</td>
<td>24</td>
</tr>
<tr>
<td>SB 306</td>
<td>54</td>
</tr>
<tr>
<td>SB 307</td>
<td>12</td>
</tr>
<tr>
<td>SB 312</td>
<td>56</td>
</tr>
<tr>
<td>SB 313</td>
<td>12</td>
</tr>
<tr>
<td>SB 314</td>
<td>34</td>
</tr>
<tr>
<td>SB 315</td>
<td>16</td>
</tr>
<tr>
<td>SB 316</td>
<td>32</td>
</tr>
<tr>
<td>SB 317</td>
<td>9</td>
</tr>
<tr>
<td>SB 318</td>
<td>53</td>
</tr>
<tr>
<td>SB 319</td>
<td>19</td>
</tr>
<tr>
<td>SB 323</td>
<td>12</td>
</tr>
<tr>
<td>SB 417</td>
<td>12</td>
</tr>
<tr>
<td>SB 427</td>
<td>25</td>
</tr>
<tr>
<td>SB 429A</td>
<td>12</td>
</tr>
<tr>
<td>SB 431</td>
<td>12</td>
</tr>
<tr>
<td>SB 508 (partial)</td>
<td>55</td>
</tr>
<tr>
<td>SB 512 (partial)</td>
<td>64</td>
</tr>
<tr>
<td>SB 525</td>
<td>16</td>
</tr>
<tr>
<td>SB 531</td>
<td>12</td>
</tr>
<tr>
<td>SB 535</td>
<td>12</td>
</tr>
<tr>
<td>SB 536 (partial)</td>
<td>33</td>
</tr>
<tr>
<td>SB 537</td>
<td>12</td>
</tr>
<tr>
<td>SB 605 (partial)</td>
<td>66</td>
</tr>
</tbody>
</table>

LABS

<table>
<thead>
<tr>
<th>ROOM NUMBER</th>
<th>SIZE (SQUARE METER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES 04</td>
<td>248</td>
</tr>
<tr>
<td>SA 113</td>
<td>95</td>
</tr>
<tr>
<td>SB 03A</td>
<td>39</td>
</tr>
<tr>
<td>SB 08 & 09</td>
<td>61</td>
</tr>
<tr>
<td>SB 126</td>
<td>61</td>
</tr>
<tr>
<td>SB 304</td>
<td>83</td>
</tr>
<tr>
<td>SB 416</td>
<td>62</td>
</tr>
<tr>
<td>SB 418</td>
<td>47</td>
</tr>
<tr>
<td>SB 432</td>
<td>21</td>
</tr>
</tbody>
</table>
IQST adds value to the University of Calgary in the following ways:

- Enables a multidisciplinary research through financial and logistical support
- Builds a quantum science and technology community through visitor, seminar, and colloquium programs
- Assists new faculty members to becoming productive researchers rapidly
- Publishes reports and web pages that showcase the Institute as a leader in quantum information science
- Supports recruitment of outstanding faculty, researchers, and graduate students
- Sponsors and supports leading conferences held in Calgary/Banff
- Partners with other quantum institutes
- Enhances the University’s reputation by delivering outstanding research results
- Benefits the wider community by contributing new knowledge in a strategic area