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8 1. Introduction 

From the time of Young’s classical experiment, interference has been regarded 
as a conclusive demonstration of the wave-like nature of light. However, under 
appropriate conditions, light also behaves as indivisible particles known as 
photons. The particle-like behavior of light is particularly noticeable at low 
light levels, when photo detectors register distinct events corresponding to the 
annihilation of individual photons. At the single-photon level, quantum effects 
cannot be ignored. 

1 . 1 .  QUANTUM EFFECTS 

What are quantum effects? The answer lies in an understanding of complemen- 
tarity. Under appropriate conditions, light can be treated as a wave, subject to the 
behavior dictated by Maxwell’s equations; in other situations, light seems to be 
composed of localized particles. As delocalization is necessary for interference 
to occur, these two views of light are incompatible. Nevertheless, the two views 
do apply to light from the same source, and this contention is supported by 
experimental evidence. This dichotomy is the essence of the quantum nature 
of light: not that light is a particle or a wave, but rather that light exhibits the 
characteristics of both a particle and a wave, leading to Dirac’s famous statement 
that “. . . each photon interferes only with itself. Interference between different 
photons never occurs” (Dirac [ 19581). 

1.2. COMPLEMENTARITY 

The paradox presented by something that is both corpuscular and undular is 
avoided by the existence of a complementarity principle in measurements. This 
principle of complementarity limits the possibility of performing a measurement 
which simultaneously demonstrates both undular and corpuscular behavior. We 
can, of course, use the same source of light first to observe particles and then 
to observe waves, and vice versa, but we cannot take the same “piece of light” 
and check one feature without altering, or demolishing, the other. 
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A way to resolve this paradox has been interference experiments at low light 
levels, using beams of light with low photon numbers. These experiments can 
be categorized according to the light source used, the manipulation of the beams 
and the detection technique. By permuting the various possibilities, experiments 
can be performed to explore a range of quantum phenomena. 

1 .3 .  SECOND-ORDER COHERENCE 

The optical field can be characterized completely by the expectation values of 
various powers and products of the field variables, beginning with the second- 
order coherence (Wolf [1955]). 

Second-order coherence corresponds to measurements of complex amplitudes 
for the field at two space-time points using interferometers, such as the 
Michelson and Mach-Zehnder interferometers, which produce interference 
fringes by mixing two fields with differing phases. The usual way to do this is 
by varying the optical path difference, but an alternative method is by operating 
on the geometric phase (Berry [1984, 19871). 

We first review experiments of this type which explore the quantum nature 
of light, ranging from early experiments involving low-intensity sources and 
fields from independent sources at low intensity levels, to measurements 
using nonclassical light sources, including single-photon states and photon-pair 
sources. The wave-like behavior of light is made clear by accumulating enough 
single-photon events; the corpuscular aspect is revealed by determining the path 
of the photon. For the photon to produce interference fringes, it must interfere 
with itself, a condition which requires the photon to traverse both paths; yet 
a direct measurement of the photon in either path should, by the principle of 
complementarity, reveal that the photon has localized itself to one path or the 
other. “Which path” (welcher Weg) measurements verify that the photon is indeed 
localized to one path or the other when an inspection is carried out, despite the 
fact that the photon can interfere with itself in the absence of an inspection. 

I .4. NONCLASSICAL STATES OF LIGHT 

A precise distinction between semiclassical and nonclassical states of light can 
be made by expanding the quantum field state in the Glauber coherent-state basis 
(Glauber [ I  963a,bJ). If the corresponding c-number quasiprobability distribution, 
the Glauber-Sudarshan P-representation (Glauber [ 1963a,b], Sudarshan [ 1963]), 
satisfies the requirements of a probability distribution, namely that it is 
nonnegative and normalized to unity, then the state is referred to as a 
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classical state of light. A purely quantum state produces a Glauber-Sudarshan 
P-representation which does not satisfy the criteria for a probability distribution. 

1.5. FOURTH-ORDER COHERENCE 

Measurements of second-order coherence cannot unambiguously distinguish a 
classical state of light from a quantum state. However, fourth-order coherence 
measurements, which correspond to intensity correlation measurements, permit 
quantum states of light to be distinguished from classical states. In the simplest 
conceptual form of these experiments, a single photon is directed at a beam 
splitter. A measurement at the two output ports of the beam splitter should, under 
ideal circumstances, detect the photon in either output port, whereas a classical 
field would be split between the two. The fourth-order coherence function is 
sensitive to the fact that the photon cannot be split into two regions of space, 
and there exists a range of values for fourth-order coherence measurements 
which are attainable for quantum states of light, but not for classical states of 
light. Besides providing unambiguous evidence for the existence of nonclassical 
light, fourth-order coherence experiments often present phenomena which appear 
counterintuitive. 

I .6. ENTANGLED STATES 

Correlated photon pairs produced by parametric down-conversion make possible 
a variety of experiments by which to probe the quantum mystery. The two 
photons are produced in an entangled state leading to a situation where 
observations on either photon separately reveal no interference, but observations 
involving coincidences of the two photons yield higher-order interference 
fringes. 

Tests of Bell’s inequality (Bell [1965]) play a crucial role in ruling out local 
realism as an alternative framework for describing quantum effects. Two-photon 
interferometry using entangled states makes it possible to carry out such tests 
without invoking polarization. Another series of experiments on two-photon 
interferometry vindicates Feynman’s proposition that states interfere with each 
other only when they cannot be distinguished physically in the experimental 
setup. Yet another series of experiments has demonstrated the idea of a “quantum 
eraser”, in which it is possible to appear to destroy “which-path’’ information 
without actually doing so. 
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1.7. BEAM-SPLITTING AND TUNNELING 

As mentioned earlier, any description of light involving waves predicts that 
there will be some coincidences between photon detectors placed in the two 
output fields produced by a beam splitter. On the other hand, for single-photon 
states, quantum theory predicts, and experiments confirm, the probability of 
coincidences to be zero. 

In a variant of these experiments, the beam splitter is replaced by two prisms 
with a very small air gap between them. It is then possible, with single- 
photon states, to observe particle behavior (anticoincidence) and wave behavior 
(tunneling) in the same apparatus. 

A related question is the time taken by a photon to tunnel through such a 
barrier. Experiments using two-photon interference have revealed such puzzling 
effects as apparently superluminal tunneling velocities. 

1.8. QUANTUM LIMITS 

Finally, quantum effects set a limit to the precision attainable in measurements 
using interferometry. The complementarity of particle and wave aspects is 
responsible for an uncertainty principle linking the photon number and the 
measured phase. However, it does appear possible to perform measurements 
with precision beyond the standard quantum limit (SQL), either by injecting 
nonclassical light into the interferometer or by replacing passive optical elements 
in the interferometer by active nonlinear elements. 

5 2. Optical Sources 

The earliest sources of light for interference experiments were thermal light 
sources, such as the sun and incandescent light. They have been supplemented 
by the laser, a source of coherent light, and, more recently, by atomic sources 
and nonlinear optical materials which provide nonclassical light. 

Coherence functions have been used for many years to characterize classical 
light fields (Wolf [1955]), but Glauber [1963a,b] was the first to construct the 
quantum analog of classical coherence functions to characterize the coherence 
properties of nonclassical radiation. An important realization was that mea- 
surements of second-order coherence ’ cannot provide unambigous evidence of 

’ Glauber [1963a,b] refers to this function as the first-order correlation. 
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nonclassical light; measurements of fourth-order coherence, at the very least, are 
required to distinguish nonclassical from classical radiation. 

2.1. QUANTUM DESCRIPTION OF RADIATION 

By analogy with the coherence functions used to describe the interference 
properties of the classical radiation field, Glauber [ 1963a,b] introduced the 
normalized quantum coherence functions to describe the quantum field. The 
electric field at the space-time point (?;, t i )  is replaced by the operator E(Y;, ti), 
which can be separated into negative- and positive-frequency components, 

t i )  and 3 ( T i ,  ti), respectively. What would be referred to, in classical 
terms, as the normalized coherence functions of order 2n are then defined as 
the correlation functions of order n: 

(: fly=, E-(?i, t i )  fl;:.+ 1 3(?1, ti) :) 
g(n)({?i, t ,  1 i = I , .  . . ,2n}) = 

n;:, /- 9 

(2.1) 
where : : represents the normal-ordering operation, and the angular brackets 
refer to both ensemble averaging and to quantum state averaging. Whereas 
0 < g(l)({?i, ti I i = 1,2}) < 1 for both quantum and classical radiation fields, 
the second-order correlation function satisfies the criteria 

1 < g(2)({?i, t i  I i = I , .  . . ,4}) < 00 for a classical field, 

0 < g'2)({F;, ti I i = 1, .  . . ,4}) < 00 for a quantum field. 

o < g(2)({?i,  ti I i = 1,. . . ,4}) < 1 

(2.2) 

(2.3) 

Hence, values of second-order correlation in the range 

(2.4) 

indicate unambiguously a nonclassical light source. 
In addition to using the quantum correlation functions, it is important to 

describe the field in terms of quantum states. The field emitted by the source 
can be decomposed into arbitrary modes indexed by the three-vector l, which, 
for a plane wave, is the wave vector. 

We represent the n-photon state in mode k' by the expression 

in which 10) designates the zero-photon state or ground state, of the field mode, 
corresponding to the vacuum state, and the subscript k' can be ignored where not 
required. 
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The nonclassical nature of the n-photon state is made evident when we 
calculate the second-order correlation function, 

which, from eq. (2.4), is within the nonclassical regime. For n =  1, the 
interpretation of eq. (2.6) is particularly straightforward: the photon is indivisible, 
and fractions of the photon cannot be detected at different space-time points. 

The bridge between the classical and quantum descriptions of radiation is 
provided by the coherent state of light, 

which has complex amplitude a and mean photon number This coherent 
state of light is indistinguishable from classical coherent light: all orders of the 
correlation function defined by eq. (2.1) are equal to unity for the coherent state 
defined by eq. (2.7). 

Classical radiation states can be expressed in the quantum framework as 
distributions of coherent states of light. Thus, the density matrix for the light 
field can be written as: 

where P(a)  is referred to as the Glauber-Sudarshan P-representation after the 
work of Glauber [1963a,b] and Sudarshan [1963], and the classical radiation 
states are diagonal in the overcomplete coherent-state basis. The P-representation 
for the coherent state I ao) (ao 1 is evidently P ( a )  = 6(2)(a - ao), where is the 
second-order Dirac 6 function. Nonclassical light corresponds to the states for 
which the Glauber-Sudarshan P-representation is not positive definite. 

A multimode coherent state is a tensor product of single-mode coherent states, 
n 

i =  1 

where each mode i has dimensionless complex amplitude ai. A straightforward 
extension of the single-mode theory given above can then be made to the mul- 
timode case. For example, the Glauber-Sudarshan representation is generalized 
to: 

p̂  = 1 fi d2aiP(Z) la') (a ' ] .  (2.10) 
i =  I 

A particularly important case is the weak field. If a coherent field is attenuated 
to a level at which the probability of detecting more than one photon in the field, 
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with an ideal unit-efficiency detector, is negligible, then the multimode coherent 
state (2.9) can be expanded as the normalized state, 

(2.1 1) 

where no more than one photon exists in the field. In the single-mode case, the 
weak coherent field can be expressed as: 

(2.12) 

indicating that a coherent superposition exists between the absence of the photon 
and the presence of the photon in the field mode. 

Interference involves the mixing of two fields. With an interferometer 
constructed with beam splitters, mirrors and passive phase-shifters, the output 
is a two-mode coherent state which, in the weak-field limit, can be viewed 
as representing the interference of a photon with itself. This self-interference 
of a photon has been interpreted as a sum over histories (Feynman, Leighton 
and Sands [1963]). In this picture, a photon can take either of two separate 
paths from the source to the detector. Associated with each path is a certain 
complex probability amplitude ai ( i =  1,2), whose absolute square represents the 
probability of the photon taking this path. The intensity at the detector is then 
obtained by summing the probability amplitudes for the two paths and taking 
the square of its modulus la, + a2I2, which gives the probability of detecting a 
photon at this point. Each photon therefore interferes only with itself; it is the 
basic quantum uncertainty of which path the photon takes through the apparatus 
that is responsible for the interference effect. 

The quantum regime is attained for classical coherent light fields when the 
time interval between photodetection events, with an ideal, perfectly efficient 
detector, is much greater than the transit time of radiation through the system. 
If the state of the radiation field produced by the laser is represented by the 
coherent state la), then the attenuated laser field is given by I f i a ) ,  where laI2 
is the photon flux prior to attenuation, and 4 laI2 is the photon flux following 
attenuation. Attenuation does not destroy the coherence of the beam, or affect the 
coherence time. However, a reduction of the photon flux increases the integration 
time required to observe coherence effects, and can eliminate the possibility 
of detecting interference if the integration time required exceeds the coherence 
time. 
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2.2. INDEPENDENT SOURCES 

To observe interference effects with independent sources, the measurements must 
occupy a time scale shorter than the mutual coherence time, and the average 
number of photons received during this time must be large enough to obtain an 
adequate signal-to-noise ratio. 

If two independent laser beams are attenuated to a level where the mean photon 
number is less than one, the resulting field is brought into the quantum regime 
and can be regarded as the product of two coherent states corresponding to two 
independent modes l a I ) ,  and la2j2. The state of the field is then given by the 
relation 

The weak two-mode coherent state is therefore a coherent superposition of one 
photon in mode 1 or one in mode 2, as well as a contribution due to no photon in 
either mode. If the state represented by eq. (2.13) is conditioned on the detection 
of a photon, the vacuum state is eliminated from the superposition, yielding the 
entangled state, 

(2.14) 

where H = tan-l la2/al 1 ,  and 5 = arg(az/al). 

2.3 .  TWO-ATOM SOURCES 

Laser-driven atoms emit radiation through the process of resonance fluorescence. 
A case of particular interest is where two identical atoms are made to fluoresce 
coherently, so that each photon can be regarded as arriving at the detector by 
a superposition of the paths from the two sources. Vigue, Grangier, Roger and 
Aspect [ 198 11 and Vigue, Beswick and Broyer [ 19831 produced two identical 
atoms travelling in opposite directions by photodissociation of a homonuclear 
molecule. Time-resolved studies of the fluorescence from such a diatomic source 
were carried out by Grangier, Aspect and Vigue [1985]. They excited the 
X ' 2 ;  state of a beam of Ca2 molecules to the 'nu dissociative state with a mode- 
locked pulsed Kr+ laser beam having a wavelength of 406.7 nm. The fluorescence 
radiation (wavelength 422.7 nm) was emitted perpendicular to the plane of the 
atomic beam and the electric field of the Kr' laser beam. Time-resolved studies 
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of the fluorescence revealed a modulation that could be taken as evidence for 
quantum interference, due to the indistinguishability of the paths from the two 
sources. 

2.4. SOURCES OF NONCLASSICAL LIGHT 

With a single-mode laser source, the arrival of photons at a photo detector 
exhibits a Poisson distribution. With a thermal source, the optical field can be 
regarded as the sum of the fields contributed by many independent coherent 
sources. Hence, with classical light sources, such as thermal sources and lasers, 
photo detections are more likely to occur at the same time, or very close together, 
than farther apart in time. This phenomenon is known as photon bunching 
(Mandel and Wolf [1965]) and has been attributed to the fact that photons are 
bosons. None of these sources can therefore generate any form of nonclassical 
light, such as a single-photon state. 

2.5. SINGLE-PHOTON STATES 

The creation of an n-photon state is not easy. One method for preparing an 
approximation to a single-photon state is by generating a pair of photons. 
Essentially, the process is one of conditional preparation: given that either two 
photons exist or no photon exists, the detection of one photon acts as a signal 
that a second photon is present in the field. The frequency and direction of 
propagation of the second photon are related to those of the first by conservation 
laws, and can be determined by analysing the first “gate” photon. The second 
photon field can then be regarded as being in a one-photon Fock state. 

2.5.1. Atomic cascade 

Two nearly simultaneous photons can be produced by an atomic cascade (Kocher 
and Commins [1967], Freedman and Clauser [1972]) using atoms of calcium, 
which are excited to the 6 l P 1  state by means of a UV source, such as a 
hydrogen arc lamp. About 10% of these atoms then go into the 6’ SO level, 
from which they return to the ground state uia the 4 ‘P I  level. In this two-step 
process they emit, in rapid succession, two photons with wavelengths of 55 1.3 nm 
and 422.7nm, respectively. A more efficient procedure is to excite the atoms 
selectively to the upper level of the cascade by two-photon absorption, using a 
Kr+ laser (A = 406.7 nm) and a dye laser tuned to resonance for the two-photon 
process ( A =  581 nm). The time interval between the emission of the two photons 
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corresponds to the lifetime (z, = 4.7 ns) of the intermediate state of the cascade 
(Aspect, Grangier and Roger [ 19811). 

2.5.2. Parametric down-conversion 

The atomic cascade suffers from two drawbacks: the emission of the two photons 
is not perfectly simultaneous, and the correlation between their directions is not 
perfect. Parametric down-conversion overcomes these problems. In this process, 
a single UV photon decays spontaneously in a crystal with a x(2)  nonlinearity 
into two photons (a signal photon and an idler photon) with wavelengths close 
to twice the UV wavelength (Harris, Oshman and Byer [1967], Klyshko [1967], 
Burnham and Weinberg [ 19701). Down-conversion is facilitated by using a 
birefnngent crystal to achieve phase matching. The two down-converted photons 
are highly correlated and are emitted with a negligible time separation (Hong and 
Mandel [1985], Friberg, Hong and Mandel [1985]). Since energy is conserved 
in the process, we have: 

hoo = ho, + hwz, (2.15) 

where hwo is the energy of the UV photon, and hwl and h o 2  are the energies of 
the two down-converted photons. Similarly, since momentum is conserved, we 
have: 

ko = kl + k2, (2.16) 

where ko is the momentum of the UV photon, and kl and k2 are the momenta 
of the down-converted photons. It follows from eq. (2.15) that, while the 
frequencies of the individual down-converted photons may vary over a broad 
range, the sum of their frequencies is well defined. Similarly, it follows from 
eq. (2.16) that the photons in each pair are emitted on opposite sides of two 
cones, whose axis is the UV beam, and produce, as shown in fig. 2.1, a set of 
rainbow colored rings. 

In a typical realization, Hong and Mandel [1986] used the UV beam from 
an argon-ion laser (A = 35 1.1 tun) and a potassium dihydrogen phosphate (KDP) 
crystal to generate pairs of photons with wavelengths around 746 and 659 nm. 
These photons leave the crystal at angles of approximately +1.5" to the 
UV beam. 

2.6. THE BEAM SPLITTER 

Adam, Janossy and Varga [1955a,b] were the first to study the correlations 
between photons at a beam splitter, rather than the amplitude correlations 
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U V  pump beam ( h =  3 5 1 . 1  nrn) 
\ 

Fig. 2.1. Generation of photon pairs by parametric down-conversion of UV photons in a nonlinear 
crystal. Conjugate photons are emitted on opposite sides of the UV beam; typically, one photon has 

a slightly lower frequency than the other. 

measured by normal interferometric techniques. Subsequently, Hanbury Brown 
and Twiss [ 19561 (see also Hanbury Brown [ 19741) measured photon correlations 
in thermal light fields in their experiments leading to the intensity interferometer 
(see 5 5), while Arecchi, Bern6 and Burlamacchi [1966] studied photon correla- 
tions with laser sources. For a thermal source, the correlation between photons 
detected at the two outputs of a beam splitter is positive; for a coherent field 
from a laser, there is no correlation between the two outputs. 

On the other hand, nonclassical fields with definite photon number exhibit a 
very different behavior. With a single-photon state, quantum mechanics predicts 
a perfect anticorrelation between the counts at the two output ports of a beam 
splitter (Clauser [ 19741). Grangier, Roger and Aspect [1986], as well as Diedrich 
and Walther [ 19871, observed such anticoincidences, indicating that each photon 
was either transmitted or reflected. The perfect anticorrelation of photons at the 
beam splitter can be regarded as evidence of the indivisibility of the photon. 

The indivisibility of the photon provides the simplest example of entangle- 
ment. The output from the beam splitter can be regarded as the superposition 
of two histories, the first consisting of one photon at port 1 and no photon at 
port 2, and the second consisting of no photon at port 1 and one photon at port 2. 
This superposition state cannot be reduced because of the strong anticorrelation 
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of the two modes that arises from the entanglement of the input field with the 
vacuum field represented by eq. (2.14). 

It follows that any analysis of the effect of a beam splitter on an incident beam 
of light with definite photon number has to take into account the vacuum field at 
the unused input port (Fearn and Loudon [ 1987, 19891, Campos, Saleh and Teich 
[ 19891). Such a treatment confirms the effects observed with classical fields as 
well as with photon-number states. When one of the input photon-number states 
is the vacuum and the other is a nonzero number state, the photon numbers at 
the output ports are described by a binomial distribution (Brendel, Schutrumpf, 
Lange, Martienssen and Scully [1988]). However, if the inputs at the two ports 
of a 50:50 beam splitter are identical single-photon states, the joint probability 
for detecting a photon at each of the two output ports vanishes. This implies that 
both incident photons must exit together at either of the two output ports, and 
is an example of quantum-mechanical interference of the probability amplitudes 
for a photon pair (Hong, Ou and Mandel [ 19871). 

2.7. SQUEEZED STATES OF LIGHT 

The coherent state I a )  incorporates vacuum fluctuations which become observ- 
able with phase-sensitive detection schemes, such as heterodyne or homodyne 
detection. These vacuum fluctuations are responsible for the limit on the accuracy 
of measurements set by shot noise, known as the standard quantum limit (SQL). 
Yuen [1976] performed a detailed analysis of what he then called two-photon 
coherent states which revealed the possibility of reducing quantum noise using 
such states. 

We can represent the electric field of a monochromatic light wave as the sum 
of two quadrature components in the form: 

E = Eo [Xlcos ut +&sin u t ] ,  (2.17) 

where XI and X2 are complementary operators satisfying the commutation rela- 
tion [Xl, X2] = i i ,  whose variances therefore obey the uncertainty relationship 

AXlAX2 3 i. (2.18) 

For normal coherent light the variances are equal. For a squeezed state the 
variances are unequal, although their product remains unchanged. Accordingly, it 
is possible to reduce phase fluctuations with squeezed light, as shown in fig. 2.2, 
at the expense of a corresponding increase in the amplitude fluctuations (Caves 
[ 198 I], Walls [ 19831). 
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4 
Fig. 2.2. Plot of electric field against time, showing the uncertainty for (a) a coherent state, 
(b) a squeezed state with reduced amplitude fluctuations, and (c) a squeezed state with reduced 

phase fluctuations (Caves [1981]). 

The degree of squeezing can be measured with a balanced homodyne detector, 
which yields a phase-sensitive measurement of the noise. As shown in fig. 2.3, 
the squeezed light is combined with another strong beam from the same source, 
which constitutes a local oscillator, at a 50:50 beam splitter. The beams emerging 
from the beam splitter are directed to two photo detectors, and the difference of 
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Subtractor 

Input field 

splitter 

Fig. 2.3. Balanced hornodyne detector used for measurements of noise due to a single field-quadrature 
component. 

the two photocurrents is displayed. With this arrangement, intensity fluctuations 
in the local oscillator and the signal cancel out, and the output corresponds to 
the interference of the local oscillator with the signal. If the intensity of the local 
oscillator is much greater than that of the signal, the fluctuations in the output are 
essentially due to the signal. As the phase difference between the squeezed light 
signal and the local oscillator is varied, the detector becomes sensitive first to 
one quadrature amplitude and then to the other, and the output noise amplitude 
varies accordingly. 

The concept of single-mode squeezed states can be extended to two or more 
correlated modes. Milburn [I9841 and Caves and Schumaker [I9851 considered 
two-mode states consisting of a two-mode coherent field with squeezed vacuum 
fluctuations. Whereas the single-mode squeezed state is generated by photon-pair 
creation and annihilation in one mode, the two-mode squeezed state is generated 
by photon-pair creation and annihilation in two modes. The two photons in the 
pair, each with a different frequency, are strongly correlated, and this correlation 
is responsible for the squeezed fluctuations. 

The process of generating photon pairs is not restricted to parametric down- 
conversion and can be implemented with any order of nonlinearity. A number 
of physical phenomena can therefore be used, in principle, to generate squeezed 
states. The earliest and most common method has been degenerate four-wave 
mixing in a medium with a nonlinear susceptibility (Slusher, Hollberg, Yurke, 
Mertz and Valley [ 19851, Shelby, Levenson, Perlmutter, de Voe and Walls [1986], 
Maeda, Kumar and Shapiro [1987]). In such a process, energy is transferred 
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from two strong pump beams to two weaker beams. As a result, correlations are 
established between the photons in the two weaker beams. When these two beams 
are combined, the resulting light exhibits the characteristics of squeezed states. 
A greater reduction in noise has been achieved by degenerate parametric down- 
conversion (Wu, Kimble, Hall and Wu [1986]). When the gain from parametric 
amplification becomes large in the down-conversion crystal, there is a transition 
from spontaneous to stimulated emission. Since the gain depends on the phase of 
the amplified light relative to the phase of the pump beam, vacuum fluctuations 
in one quadrature are squeezed (Kimble and Walls [ 19871). 

8 3. Second-order Interference 

The apparent contradiction between viewing light as particles and light as waves 
provided the impetus for studying the interference of a light beam with itself 
at power levels so low that the probability of two or more photons existing 
at the same time within the apparatus was negligible. If light is thought of as 
particles, and interference is a phenomenon involving the interaction of at least 
two particles, classical considerations suggest that interference effects should 
become weaker as the number of photons decreases and disappear completely 
when no more than one photon is in the apparatus at a time. 

3.1. INTERFERENCE AT THE “SINGLE-PHOTON’ LEVEL 

These considerations led to a series of experiments involving photographic 
recordings of interference patterns at extremely low light levels, all of which 
showed that the quality of the pattern did not depend on the intensity (Taylor 
[ 19091, Gans and Miguez [ 191 71, Zeeman [ 19251, Dempster and Batho [ 19271). 
This result was also confirmed by counting photons with a photomultiplier 
(Janossy and Naray [ 19571). A detailed review of these experiments involving 
interferometry at low light levels has been presented by Pipkin [1978]. 

While these experiments supported the predictions of quantum theory, all of 
them used conventional thermal light sources. The light from such a thermal 
source can be modeled as an ensemble of coherent states, each of which can be 
described by a classical electromagnetic field, even when it is highly attenuated. 
Accordingly, it could be argued that these experiments did not actually involve 
single-photon states. 
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Fig. 3.1.  Experimental arrangement used (a) to detect single-photon states and (b) to demonstrate 
interference with single-photon states (Grangier, Roger and Aspect [ 19861). 

3.2. INTERFERENCE WITH SINGLE-PHOTON STATES 

Interference effects produced by light without a positive definite Glauber- 
Sudarshan P-representation cannot be explained in classical terms. A good 
example is interference with single-photon states, which was first studied using 
an atomic cascade (see 0 2.5.1) by Grangier, Roger and Aspect [1986], and also 
by Aspect and Grangier [1987]. 

As shown in fig. 3.la, the arrival of the first photon (frequency Y , )  at the 
detector Do acted as a trigger for a gate generator, enabling the two detectors DI 
and D2 on the two sides of the beam splitter for a time 22,. During this period, 
the probability for the detection of a second photon (frequency Y Z )  emitted by 
the same atom is much greater than the probability of detecting a similar photon 
emitted by any other atom in the source. 

While a classical wave would be divided between the two output ports of the 
beam splitter, a single photon cannot be divided in this fashion. We can therefore 
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expect an anticorrelation between the counts on the two sides of the beam splitter 
at DI and D2, measured by a parameter 

where No12 is the rate of triple coincidences between the detectors Do, Dl and 
D z ;  No1 and No2 are the rate of double coincidences between Do and Dt and Do 
and D2, respectively, and No is the rate of counts of Do. For a classical wave, 
it follows from Schwarz’s inequality that A3 1, while the indivisibility of the 
photon should lead to arbitrarily small values of A. As expected, the number of 
coincidences observed for the second photon, with a gate time of 9 ns, was only 
0.18 of that expected from classical theory, but corresponded to that predicted by 
quantum theory. This source was then used in the optical arrangement shown in 
fig. 3.lb, with the detectors DI  and D2 receiving the two outputs from a Mach- 
Zehnder interferometer. The interferometer was initially adjusted and checked 
without the gating system in operation, and interference fringes with a visibility 
V >0.98 were obtained. In the actual experiment, with the gate on, the optical 
path difference was varied around zero in 256 steps, each of 12/50, with a counting 
time of 1 s at each step. The results of 15 such sweeps were then averaged to 
improve the signal-to-noise ratio. Analysis of the data showed that, even with 
the gate operating, values of the visibility V > 0.98 were obtained. 

The results of these experiments confirmed the predictions of quantum 
mechanics and Dirac’s view that the photon interferes with itself. The self- 
interference of a photon can be understood, as discussed in § 2.1, through Feyn- 
man’s concept of a sum over histories (Feynman, Leighton and Sands [ 19631). 

3 .3 .  INTERFERENCE WITH INDEPENDENT SOURCES 

Problems appear with Dirac’s dictum when we consider interference effects 
produced by light beams from two completely independent sources (Magyar 
and Mandel [1963], Paul [1986]). Two independent waves can produce an 
interference pattern, provided that the phase difference between the waves is 
stable over the observation period. In the photon picture, however, the question 
is: “How can an interference pattern be produced if the photons in the two beams 
are created independently?” Since the photon that is detected does not always 
originate from the same source, the picture of a single photon being created and 
propagated along a superposition of two distinct paths no longer holds. 

The first experiments demonstrating interference between two independent 
laser beams at very low light levels were performed by Pfleegor and Mandel 
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Fig. 3.2. Experimental system used to demonstrate interference with two independent laser sources 
(Pfleegor and Mandel [1968]). 

[1967a,b, 19681. As shown in fig. 3.2, the light beams from two independent 
He-Ne lasers were superimposed at a small angle to produce interference fringes 
on the edges of a stack of glass plates whose thickness was equal to half the 
fringe spacing. Two photomultipliers received the light from alternate plates, so 
that when interference fringes were present, a negative correlation was obtained 
between the number of counts registered by the photomultipliers. To minimize 
effects due to movements of the fringes, an additional photo detector was 
used to detect beats between the beams, and observations were restricted to 
20 ps intervals, corresponding to periods during which the frequency difference 
between the two laser beams was less than 3OkHz. The transit time was 
approximately 3ns, while the photon fluxes in the two beams were around 
3 ~ 1 0 ~  photons/s and the quantum efficiency of the photomultipliers was 
about 0.07, so that about 10 photons were detected in each 20 ps period. The 
average of 400 such measurements was taken in each experiment. 

In this experiment, the positions of the fringe maxima are not predictable 
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Fig. 3.3.  Experimental results for the normalized correlation coefficient, together with the theoretical 
curves for N = 2 and N = 3 (Pfleegor and Mandel [ 19681). 

and vary from measurement to measurement. However, there should always be 
a negative correlation between the number of photons registered in the two 
channels, which should be a maximum when the fringe spacing Z is equal 
to L, the thickness of a pair of plates. Figure 3.3 shows the variation in the 
degree of correlation of the two counts with the ratio LIZ, together with the 
theoretical curves for N = 2 and N = 3, where N is the number of pairs of plates 
in the detector array. In subsequent experiments, the measurement procedure was 
automated, making it possible to record a much larger number of counts in each 
run, and to investigate the effects of varying the observation time and the number 
of interference fringes sampled. 

Similar results were also obtained by Vain’shtein, Melekhin, Mishin and 
Podolyak [ 198 13, in observations on the transient interference patterns formed 
by the beams from two lasers with two photomultipliers operating in the photon- 
counting regime. 

These experiments confirmed that interference effects were associated with the 
detection of each photon, but their statistical accuracy was limited by the fact that 
observations could be made only over very short time intervals, during which a 
very small number of photons was detected. This problem has been overcome 
in more recent experiments involving observations of interference effects in the 
time domain, 
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3.4. INTERFERENCE IN THE TIME DOMAIN 

Interference effects between two independent light sources were first observed 
in the time domain by Forrester, Gudmundsen and Johnson [ 19551, who mixed 
the Zeeman components of a visible spectral line at a fast photo detector. 
Subsequently, Javan, Ballik and Bond [1962] showed that beats could be 
obtained by superimposing the beams from two independent He-Ne lasers, or 
the beams corresponding to two axial modes of the same laser, at a photo 
detector. Observations on such beats have been used successfully to study 
interference effects with two sources at very low light levels (Hariharan, Brown 
and Sanders [ 19931). 

For such observations, there are significant advantages in using the beat 
produced by two axial modes of the same laser, since the frequency variations 
of the two modes due to thermal effects and mechanical variations of the cavity 
length are very nearly the same. A convenient low beat frequency can be obtained 
by applying a transverse magnetic field to a He-Ne laser that is oscillating 
in two longitudinal modes. The laser then oscillates on a single axial cavity 
mode composed of two orthogonally polarized components which exhibit a small 
frequency difference due to the magnetically induced birefringence of the gas 
in the laser tube (Morris, Ferguson and Warniak [1975]). These two Zeeman- 
split components can be regarded as equivalent to beams from two independent 
lasers, because the coupling between them is quite weak. In addition, with normal 
excitation, there is no coherence between the two upper states for the lasing 
transitions. 

The experimental arrangement is shown schematically in fig. 3.4. The beat 
frequency was stabilized by mixing the two orthogonally polarized components 
in the back beam of the laser, with a polarizer, at a monitor photo diode and 
feeding the output to a frequency-to-voltage converter, which controlled the 
length of the cavity through a servo amplifier and a heating coil on the laser 
tube (Ferguson and Morris [ 19781). A beat frequency of 80 kHz, with a frequency 
bandwidth estimated at 1 Hz, was obtained. 

To make measurements, a set of neutral density filters was used to reduce 
the intensity of the output beams from the laser in accurately known steps over 
a range of 108:1. The attenuated beams were incident, after passage through 
a polarizing prism that brought them into a condition to interfere, on a photo 
diode. The signal from this photo diode was taken through a band-pass filter 
to a homodyne detector that was fed with a reference signal from the monitor 
photo diode. Because the variations in the frequency of the beat signal were 
small and were tracked by the reference signal from the monitor photo diode, 
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Fig. 3.4. Experimental system used to measure the amplitude of the beats produced by the two 
orthogonally polarized modes from a transverse Zeeman laser at very low light levels (Hariharan, 

Brown and Sanders [ 19931). 

measurements could be made with integrating times up to 100 seconds to obtain 
a good signal-to-noise ratio even at the lowest light levels. 

Observations were made with the photo diode at a distance of 0.2m from 
the laser, as the incident power was varied from 1.OpW down to 4.8pW, 
corresponding to values of the incident flux ranging from 3.18 x 1 0l2 photonsh 
to 1.53 x 1 O7 photonsh, respectively. At the lowest power level, the probability 
for the presence of more than one photon in the apparatus at any time, relative 
to that for the presence of a single photon, was less than 0.005. 

Figure 3.5 shows the output from the homodyne detector plotted as a function 
of the power incident on the photo diode. The measurements showed no 
significant deviations from a straight line with a slope of unity, confirming that 
the interference phenomena remained unchanged down to power levels at which 
there was a very high probability that one photon was absorbed before the next 
one was generated. 

These results were extended to cover interference involving more than two 
beams by Hariharan, Brown, Fujima and Sanders [1993] using a He-Ne laser 
operating in three axial modes. With such a laser, low-frequency beat signals are 
also obtained because the axial modes are not equally separated in frequency, 
due to the dispersion of the excited neon gas. The frequency of these beats 
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Fig. 3.5. Output signal from the homodyne detector as a function of the total power of the laser 
beams (Hariharan, Brown and Sanders [1993]). 

corresponds to the second differences between the frequencies of the modes 
(Casabella and Gonsiorowski [ 19801). 

In the actual experiment, the photo detector was placed at a distance of 
80 mm from the neutral density filters used to attenuate the beam. Measurements 
were made of the output from the homodyne detector as the power incident on the 
photo diode was varied from 75 nW down to 0.19 nW, corresponding to values 
of the flux ranging from 2 . 3 9 ~  10" photonds to 6 . 0 4 ~  lo8 photons/s. At the 
lowest power level, the ratio of the probability for the presence of at least one 
photon from all three modes to the total probability for the presence of at least 
one photon from any mode, was only 0.0009. However, the amplitude of the 
low-frequency beat was found to vary linearly with the power incident on the 
photo diode down to this power level. 

These results also showed that the ratio of the beat amplitude to the incident 
power remained unchanged down to the lowest power level at which observations 
were made, even though, at this power level, the mean time interval between the 
arrival of successive photons at the photo detector was greater than the period 
of the beat (Hariharan, Brown, Fujima and Sanders [ 19951). 

3.5. SUPERPOSITION STATES 

It follows that the interference phenomena observed in all these cases are 
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associated with the detection of each photon and not with the interference of one 
photon with another. An analysis of the processes leading to interference effects 
made by Jordan and Ghielmetti [ 19641 and by Mandel [ 19641 suggested that for 
interference effects to become observable, the average number of photons in the 
same spin state falling on a coherence area in a coherence time, or the average 
occupation number per unit cell of phase space, would have to be appreciably 
greater than 1. An alternative explanation by de Broglie [1969] involved the 
assumption that the distribution of photons was determined by the superposition 
of weak electromagnetic waves from the two sources. However, it is now clear 
that the interference phenomena are produced by a sequence of photons, each one 
of which is in a superposition state that originates from the modes involved. The 
problem that remains is how the superposition state responsible for interference 
arises. 

One explanation is that the superposition state is produced in the process 
of absorption at the photodetector, because it is impossible, in principle, to 
determine from which source the photon is emitted. The measurement therefore 
forces the photon into a superposition state in which it behaves as if it were 
associated with both light beams, and these two states of each photon interfere 
(Mandel [ 19761). A field-theoretic analysis explaining how this happens has 
been presented by Walls [1977]. Alternatively, it is possible to regard the fields 
from each source as being in a superposition state of having one photon and 
no photon (Hariharan, Brown and Sanders [1993]). An explicit description of 
the interference effects produced by two independent laser beams using the 
techniques of quantum field theory has also been presented by Aganval and 
Hariharan [1993]. 

5 4. The Geometric Phase 

An extension of the adiabatic theorem of quantum mechanics by Berry [1984] 
showed that the wave function of a quantum system may undergo a phase shift 
(a geometric phase) when the parameters of the system undergo a cyclic change. 
This phase change can be observed by interference if the cycled system is 
compared with another system that has not undergone any change. 

4.1. THE GEOMETRIC PHASE IN OPTICS 

Demonstrations of effects due to the geometric phase in optics followed. One 
example was the rotation of the plane of polarization of a linearly polarized 
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light beam propagating in an optical fiber coiled into a helix (Tomita and Chiao 
[ 19861). Another was the phase shift observed in a Mach-Zehnder interferometer 
in which the two beams traversed nonplanar paths arranged to have equal lengths, 
but opposite senses of handedness (Chiao, Antaramian, Ganga, Jiao, Wilkinson 
and Nathel [ 19881). 

Berry's paper also led to a reappraisal of earlier studies by Pancharatnam 
[I9561 on the interference of polarized light, which could now be seen as 
manifestations of the geometric phase (Ramaseshan and Nityananda [ 19861, 
Berry [ 19871). 

Pancharatnam defined the phase difference between two beams in different 
states of polarization by considering the intensity produced when the two beams 
were made to interfere. He regarded the two beams as being "in phase" when 
the resultant intensity was a maximum. This approach made it possible to define 
how a beam changed its phase when its state of polarization was altered. It also 
led to the observation that a beam could be taken from one polarization state, 
without introducing any phase changes, through two other polarization states 
back to its original state, and exhibit a phase shift. The magnitude of this phase 
shift (the Pancharatnam phase) was equal to half the solid angle subtended by 
the circuit at the center of the PoincarC sphere. Several experiments have been 
described using interferometric techniques to measure this phase shift (Bhandari 
and Samuel [ 19881, Simon, Kimble and Sudarshan [ 19881, Chyba, Wang, Mandel 
and Simon [1988]). 

4.2. OBSERVATIONS AT THE SINGLE-PHOTON LEVEL 

Observations of the Pancharatnam phase have been made by Hariharan, Roy, 
Robinson and O'Byrne [1993] at light levels low enough to ensure that the 
probability of more than one photon being present simultaneously in the 
interferometer was negligible. They used a Sagnac interferometer in which 
the optical paths traversed by the two beams were always equal, and a 
phase difference could be introduced between them only by operating on the 
Pancharatnam phase. As shown in fig. 4.1, light from a He-Ne laser, linearly 
polarized at 45" to the plane of the figure by a polarizer P I ,  was divided 
at a polarizing beam-splitter into two orthogonally polarized beams traversing 
the same closed triangular path in opposite directions. A second polarizer P2, 
with its axis at 45" to the plane of the figure, brought the two beams leaving 
the interferometer into a condition to interfere at a photomultiplier. The phase 
difference between the beams was varied by a system consisting of a rotating 
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Fig. 4.1. Schematic of the experimental arrangement used for studies of the Pancharatnam phase at 
the single-photon level (Hariharan, Roy, Robinson and O’Byrne [ 19931). 

half-wave plate, HWP, located between two fixed quarter-wave plates, QWPl and 
QWP2 (Hariharan and Roy [ 19921). 

The operation of this interferometer can be followed by means of the Poincark 
sphere (Jerrard [ 19541). Light (p-polarized) transmitted by the polarizing beam 
splitter, passes through the quarter-wave plate QWPl, the half-wave plate HWP, 
and the quarter-wave plate QWP2, in that order. As shown in fig. 4.2, the 
polarization state of this beam then traces out the path AlSA2NAl on the 
Poincari. sphere. If the half-wave plate HWP is set with its optic axis at an 
angle +8 to the optic axes of QWPl and QWP2, the phase of the transmitted 
light is advanced by 28. Reflected (s-polarized) light traverses the interferometer 
in the opposite sense, and its polarization state traces out the path BISB~NBI 
on the Poincari. sphere; its phase is therefore retarded by 20. These operations 
lead to a phase difference A$=40  between the two fields when they reach the 
photomultiplier, without introducing any change in the optical paths. 
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Fig. 4.2. Closed paths traversed by the polarization states of the two beams in the interferometer on 
the Poincare sphere (Hariharan, Roy, Robinson and O’Byme [1993]). 

Measurements were made at an input power level <1 pW, corresponding to a 
photon flux Ni < 3 . 2 ~  lo6 photonsls, at which level 

where P( 1) and P(n > 1) are, respectively, the probabilities for the presence of 
one photon and more than one photon in the apparatus. 

The net counting rate, after subtracting the dark counting rate, exhibited the 
expected sinusoidal variation, corresponding to the relation A$ = 40, over a wide 
range of values of 6.  The visibility of the interference fringes was better than 0.97 
and very close to that obtained in the classical regime. 

4.3. OBSERVATIONS WITH SINGLE-PHOTON STATES 

An experiment to demonstrate the existence of a geometric phase for single 
photons was performed by Kwiat and Chiao [ 19911. They used a light source that 
produced pairs of photons with wavelengths centered at 702.2 nm by parametric 
down-conversion (see 9 2.5.2). In the arrangement used by them (see fig. 4.3), 
the idler beam was transmitted through the filter F1 to the detector Dl ,  while 
the signal beam entered a Michelson interferometer. The beam leaving the 
interferometer was incident on a second beam splitter B2, from which it was 



11, 5 41 THE GEOMETRIC PHASE 71 

I 

B1 B2 F2 
\ 
/ 

rotatable 42 

+F3 

c y N123 

counters 

Fig. 4.3. Apparatus used to measure Berry's phase for single photons (Kwiat and Chiao [1991]). 

transmitted to the detector D2 through the filter F2 or reflected to the detector D3 
through the filter F3. The count rates for coincidences between D1 and D2 and 
between D1 and D3, as well as triple coincidences between D1, D2 and D3, were 
recorded. 

One arm of the interferometer contained a fixed quarter-wave plate QI,  with 
its axis at 45", as well as a quarter-wave plate 4 2  that could be rotated. Since the 
beam traverses this system twice, a rotation of 4 2  through an angle 8 introduces 
an additional phase shift in this arm, Aq5=20. 

Data were recorded using filters with a bandwidth of lOnm at F2 and F3, and 
an optical path difference of 220 pm, which is greater than the coherence length 
corresponding to this bandwidth (about 50 pm). As a result, the fringe visibility 
seen by the detectors D2 and D3, operating individually, was essentially zero. 
However, when a filter with a bandwidth of 0.86 nm was placed in front of D1, 
the count rate for coincidences between D1 and D3 varied with the angular 
setting 6' of Q2, as shown in the lower part of fig. 4.4, with a visibility of 
0.60f0.05. With a broad band filter at F1, the coincidence fringes disappeared, 
as shown in the upper part of fig. 4.4. 

With this arrangement, it was possible to verify that the signal beam 
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Fig. 4.4. Interference effects (lower trace, squares) with a slowly varying Berry's phase, observed 
as coincidences between D3 and D1, with an optical path difference of 220p.m in the interferometer 
and a narrow band filter at F1. With a broad-band filter at F1, no interference is seen (upper trace, 

triangles) (Kwiat and Chiao [1991]). 

was composed of photons in an n= 1 Fock state by measurements of the 
anticorrelation parameter (see 9 3.2): 

where N123 is the rate of triple coincidences between D1, D2 and D3, N l  is 
the rate of single counts by D1 alone, N12 is the rate of coincidences between 
D 1 and D2, and N ,  3 is the rate of coincidences between D 1 and D3. The average 
value of A obtained with the two-photon source differed from that obtained 
with a thermal source by more than 13 standard deviations, confirming that the 
observations essentially involved photons in n = 1 Fock states. 

These observations suggest that the geometric phase observed in optics 
originates at the quantum level, but survives the correspondence principle 
limit into the classical level, although this question is still open to argument 
(Tiwari [ 19921). 

8 5. Fourth-order Interference 

Measurements of fourth-order coherence can be realized by using two spatially 
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separated detectors, or by correlating photo detections which are separated in 
time. 

Studies of fourth-order coherence began with the intensity interferometer 
(Hanbury Brown and Twiss [ 19561, Hanbury Brown [ 19741). In this instrument, 
light from a star was focused on two photo detectors whose separation could be 
varied, and the correlation between the fluctuations in the output currents from 
the two detectors was measured. 

The fluctuations in the output current from each detector then consist of two 
components. One is the shot noise associated with the current, while the other is 
due to fluctuations in the intensity of the incident light. The shot noise from the 
two detectors is not correlated, but the intensity fluctuations exhibit a correlation 
which depends on the degree of coherence of the fields at the two detectors. Since 
the fields are produced by a stationary thermal source, the normalized intensity 
correlation function depends only on the time difference, t, and is given by the 
relation 

where y ( l , ' ) ( r i ,  r2, t) is the normalized second-order coherence function. When 
t = 0, the variation of the normalized value of the correlation with the separation 
of the detectors can be used to determine the angular diameter of a star. With 
a time delay t produced by an optical path difference that is much greater than 
the coherence length of the radiation, the effects of such correlated intensity 
fluctuations can be observed as a spectral modulation (Alford and Gold [ 19581, 
Mandel [ 19621). 

5.1. NONCLASSICAL FOURTH-ORDER INTERFERENCE 

Fourth-order interference provides a means for distinguishing classical and 
nonclassical light, since an optical field can exhibit nonclassical fourth-order 
interference effects even when the usual second-order interference effects 
cannot be observed (Mandel [ 19831, Ou [ 19881). Such fourth-order interference 
effects can be observed with correlated photons produced by parametric down- 
conversion (Ghosh, Hong, Ou and Mandel [ 19861, Ghosh and Mandel [ 19871). 

We consider the detection of the field produced by the signal and idler modes 
from a two-photon source at a point X I  (see fig. 5.1). Since the output from the 
down-converter is an approximation to the two-photon Fock state 11, for 
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Fig. 5 .  I .  Geometry of a fourth-order interference experiment (Ghosh and Mandel [ 19871) 

weak fields, the probability of detecting a photon between the arbitrary positions 
x1 and XI +6x1 can be shown to be: 

where K1 is a scale factor. This probability is independent of XI, so that no 
interference fringes can be seen. A separate measurement made at x2 with 
another photo detector yields a similar result. The reason for the absence of 
second-order interference is, of course, that no definite phase relationship exists 
between the two down-converted fields. 

However, if we use two photo detectors at x1 and x2 to measure the joint 
probability P12(xl, x2)6x16x2,  of detecting a photon within 6x1 and 6x2, we have 
(Ghosh, Hong, Ou and Mandel [1986]) 

(5.3) 

where L = A119 is the spacing of the second-order interference fringes corre- 
sponding to the geometry of fig. 5.1. We can regard the effects observed as 
interference between two different, two-photon probability amplitudes, because 
the system cannot distinguish between photons from A and B being detected 
at XI and x2,  respectively, or vice uersa. As can be seen from eq. (5.3), the 
fourth-order interference fringes have a visibility of unity. On the other hand, 
with classical fields, it can be shown (Mandel [1983]) that the visibility of the 
fourth-order interference fringes cannot exceed 0.5, and the joint probability 
P,,(xl, x2)  6x1 6x2 never drops to zero. 

Figure 5.2 is a schematic of the experimental arrangement used to observe the 
fourth-order interference fringes (Ghosh and Mandel [ 19871). The beam from an 
argon-ion laser (A = 35 1.1 nm) incident on a LiO3 crystal generates photon pairs 
(see 9: 2.5.2) which are reflected through an interference filter so that they come 
together in a plane at a distance of 1.1 m at an angle of about 2". The interference 
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Fig. 5.2.  Apparatus used to demonstrate fourth-order interference with a two-photon source (Ghosh 
and Mandel [ 19871). 

pattern formed in this plane is reimaged by a lens so as to give a spacing of 
the fourth-order interference fringes L = 0.34 mm. Two movable glass plates of 
thickness A x  = 0.14 mm collect the photons at XI and x2 and direct them to two 
photomultipliers, whose outputs are fed to a counter. The number of coincidences 
was recorded over 10-hour periods for different values of the separation (XI -x2) 

of the plates. These values were corrected for accidental coincidences by making 
measurements with a delay extending from 35 to 75ns, and subtracting the 
proportionate number expected within the 5 ns resolving time. 

In practice, because of the finite width A x  of the detectors, the observed values 
of visibility are reduced by a factor: 

2 sin(nAx/l) 
'= [ nAx/L ] (5.4) 

Figure 5.3 shows the experimental values superimposed on a plot of the values of 
PI2(xl, x2) for a two-photon source corrected for this effect, and with the scale 
chosen to give the best fit with the measured coincidence rates (the solid curve). 
The corresponding curve from classical theory (the broken curve) is obviously 
a much poorer fit. 

A more striking example of a nonclassical fourth-order interference effect 
can be observed when the inputs to the opposite sides of a beam splitter are 
one-photon Fock states (Fearn and Loudon [1987, 19891, Ou, Hong and Mandel 
[ 19871). As shown in fig. 5.4, the superimposed beams leaving the beam splitter 
go to two photo detectors, D1 and D2, and measurements are made of the rate 
at which photons are detected in coincidence as the beam splitter is displaced in 
small steps C A T  from the point where the two optical paths are equal. A sharp 
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Fig. 5.4. Expenmental arrangement used to demonstrate fourth-order interference effects with a 
varying optical path difference (Hong, Ou and Mandel [1987]). 
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reduction in the coincidence count rate occurs when the beam splitter occupies a 
symmetrical position (Hong, Ou and Mandel [ 19871, Rarity and Tapster [ 19891). 

We can label the field modes on the input sides of the beam splitter as 
01,02 and on the output side as 1 ,2  and assume that the light is perfectly 
monochromatic. If the input state resulting from degenerate down-conversion 
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is the two-photon Fock state I l )o l  I I),,, then the state on the output side of the 
beam splitter is: 

where R and T are the reflectance and transmittance of the beam splitter, with 
R + T = 1. It follows that for a beam splitter with R = = T ,  the first term on 
the right-hand side of eq. (5.5) is zero, corresponding to destructive interference 

obtained. This state is analogous to the single-photon entangled state defined by 
eq. (2.14), except that in this case, it is the photon pair that is entangled with the 
vacuum. Alternatively, we can regard the photon pair as being in a superposition 
state of adopting either path 1 or path 2. No coincidences should therefore be 
recorded. 

However, the down-converted photons are never monochromatic, and the two- 
photon state can be represented more correctly by the linear superposition 

of the two-photon probability amplitudes, and the entangled state 12; 0)1,2 s / 2 , 0  IS . 

wheref(w1, w2) is a weight function that is peaked at 0 1  = ; W O = W ~ .  The joint 
probability for the detection of photons at the detectors D1 and D2 at times t and 
t + z, respectively, is then: 

where G(z) is the Fourier transform of the weight function, 

f ( ;wo  + w, iwo - o) exp(-iwz)dw, (5.8) 

Go( z) = G( z)/G(O), and K is a constant characteristic of the detectors. 
While the coincidence measurement corresponds to an integration of the 

probability PI,(-)  over the resolving time of a few nanoseconds, this time is 
so much longer than the correlation time that we may integrate Pl,(z) over all 
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Fig. 5 . 5 .  Measured number of coincidences as a function of the displacement of the beam 
splitter, superimposed on the theoretical (solid) curve derived from eq. (5.10) with RIT=0.95 and 
Aw=3x1Oi3 rads. The dashed curve was obtained by multiplying the factor 2RT/ (R2+T2)  in 

eq. (5.10) by 0.9 (Hong, Ou and Mandel [1987]). 

values of t to obtain the expected number of observed coincidences. We then 
have: 

where C is a constant, which, when f ( i w o  + w,  fwo  - w )  is a Gaussian with 
bandwidth Am, reduces to 

1 exp(-Aw6t)' N ,  = C(T' + R2) 1 - ~ [ R 2 + T 2  
2RT 

(5.10) 

It follows that when At = 0, N ,  = C(R - T ) 2 ,  which vanishes when R = = T ,  
whereas when A T  >> Go(T), one has N, = C(T2 + R'). 

Figure 5.5 shows the number of coincidences observed, after subtracting 
accidentals, as a function of the displacement of the beam splitter. The rate of 
coincidences drops to a few percent of its normal value when the two optical 
paths are equal, because of destructive interference of the two-photon probability 
amplitudes. The width of the dip in the coincidence rate yields a measure of the 
length of the photon wave packet which agrees with the value derived from the 
width of the passband of the interference filters F1 and F2. 
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The occurrence of an almost complete null at the center of the dip confirms 
that this is a nonclassical effect, since according to classical theory, the visibility 
cannot exceed 0.5 (Mandel [1983]). The drop in the number of coincidences 
is associated with an increase in the number of photon pairs leaving the beam 
splitter in the same direction. This behavior arises from the Bose-Einstein 
commutation properties of the photon-creation and annihilation operators (Fearn 
and Loudon [1989]). 

An extension of this experiment (Ou and Mandel [1988b]) involves the use 
of interference filters with pass bands centered on different, nonoverlapping 
frequencies, W I  and w2. If the complex frequency responses of these filters 
can be described by Gaussian functions with an rms width u, the measured 
coincidence detection probability is: 

P I ,  K f ino’  exp 
(5.1 1) (-‘yz2) COS(O~ -02)Az , 1 T2+R2-2TRexp ~ 

which is a maximum when the two center frequencies are chosen to satisfy 
the condition 0 1  + 132 = WO.  If T = R = i, eq. (5.1 1) describes an interference 
pattern whose visibility is unity at the center, but falls off exponentially to either 
side. At the center, where A z = 0, the probability of coincidences P I ,  = 0. 

In the actual experiment, the pass bands of the two interference filters 
were centered on conjugate wavelengths of 680 and 725 nm, corresponding 
to a frequency difference (w1 - o2)/2n = 27x lo‘, Hz. Figure 5.6 shows the 
observed two-photon coincidence rate as a function of the position of the beam 
splitter and the corresponding time delay A T  between the signal and idler 
photons. The coincidence rate exhibits interference effects with a spatial period 
of 5.5 pm, corresponding to a temporal period of 37 fs, which is almost exactly 
the period of the beat frequency. This beat frequency is observed even though 
neither of the photo detectors individually registers a beat. 

This experiment also reveals a violation of classical theory. In addition, 
it demonstrates that even though there are fundamental quantum limits in 
attempting to localize the position of a photon to better than a few wavelengths 
in space, or better than a few periods in time (Newton and Wigner [ 1949]), this 
limit does not apply to the average time interval between photons, which can 
always be determined with subperiod precision. 
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Fig. 5.6. Measured number of coincidences in 100 s as a function of the position of the beam splitter, 
or the time delay AT, between the signal and idler photons, along with the theoretical (solid) 
curve obtained from eq. (5.1 1) and the (dotted) curve obtained when the interference term was 

multiplied by 0.8 (Ou and Mandel [1988b]). 

5.2. INTERFERENCE IN SEPARATED INTERFEROMETERS 

Fourth-order interference effects also arise when pairs of photons enter one or 
more interferometers, and the coincidence rate is monitored at the output ports 
(Kwiat, Vareka, Hong, Nathel and Chiao [1990], Ou, Zou, Wang and Mandel 
[ 1990a1, Rarity, Tapster, Jakeman, Larchuk, Campos, Teich and Saleh [ 19901). 

In the arrangement used by Ou, Zou, Wang and Mandel [1990a] (see fig. 5.7), 
the two photons traveled to two photo detectors oia two unbalanced Michelson 
interferometers, which were adjusted so that the difference in the propagation 
time between the longer and shorter paths was the same in both channels and 
was much greater than the coherence time of the individual photons. Under 
these conditions, the count rate registered by the two detectors showed no 
dependence on the optical path difference in either of the interferometers. 
However, measurements of the two-photon coincidence rate, as a function of 
the position of one of the mirrors, revealed interference fringes with a spatial 
period corresponding to the wavelength of the pump beam. A visibility of 
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7. Experimental arrangement used to observe fourth-order interference effects with photon 
pairs in two separated channels (Ou, Zou, Wang and Mandel [1990a]). 

0.5 was obtained in this experiment, but this was due to the limited time- 
resolution of the detector system, and subsequent measurements with higher 
time-resolution gave coincidence fringes with a visibility of 0.87 (Brendel, 
Mohler and Martienssen [ 199 11). 

Unusual interference patterns have also been observed with nondegenerate 
photon pairs (Larchuk, Campos, Rarity, Tapster, Jakeman, Saleh and Teich 
[ 19931). In their experiments, pairs of photons whose center wavelengths differed 
by approximately 40nm were used as the inputs to single and dual Mach- 
Zehnder interferometers (MZI). In the single MZI configuration, the paths of 
both down-converted beams overlapped completely within the interferometer. In 
the dual MZI configuration, their paths did not overlap; this is equivalent to 
sending each beam into a separate interferometer. Second-order interference was 
observed by counting the number of photons at each of the output ports, while 
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observations of fourth-order interference were made by recording coincidences. 
Observations were made as the optical path difference was varied from zero to 
very large values. 

The second-order interference pattern at both the output ports was the 
same for photon pairs as that predicted by classjcal theory for the center 
frequencies, 01  and 1 3 2 ,  and as expected, disappeared when the optical path 
difference exceeded the second-order coherence length. However, the fourth- 
order interference patterns were found to be quite different. For small path 
differences, the coincidence rates exhibited interference fringes corresponding 
to the difference frequency - ozl, as well as the sum frequency 
o, = I wI + 0 2  1, when the beams overlapped, and also when they did not overlap. 
When the beams did not overlap, interference fringes corresponding to the center 
frequencies, W I  and 0 2 ,  were also observed. A striking observation was the 
existence of interference effects at the sum (pump) frequency at path-length 
differences that were greater than the second-order coherence length. This is 
a nonlocal quantum effect, confirming the high degree of entanglement of the 
down-converted photons. 

In another fourth-order interference experiment (Ou, Zou, Wang and Mandel 
[ 1990b]), two photons produced simultaneously provided the two inputs to a 
Mach-Zehnder interferometer, as shown in fig. 5.8, and the photons emerging 
at the two outputs were counted. The rate of coincidences was found to exhibit 
interference fringes with high visibility when the optical path difference was 
varied, despite the fact that the two average output intensities did not vary with 
the optical path difference. The effects observed can be attributed to the fact that 
when two similar photons simultaneously enter a beam splitter at ports 0 and 1, 

= 
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two photons always emerge together either at port 2 or at port 3 (Hong, Ou and 
Mandel [1987]), so that the output from these ports is in a superposition state. 
The resulting fourth-order interference fringes have a visibility of unity and are 
a consequence of the interference of photon pairs, rather than single photons. 

5.3. THE GEOMETRIC PHASE 

As described in 9: 4, earlier observations of the geometric (Pancharatnam) phase 
were made either at low light levels with classical sources, or with single- 
photon states. In both cases, there is no difference in the effects predicted by a 
classical treatment or a quantum-mechanical treatment, since the measurements 
only involve second-order interference. 

The effects produced by the geometric (Pancharatnam) phase in fourth-order 
interference have been studied by Brendel, Dultz and Martienssen [ 19951 using 
the experimental arrangement shown in fig. 5.9. In this setup, photon pairs 
generated by down-conversion of blue light (A = 458 nm) from an argon-ion laser 
in a beta barium borate (BBO) crystal traversed a Michelson interferometer. 
One arm of this interferometer contained two quarter-wave plates, one of 
which was fixed at an azimuth of 45", while the other could be rotated. 
A rotation of the second quarter-wave plate through an angle 6, introduced 
geometric (Pancharatnam) phases A @  = f 2 0 ,  respectively, for the two orthogonal 
polarizations. 

Experiments were carried out using two BBO crystals cut, respectively, for 
type-I and type-I1 phase matching, so that the photons of a pair could be 
prepared either in the same state of polarization (type-I) or in orthogonal states 
of polarization (type-11). 

The photon pairs emerging from the interferometer were incident on a second 
beam splitter BS2 which directed them to two photo detectors D I  and D2. With 
type-I phase matching, BS2 was a normal beam splitter, while with type-I1 phase 
matching, BS2 was a polarizing beam splitter. 

Measurements with this system showed that the effects observed depended on 
the initial states of polarization of the two photons in a pair and the optical path 
difference. With near-zero optical path differences, second-order interference 
fringes were observed, and the effects of the dynamic phase and the geometric 
phase were equivalent. With large optical path differences and coincidence 
detection, no interference was observed due to the geometric phase with type-I1 
phase matching. However, with type-I phase matching, interference fringes with 
a visibility of 0.78 were obtained with a period equal to half that expected with 
a classical light field. 
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Fig. 5.9. Experimental setup used to demonstrate the effects of the geometric phase in fourth-order 

interference (Brendel, Dultz and Martienssen [I  9951). 

These results imply that pairs of photons with parallel polarizations acquire 
twice the geometric phase of single photons and behave like single particles 
with spin 2. On the other hand, pairs of photons with orthogonal polarizations 
acquire geometric phases with opposite signs and behave like a single particle 
with total spin 0. It follows that the equivalence between the dynamical phase 
and the geometric phase observed with second-order interference does not always 
exist with fourth-order interference. 

5.4. TESTS OF QUANTUM THEORY 

According to an alternative interpretation of quantum theory (de Broglie [ 1969]), 
the wave function describes a real physical wave, so that waves associated with 
different particles may interfere. An experiment to test a modified version of this 
theory (Croca, Garuccio, Lepore and Moreira [ 19901) was performed by Wang, 
Zou and Mandel [I9911 using the experimental arrangement shown in fig. 5.10. 

If we assume 50:50 beam splitters, no idler photons will reach D2, but signal 
photons will be detected one-fourth of the time. Idler photons will only reach D1, 
and this will happen one-fourth of the time. Due to second-order interference, 
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Fig. 5.10. Schematic of the experimental arrangement used to test the de Broglie guiding-wave 
theory (Wang, Zou and Mandel [1991]). 

the rate at which signal photons reach D, will depend on the difference in the 
lengths of the optical paths from BSI to BS2 and BS3, resulting in interference 
fringes with a visibility of 0.5. 

However, if we consider the rate of coincidences between Dl and D2, quantum 
theory predicts that this will be a constant, corresponding to the detection of an 
idler photon at Dl and a signal photon at D2. On the other hand, the theory of 
Croca, Garuccio, Lepore and Moreira [ 19901 predicts coincidence fringes with a 
visibility of 0.5 arising from the interference of the guiding wave for the signal 
photon reflected from BS3 with the guiding wave for the idler photon. 

The results of this experiment revealed no such interference effects, supporting 
the quantum theory (however, see Holland and Vigier [1991]). 

0 6. Two-photon Interferometry 

In a classic paper, Einstein, Podolsky and Rosen [1935] presented a paradox 
which brought out the incompatibility of quantum theory and the assumption 
of local realism. They were led to conclude that the quantum-mechanical 
description of a system was incomplete and postulated the existence of 
“hidden variables”, the specification of which would predetermine the results 
of any measurements. Subsequently, Bell [1965] proposed a test, based on a 
Gedankenexperiment of Bohm [ 195 11 involving spin-half particles, that could 
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distinguish between quantum theory and the entire class of theories based on 
local realism. 

At the quantum level, polarization is associated with the spin of the photon. 
Although the photon is a spin-one particle, only two polarization states are 
allowed; hence, the angular momentum of the photon corresponds to that 
of a pseudo spin-half system. Polarization-correlation experiments therefore 
provide a convenient way to realize spin-half particle experiments. This led to 
a generalization of Bell’s theorem, and a proposal for an experiment involving 
measurements of the polarization correlations of photon pairs produced by an 
atomic cascade (Clauser, Horne, Shimony and Holt [ 19691). 

6.1. ENTANGLED STATES AND BELL‘S INEQUALITY 

If we consider a pair of photons described by the entangled polarization singlet- 
like state, 

where H and V denote single photons with horizontal and vertical polariza- 
tions, respectively, and the subscripts identify their propagation directions, a 
measurement involving photons travelling in one of these directions will show no 
preferred polarization. However, if the polarization of photon 1 is measured in 
some basis, the polarization of photon 2 can be predicted with certainty. We 
then find that while quantum mechanics and theories based on local realism 
agree in situations of perfect correlations or anticorrelations, quantum mechanics 
gives different predictions for polarizers at intermediate angles (Clauser, Horne, 
Shimony and Holt [ 19691). 

Initially, experimental tests of Bell’s inequality, based on polarization correla- 
tions, were made using pairs of photons produced by an atomic cascade (Aspect, 
Dalibard and Roger [ 19821). However, in these experiments the correlation of the 
polarizations was not complete because of the imperfect angular correlation of 
the photons. 

Better results have been obtained in experiments using pairs of photons 
produced by parametric down-conversion (Shih and Alley [1988], Ou and 
Mandel [1988a]). In the arrangement used by Ou and Mandel [1988a] (see 
fig. 6. I) ,  linearly polarized photons (wavelength about 702 nm) with their electric 
vector in the plane of the diagram were produced by degenerate parametric down- 
conversion. The idler photons passed through a half-wave plate that rotated their 
plane of polarization by 90°, while the signal photons traversed a compensating 
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Fig. 6.1. Apparatus used to demonstrate violations of Bell's inequality using photon pairs produced 
by parametric down-conversion (Ou and Mandel [1988a]). 

glass plate producing an equal time delay. The mixed signal and idler photons 
emerging from the two sides of the beam splitter, after passing through linear 
polarizers set at adjustable angles 01 and 8 2  and identical interference filters, 
were incident on two photodetectors DI  and D2. The coincidence counting rate 
provided a measure of the joint probability P(01,&) of detecting two photons 
for various settings 8,, 8,  of the two linear polarizers. 

According to quantum theory, the probability of detecting a coincidence in 
this arrangement is: 

which only depends on the difference in the angular settings of the two polarizers. 
The actual coincidence count rates obtained for various values of 81, with 
02 fixed at 45", are presented in fig. 6.2, along with curves corresponding to 
the predictions of quantum mechanics and classical theory. As can be seen, the 
observed relative modulation obtained from the best fit curve is about 0.76, 
which is below the value of 1.00 predicted by quantum mechanics, probably 
because of imperfect alignment of the signal and idler beams, but greater than the 
figure of 0.50 expected from classical theory. However, this result corresponds 
to a violation of Bell's inequality by about 6 standard deviations. 
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Fig. 6.2.  Measured coincidence counting rate for different values of the polarizer angle H I ,  with 
82 fixed at 45". The solid curve and the dashclotted curve correspond to the predictions of 
quantum mechanics and classical theory, respectively. The dashed and dotted curves are obtained 
by multiplying these curves by a factor of 0.76 to allow for reduced modulation due to imperfect 

alignment of the beams (Ou and Mandel [1988a]). 

6.2 .  INTERFEROMETRIC TESTS OF BELL'S INEQUALITY 

The generation of correlated photon pairs by parametric down-conversion has 
also made possible tests of Bell's inequality using two-photon interferometry, 
which are not based on polarization (Horne, Shimony and Zeilinger [1989]). 

A general arrangement for two-photon interferometry is shown in fig. 6.3. In 
this arrangement, pairs of photons, one having a wavelength A ,  and the other a 
wavelength A 2 ,  are selected by four pinholes in a diaphragm placed downstream 
from the nonlinear crystal to produce four beams, A ,  B, C,  D, with wave vectors 
kA, ks ,  kc and kD, where 

and 

kA + kc = ks + kD = k,  

where k is the wave vector of the beam incident on the crystal. 
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Fig. 6.3. Schematic of an interferometer used to demonstrate two-photon interference (Horne, 
Shimony and Zeilinger [1989]). 

Each pair in the ensemble of photon pairs is in the quantum state 

IQ) = 21’2 [ I 4 1  IC)2 + ID)l w 2 1  3 (6.6) 

which is a coherent superposition of the probability amplitudes corresponding 
to two distinct pairs of correlated paths. In one case, a photon with wavelength 
A1 goes into beam A, and a photon with wavelength A2 goes into beam C; 
in the other, a photon with wavelength A1 goes into beam D, and a photon 
with wavelength A2 goes into beam B. A variable phase difference $1 can be 
introduced between the beams A and D before they are recombined by the 
50:50 beam splitter HI and proceed to the photo detectors Ul and Ll . Similarly, 
a variable phase difference $2 can be introduced between the beams B and 
C before they are recombined by the 50:50 beam splitter H2 and proceed to 
the photo detectors U2 and L2. It follows that the two interfering beams at H1 
have the same wavelength Al, while the two interfering beams at H2 have the 
same wavelength A,; however, the wavelengths at HI and H2 are different. 

The quantum-mechanical probabilities for the joint detection of both photons 
by the detector pairs (Ul,U2), ( L I , L ~ ) ,  (U,,L2), and ( U ~ , L I ) ,  are then 
proportional to the absolute squares of the corresponding probability amplitudes 
defined by eq. (6.6), and are given by the relations: 

(6.7) 
WJI, u2 I $ 1 ,  $2) = P(L1, L2 I $ l ?  $2) 

= f v2 [1 + cos($2 - $1 + $011 3 

and 
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where 
determined, once and for all, by the placement of the mirrors and beam splitters. 

detectors are: 

is the quantum efficiency of the photo detectors, and $0 is a phase factor 

On the other hand, the probabilities for detecting single photons by the four 

P(UI I $ l , $ 2 )  = P(LI 191, $2) = P ( U 2  141, $2) = P ( L 2  I $1,  $2) 
- 1  (6.9) 
- YV. 

It follows that while the count rate for single photons, which is defined 
by eq. (6.9), is constant and independent of $ 1  and $2, the count rates for 
coincidences, which are defined by eqs. (6.7-6.8), will vary sinusoidally with 
the phase shifts $1 and $2. These interference fringes observed with spatially 
separated two-photon states are a quantum-mechanical phenomenon arising from 
their entangled nature. 

An experimental arrangement involving two-photon interferometry, similar to 
that shown in fig. 6.3, was used by Rarity and Tapster [1990] for a test of Bell’s 
inequality based on the entanglement of the momenta of the photons in a pair. 
In this case, given the direction of one photon at one of the detectors U 2 , L 2 ,  

quantum theory indicates that the direction taken by the other photon of the pair 
is dependent on the setting of the remote phase plate $2 to an extent that cannot 
be explained by any theory based on local realism. 

To verify this proposition, measurements were made of the coincidence rates 
between the four detectors for selected values of the variable phase differences. 
The correlation coefficient 

can be taken as a measure of the distribution of coincidences between detectors 
on the same side and opposite sides of the beam splitters for these phase settings. 

A generalization of Bell’s inequality (Clauser and Shimony [ 19781) then states 
that the combination of four such measurements, at various phase settings given 
by the relation 

s = WI, $2) - WI, $4) + @; > $2) + w; 9 $9, (6.1 1) 

should always lie within the bounds 

-2 < s 6 2, (6.12) 

if we assume local realism. However, quantum theory indicates that for 
appropriately chosen values of the phase angles ($1 =0, $:=in, $ 2 = 2 n ,  1 

$; = in), 
s = 2 J z .  (6.13) 
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Fig. 6.4. Simplified schematic of the optical system for a Bell's inequality experiment based on 
energy and time correlations (Franson [1989]). 

In actual measurements, a value of S = 2.2 1 f0.022 was obtained. This lower 
value could be attributed to a reduced visibility V=O.78 of the interference 
fringes due to misalignment of the apparatus, but corresponded to a violation 
of Bell's inequality by 10 standard deviations. 

Another experimental test of Bell's inequality was proposed by Franson 
[I9891 and carried out by several groups (Franson [1991a], Brendel, Mohler 
and Martienssen [1992], Kwiat, Steinberg and Chiao [ 19931, Shih, Sergienko 
and Rubin [1993]). Figure 6.4 is a schematic of the basic arrangement. In the 
actual experiments, each of the photons from a down-converted pair was sent 
into an unbalanced interferometer, presenting a short (S) and a long (L) path to 
the final output. 

Examination of the singles count rates when the imbalances were greater than 
the coherence length of the down-converted photons revealed no interference 
effects. However, when the difference of the path-length differences in the 
two interferometers was less than the coherence length of the down-converted 
photons, observations of the coincidence rates revealed interference effects 
arising from the impossibility of distinguishing between the two processes which 
led to coincidences. These interference effects could be observed even when 
the extra optical path traversed by one of the photons was quite long (Franson 
[1991b], Rarity and Tapster [1992]). 

With detectors fast enough to exclude the possibility of one photon taking the 
short path, and the other taking the long path, high-visibility fringes could be 
obtained corresponding to observations of the quantum state 

(6.14) 
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where 4 is proportional to the sum of the relative phases in the two interfer- 
ometers. As shown in fig. 6.5, sinusoidal fringes with a visibility greater than 
0.8 were obtained (Kwiat, Steinberg and Chiao [ 1993]), whereas the maximum 
possible without violating Bell’s inequality would be 0.71. 

Fig. 6.5. Coincidence fringes obtained as the phase in interferometer 1 is varied. The constant 
single-event rate is also shown for comparison (Kwiat, Steinberg and Chiao [1993]). 

A significant loophole in all these experiments has been the lack of detectors 
with unit quantum efficiency, necessitating the assumption that the fraction of the 
pairs detected is representative of the entire ensemble (Clauser, Horne, Shimony 
and Holt [1969], Santos [1992]). Some progress towards solving this problem 
has been made by the development of photo detectors with high quantum 
efficiencies (Kwiat, Steinberg, Chiao, Eberhard and Petroff [ 19931). A possibility 
is the use of a nonmaximally entangled state (in which the magnitudes of the 
probability amplitudes of the contributing terms are not equal), which can lead to 
a significant reduction in the required detector efficiency (Eberhard [ 19931). An 
experiment leading to a loophole-free test of Bell’s inequality has been proposed 
by Kwiat, Eberhard, Steinberg and Chiao [ 19941. 
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6.3. OTHER TESTS OF LOCAL REALISM 

Another solution of the problem of demonstrating that quantum mechanics 
violates local realism, which does not involve Bell’s inequality, has been 
developed by Hardy [1992a,b, 19931 and by Jordan [1994]. Figure 6.6 shows the 
setup used by Torgerson, Branning, Monken and Mandel [ 19951 in an experiment 
based on this approach. 

Pump laser 

Ro 

X Y 

coincidence 
counter 

t+ 
Fig. 6.6. Setup used to demonstrate violation of local realism (Torgerson, Branning, Monken and 

Mandel [ 19951). 

In this arrangement, pairs of photons with linear ( x )  polarizations were 
produced by parametric down conversion. A rotator Ro inserted in the idler beam 
converted it to the orthogonal ( y )  polarization. The signal and idler beams were 
then mixed at a beam splitter, and the two outputs were taken to similar analyzers. 
Each of these consisted of a rotatable half-wave plate (RI or R2) followed by a 
fixed linear polarizer (PI or P2) and a photo detector (DI or D2). 

We consider measurements of the number of two-photon coincidences made 
with a series of polarizer settings when the signal and idler optical path lengths 
are equal. The angles 81 and 810 define two possible settings of the polarizer 
in arm 1; similarly, 0 2  and 820 define two possible settings of the polarizer in 
arm 2. The angles 8i = 0i + ( i =  1, 2, 10, 20) define the orthogonal settings. 
If Pll(01, 82) is the joint probability of detecting a photon in arm 1 with the 
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polarizer set at 01 and a photon in arm 2 with the polarizer set at 02, quantum 
mechanics shows that, for a nonabsorbing beam splitter with [TI2 + IRI2 = 1 and 
IT1 # IRI, there exist polarizer angles 01, 02, 610, 810 ,  020 and 8 2 0 ,  such that 

P 1 2 ( 0 l ,  7320) = 0, (6.15) 

P l 2 ( 7 3 , 0 ,  02) = 0, (6.16) 

PI,(~lO, 0 2 0 )  = 0, (6.17) 

Pl2(01, 02) > 0. (6.18) 

The value of P l 2 ( 0 , ,  02) is greatest when (Torgerson, Branning and Mandel 
[ 19951): 

NL1  - NL2 
i 

3 
IT1 - 
IRI 

tan 81 = (I) = cot 0 2 ,  tan 810 = -- - cot 020. (6.19) 

However, according to the point of view adopted by Einstein, Podoisky and 
Rosen [1935], eq. (6.18) contradicts eq. (6.17). 

Experimental measurements confirmed that the value of P12(01, 02) was 
clearly non zero. Even though the values for P 1 2 ( 0 1 ,  820), P 1 2 ( 8 1 0 ,  02) and 
7+(010, 020)  were not exactly equal to zero, the data contradicted local realism 
by about 45 standard deviations. 

6.4. TWO-PHOTON INTERFERENCE 

Another class of two-photon interference experiments makes use of the down- 
converted light beams from two nonlinear crystals which are optically pumped 
by mutually coherent beams from the same laser. 

In one arrangement (see fig. 6.7), the signal beams s1 and s2 from the two 
down-converters are combined by one beam splitter (BSA) and allowed to fall 

00 

Fig. 6.7. Experimental arrangement used to observe interference effects produced by down-converted 
light beams from two nonlinear crystals (Ou, Wang, Zou and Mandel [1990]). 
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Fig. 6.8.  Measured two-photon coincidence rate as a function of the displacement of the beam splitter 

(Ou, Wang, Zou and Mandel [1990]). 

on one photo detector (DA), while the two idler beams i l  and i2  are combined by 
another beam splitter (BSB) and taken to another photo detector (DB) (Ou, Wang, 
Zou and Mandel [ 19901). Measurements of the counting rates of the individual 
photo detectors showed no change as the optical path difference was varied, 
confirming that the mutual coherence of the pump beams did not produce any 
mutual coherence, either between the two signal beams SI  and s2 from the two 
down-converters, or between the two idler beams i ,  and iz. However, as shown 
in fig. 6.8, measurements of the coincidence rate for simultaneous detection of 
photons by both DA and DB, as a function of the optical path difference, revealed 
interference effects. 

A modification of this arrangement, shown in fig. 6.9, uses a single nonlinear 
crystal traversed by the pump beam in opposite directions (Herzog, Rarity, 
Weinfurter and Zeilinger [ 19941). Down-converted photons can be generated on 
either of the two passes, and it is possible to make the idler modes from the 
two processes overlap at one photo detector, while the signal modes overlap at 
the other. Since the two production processes are indistinguishable, interference 
effects are observed in the singles rates, as well as in the coincidence rates, when 
any one of the mirrors is translated. An interesting aspect of this experiment is 
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I Counter I 

Fig. 6.9. Arrangement using a single nonlinear crystal to generate two sets of down-converted light 
beams (Herzog, Rarity, Weinfurter and Zeilinger [1994]). 

that the distances to the mirrors can be much greater than the coherence lengths 
of the down-converted beams; one interpretation of the results is, therefore, a 
variable enhancement (or suppression) of the down-conversion process. 

Nonclassical effects can also show up in certain second-order interference 
experiments in which only one photon is detected (Mandel [1982]). Figure 6.10 
is a schematic of the optical system for such an interference experiment with 
beams from two parametric down-converters (Zou, Wang and Mandel [ 19911). 
In this arrangement, both the nonlinear crystals, NLI and NL2, were optically 
pumped by mutually coherent beams derived from the same laser by means of 
a beam splitter. However, while the two signal beams sI and s2 were combined 
by means of another beam splitter and taken to a photo detector (Ds), the idler 
beam iI was allowed to pass through the nonlinear crystal NL2 and fall, along 
with the second idler beam i2, directly on the other photo detector Di. 

When the optical path difference was varied by translating the beam splitter 
BSo, the photon counting rate at D, was found to oscillate, indicating that S I  and 
s2 were mutually coherent (see curve A in fig. 6.1 1). These oscillations could be 
observed as long as il and i2 were collinear, but if either i l  or i2 was misaligned, 
or if il was blocked so that it could not reach NL2, the interference disappeared 
(see curve B in fig. 6.1 1). 

If, instead of blocking il, an attenuator or beam splitter with a complex 
amplitude transmittance t was placed between NL, and NL2, the visibility of 
the interference pattern registered by D, was found to be proportional to It/. 
However, the average rate of photon counts was the same in both cases, implying 
that the degree of mutual coherence of the two beams could be controlled without 
affecting their intensities. 

In addition, the introduction of a delay z, by varying the length of the path 
of the idler il between the two nonlinear crystals NLI and NL2, was found to 
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Displacement of BS, in pm 

Phase in multiples of 7c 

Fig. 6.1 I .  Counting rate of the detector D, as a function of the displacement of the beam splitter BSo: 
(A) with the idler beams il and iz aligned and (B) with the idler beam i l  blocked (Zou, Wang and 

Mandel [1991]). 

affect the visibility of the interference effects produced by the signal beams, s1 
and s2, exactly as if the delay had been introduced in one of the signal paths 
(Zou, Grayson, Barbosa and Mandel [1993]). A phase shift of the idler beam il 
introduced through the geometric (Pancharatnam) phase (see 6 4.1) also had the 
same effect on the interference pattern produced by the signal beams (Grayson, 
Torgerson and Barbosa [ 19941). 

Figure 6.12 shows the variation of the visibility of the interference effects as 
a function of the time delay; as can be seen, when t > z,, where tc M 1 ps is the 
coherence time, the visibility of the interference effects drops to zero. However, it 
is well known that even when z >> z,, interference effects can still be seen in the 
spectral domain (Mandel [1962]). Such effects were observed in this experiment 
by inserting a scanning Fabry-Perot interferometer before the detector D, (Zou, 
Grayson and Mandel [1992]). As shown in fig. 6.13, the expected modulation of 
the spectrum could be observed even with a differential delay z 3 5 ps M 5z,. 
This modulation disappeared when the idler beam i l  was blocked. 

All these effects can be understood in terms of the indistinguishability of 
the paths taken by the beams through the interferometer. In the arrangement 
shown in fig. 6.7, when a coincidence is registered, there is no way to determine 
whether the pair of photons involved originated in NLI or NL2. Similarly, in the 
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Fig. 6.12. Variation of the visibility of the interference effects produced by the signal beam s1 and 
s2 with the time delay inserted in the idler beam i l  (Zou, Grayson, Barbosa and Mandel [1993]). 
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Frequency ( G H z )  

Fig. 6.13. Variation of the count rate as a function of the optical frequency with a time delay 5 x 3t, 

inserted in (A) SI and (B) i l  . The dashed curve shows the original unmodulated spectrum (Zou, 
Grayson and Mandel [1992]). 
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arrangement shown in fig. 6.10, there is no way to determine the origins of the 
photons reaching the photo detector D,, as long as both i l  and i2 are incident on 
the detector D,. 

6.5. TWO-PHOTON TESTS OF BELL‘S INEQUALITY 

An experimental arrangement that could overcome the problems encountered 
with earlier interferometric tests of Bell’s inequality has been proposed by PaviEiC 
[ 19951. This arrangement is based on fourth-order spin-correlated interferometry 
using two independent pairs of spin-correlated photons. 

Ou, Hong and Mandel [I9871 showed that a pair of orthogonally polarized 
photons incident on a symmetrically positioned beam splitter produce a singlet- 
like state. On the other hand, similar photons with parallel polarizations never 
appear on opposite sides of the beam splitter (Hong, Ou and Mandel [1987]). 
Subsequently, these observations were extended to show that the fourth-order 
interference interaction between a beam splitter and two incoming unpolarized 
photons imposes polarization correlations on the emerging photons. For an 
appropriate position of the beam splitter, incoming unpolarized photons emerge 
with orthogonal polarizations. More specifically, they appear entangled in a 
singlet state, similar to that described by eq. (6.1), when they exit on different 
sides of the beam splitter (PaviEik [1994], PaviEiC and Summhammer [1994]). 

In the arrangement shown in fig. 6.14 (PaviEib [ 1995]), a subpicosecond laser 
pulse pumps two nonlinear crystals, NLI and NL2, to produce simultaneous 
pairs of signal and idler photons with the same frequency, which are converted 
to orthogonal polarizations by the 90” rotators. These photon pairs are incident 
on the two beam splitters, BSI and BS2, which therefore act as sources of 
independent singlet pairs. Two of the photons, one from each pair, interfere at 
the beam splitter BS. As a result, the other two photons from these pairs appear 
to be in a singlet state, although they are completely independent and have never 
interacted. Even when no polarization measurements are carried out on the first 
two photons, one finds polarization correlations between the latter two photons. 
One of the subsets of these two photons contains only photons in the singlet 
state, and we can therefore consider them preselected by their pair-companions 
which interfered at BS. 

It can then be shown that, with the polarizers PI and P2 removed, and the 
polarizers PI’ and P2’ oriented at angles and &, respectively, the probability 
of coincident detection of four photons by the detectors D1, D2, D1’ and D2’ is 
given by the relation 

~ ( e , ! ,  e24 = 1 [ I  - V C O S ~ ( ~ , !  - e24] , (6.20) 
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Fig. 6.14. Experimental arrangement for an interferometric test of Bell’s inequality using spin- 
correlated photons (PaviEiC [ 19951). 

where V is the visibility of the fringes normally obtained by coincidence 
counting. This probability is given by the ratio of the numbers of coincidence 
counts, 

N(D1’ n D2’) 
f(’i” ‘”) = N [(Dl’ U D l ’ l )  n (D2’ U D2/*)] ’ 

divided by 4. For a violation of Bell’s inequality, we need 

(6.2 1) 

(6.22) 

where 77 is the quantum eficiency of the detectors. 
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PaviEiC [ 19951 has also proposed a modification that would, in principle, 
make it possible to lower the required threshold levels for the visibility of the 
interference fringes and the quantum efficiency of the detectors. 

9 7. Complementarity 

Interferometry in the quantum domain is characterized by complementarity: 
wave us particle, certainty in photon number us certainty of phase, visibility of 
interference fringes us certainty of the photon path. The paradox of the undular 
and corpuscular aspects of light, which flow from the quantum description, has 
led to many experiments to study complementarity. 

In 6 3.2, we discussed some experiments on interferometry with single-photon 
input states by Grangier, Roger and Aspect [1986]. Although the quality of 
the interference fringes produced by single-photon states is impressive, the 
most striking aspect of the experiment is the fact that the apparatus could be 
transformed easily to exhibit either wave-like or particle-like behavior by a single 
photon. At the same time, it does not follow that two distinct experiments are 
required to reveal complementary features of the photon. Wootters and Zurek 
[ 19791 employed an information-theoretic approach to show how, in a double-slit 
experiment, one could obtain some information on the path taken by the photon 
(particle-like behavior) while retaining an interference pattern with some degree 
of clarity (wave-like behavior). Measurements are not restricted therefore to 
either one or the other of these complementary quantities, and some information 
on both can always be obtained, subject to the limits set by complementarity. 

7. I .  QUANTUM-NONDEMOLITION MEASUREMENTS 

Heisenberg’s principle states that the uncertainty in the number of quanta n in a 
beam of light and the uncertainty in its phase @ are linked through the relation 
(Heitler [1954]) 

It follows from this relation that, if we know the exact number of photons in a 
beam, we have no knowledge of the phase. 

However, in principle, experiments based on photon-number quantum non- 
demolition measurements are possible (Milburn and Walls [ 19831, Yamamoto, 
Imoto and Machida [1986], Braginsky [1989]), in which the photon number of 
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the light field can be measured in such a way that, following the measurement, the 
number of light quanta remains unchanged. Several schemes have been proposed 
for this purpose (Roch, Roger, Grangier, Courty and Reynaud [ 19921). 

One method is based on the phase shift of an electron wave produced by a light 
beam through the Aharonov-Bohm effect (Chiao [ 19701, Lee, Yin, Gustafson 
and Chiao [ 19921). Another uses the phase shift in a probe beam resulting from 
the index change produced through the Kerr effect by a signal beam (Imoto, Haus 
and Yamamoto [1985], Kitagawa and Yamamoto [1986]). Yet other proposals 
use Rydberg atoms to give indirect information on the number of photons in a 
microwave cavity (Haroche, Brune and Raimond [1992], Walther [ 19921). 

Since a quantum-nondemolition measurement allows the determination of the 
presence of a single photon without annihilating it, complementarity requires 
a disturbance to the interference fringes. A theoretical treatment, by Sanders 
and Milburn [ 19891, of a photon-number quantum-nondemolition measurement 
in one arm of a Mach-Zehnder interferometer, with single-photon inputs into 
one port of the interferometer, demonstrates that the interference fringes are 
progressively reduced in visibility as greater certainty of the path of the photon 
through the interferometer is obtained. The presence of the photon is detected by 
the phase shift of a probe field that interacts with the photon uia a nonlinear Kerr 
medium. Greater certainty of the path of the photon requires a reduction of the 
phase fluctuations in the probe field. This reduction requires a corresponding 
increase in the amplitude fluctuations of the probe field which feed, in turn, 
into the phase fluctuations of the field within the interferometer and destroy the 
interference fringes. 

7.2. DELAYED-CHOICE EXPERIMENTS 

An interesting question raised by von Weiszacker [ 193 I ]  and by Wheeler [ 19781 
is whether the result of Young’s double-slit experiment would be changed if the 
decision to observe either interference, or the path of the photon, was made after 
the photon had passed through the slits. 

Wheeler’s proposal envisaged a Mach-Zehnder interferometer illuminated by 
a light pulse with photo detectors placed in the two outputs. A decision would be 
made “whether to put in the second beam splitter, or take it out, at the very last 
minute”. This would make it possible to decide whether the photon had come 
by one route, or by both routes, after it had already completed its journey. 

A delayed-choice experiment along these lines was carried out by Hellmuth, 
Walther, Zajonc and Schleich [ 19871 with an interferometer incorporating 
5 m long single-mode fibers in the two paths. The light source was a mode-locked 
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krypton-ion laser emitting pulses with a duration of 15Ops at a repetition rate 
of 81 MHz. An acousto-optic switch was used to select one pulse out of 8000, 
thereby ensuring that the time between pulses was much longer than the transit 
time of the light through the interferometer. An optical attenuator reduced the 
average number of photons per pulse to less than 0.2. A combination of a Pockels 
cell and a polarizing prism was used as a switch in one arm to interrupt the light 
after it had passed the first beam splitter. Data were recorded as the mode of 
operation was switched between normal and delayed-choice for successive light 
pulses. 

The results obtained showed no observable difference between the normal 
and delayed-choice modes of operation, in agreement with the predictions of 
quantum mechanics. However, since the picosecond pulse is in a coherent 
state, the second-order correlation function g(2)(0) is nonzero, and perfect path 
information cannot be obtained. 

Another delayed-choice experiment, performed by Baldzuhn, Mohler and 
Martienssen [ 19891, used photon pairs produced by parametric down-conversion 
(see $2.5.2). One photon served as a trigger to switch between registration of 
“which-path” information and phase information. In this case also, the result 
was independent of whether the switching took place before, or after, the photon 
passed the first beam splitter of the interferometer. 

7 . 3 .  THE QUANTUM ERASER 

Another consequence of the uncertainty principle is that any attempt to identify 
the path of a photon leads to an irreversible change in its momentum, which in 
turn washes out any interference effects (Bohr [ 19831). However, measurements 
which do not involve a reduction of the state vector can be reversible in some 
sense. 

Normally, whenever “which-path” information is available, the paths in an 
interferometer are no longer indistinguishable, and interference effects cannot 
be observed. However, interference effects may reappear if the distinguishing 
information can somehow be “erased” by correlating the results of the measure- 
ments with the results of properly chosen measurements on the physical system. 
This procedure is the basis of what is now commonly known as the “quantum 
eraser” (Scully and Druhl [1982], Scully, Englert and Walther [1991], Zajonc, 
Wang, Zou and Mandel [1991]). 

One demonstration of a quantum eraser (Kwiat, Steinberg and Chiao [1992]) 
used the interferometer shown in fig. 7.1. A half-wave plate inserted in one of 
the paths before the beam splitter was used to rotate the plane of polarization 
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Fig. 7.1. Two-photon interferometer used as a quantum eraser (Kwiat, Steinberg and Chiao [1992]). 

of one of the beams. When the polarization of this beam was orthogonal to that 
of the other beam, the coincidence null disappeared, since it became possible to 
identify the paths taken by each of the photons. However, this information could 
be erased by inserting two polarizers just in front of the photo detectors, after 
the photons had left the beam splitter. 

In particular, if the initial polarization of the down-converted photons was 
horizontal, and the half-wave plate rotated one polarization to vertical, polarizers 
at 45" before each detector restored the original coincidence null, Interference 
could not be restored with a single polarizer in front of one detector, since 
"which-path" information was available from the photon reaching the other 
photodetector. In addition, as shown in fig. 7.2, if one polarizer was set at 45" 
and the other at -45", an interference peak was observed instead of a dip. 

The quantum-eraser concept could also be realized with the interferometer 
shown in fig. 6.7 (Ou, Wang, Zou and Mandel [1990]). In this case, removal 
of the beam splitter BSB, which at first sight should not affect the results, 
destroyed the interference. The explanation is that since the signal and idler 
photons are produced simultaneously, it then became possible from the output of 
the photo detector DB to decide whether the corresponding signal photon came 
from NL, or NL2. Insertion of BSe mixed the idlers and erased the information 
on the paths taken by the photons (Zajonc, Wang, Zou and Mandel [1991]). 

The experimental arrangement shown in fig. 6.10 (Zou, Wang and Mandel 
[1991]) could also be modified to demonstrate this concept by using a half-wave 
plate between the two crystals to rotate the polarization of the idler photons from 
NLI , so that it was orthogonal to the polarization of the idlers from NL2. In this 
arrangement, interference could be recovered by using a polarizer in front of D, 
and correlating the counts of the two detectors. 

With fast detectors and a rapidly switchable polarizer, it should even be 
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Fig. 7.2. Experimental data obtained with a two-photon interferometer with the polarizer in one 
path set at 45” and the polarizer in the other path set at various angles (Kwiat, Steinberg and Chiao 

[ 19921). 

possible to choose the orientation of the polarizer after the signal photon 
is detected, making possible a delayed-choice decision to observe particle- 
like behavior (“which-path’’ information) or wave-like behavior (interference) 
(Kwiat, Steinberg and Chiao [ 19941). 

In all these cases, it appears that the state vector reflects not only what is 
known about the photon, but also whatever information is available in principle. 
The additional measurements needed to obtain this information, either on the 
source or on the path of the detected photon, need not actually be carried out; 
it is enough for them to be possible, in principle, for the interference effects to 
be destroyed. 

7.4. SINGLE-PHOTON TUNNELING 

If two right-angle prisms are placed with their hypotenuse faces opposite each 
other, but separated by an air gap, a beam of light incident on the interface at an 
angle greater than the critical angle is totally internally reflected. However, if the 
air gap is reduced to a fraction of a wavelength, some of the light is transmitted. 
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The fact that light tunnels through such a gap by evanescent coupling confirms 
the wave-like behavior of light. 

On the other hand, if the same experiment is repeated with single-photon 
states, nonclassical effects are observed (Ghose, Home and Aganval [ 19911). 
With this arrangement, as we have seen earlier, quantum mechanics predicts 
that photons will be detected in perfect anticoincidence in the transmitted and 
reflected beams. This prediction has been verified experimentally by Mizobuchi 
and Ohtake [ 19921. Accordingly, we have a situation where single-photon 
states display wave-like properties (tunneling) as well as particle-like properties 
(anticoincidence). 

7.4. I .  Tunneling time 

The phenomenon of tunneling is actually a fundamental consequence of quantum 
mechanics, which states that all quantum particles, in principle, can tunnel 
through normally forbidden regions of space. However, the question of how 
much time it takes for a particle to tunnel through a barrier is quite controversial 
(Buttiker and Landauer [ 19821, Hauge and Stervneng [ 19891, Fertig [ 19901). 
Interferometric experiments have made it possible to study this aspect of 
photon tunneling. 

7.4.2. Dispersion cancellation 

It follows from the uncertainty principle that, to make measurements of transit 
times with high resolution, it is necessary to make the energy uncertainty 
or spectral bandwidth quite large. With such large spectral bandwidths, any 
dispersive effects can result in significant broadening of a pulse, and a 
consequent decrease in time resolution (Franson [ 19921). This problem can 
be avoided by making measurements with correlated photon pairs. It is then 
possible to take advantage of quantum-mechanical effects to obtain an effective 
cancellation of dispersion (Steinberg, Kwiat and Chiao [ 1992a,b, 19931). 

With photon pairs produced in an entangled state, the frequencies of the 
individual photons are not defined sharply, but the sum of their frequencies is 
fixed. If we use an interferometer similar to that described by Hong, Ou and 
Mandel [1987] (see fig. 5.4), with a dispersive medium (say, a glass plate) in one 
beam, one photon of each pair travels through the dispersive medium while its 
conjugate travels through a path containing only air. However, after the photons 
are recombined at the beam splitter, it becomes impossible to determine which 
one of them travelled through the glass plate. This indistinguishability leads to 
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a cancellation of first-order dispersion effects, so that there is no broadening of 
the coincidence minimum. As a result, the shift in the position of the minimum 
in the rate of coincidences can be used to make high-resolution measurements 
of the propagation delay produced by the glass plate. 

7.4.3. Measurements of tunneling time 

The experimental arrangement used for measurements of tunneling time is shown 
in fig. 7.3 (Steinberg, Kwiat and Chiao [1993]). The tunnel barrier was a 
multilayer dielectric mirror consisting of 11 alternating layers of low- and high- 
index material, each a quarter of a wavelength thick at the wavelength used 
(700nm in air), coated on one half of the surface of a high-quality optical 
flat. In such a periodic structure, the multiple reflections interfere so as to 
exponentially damp the incident wave, resulting in the equivalent of a photonic 
bandgap (Yablonovitch [1993]) at which more than 99% of the incident light is 
reflected. 

% UV laser 

beam 
, 1 splitter 

c 

Fig. 7.3. Apparatus used for measurements of the single-photon tunneling time (Steinberg, Kwiat 
and Chiao [1993]). 

To make measurements of the tunneling time, the multilayer structure was 
moved periodically into and out of the beam, while the optical path difference 
between the beams was vaned slowly by translating the reflecting prism. 
A Gaussian curve was then fitted to each of the two dips in the rate of 
coincidences, and the distance between their centers was calculated. Figure 7.4 
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Fig. 7.4. Variation of the rate of coincidence counts with the delay time, with and without the tunnel 
barrier in the optical path, With the barrier, the minimum occurs approximately 2fs earlier than 

without the barrier (Steinberg, Kwiat and Chiao [1993]). 

shows a typical set of data. The average of several such measurements showed 
that the peak arrived 1.47f0.21 fs earlier when the multilayer was in the 
path (Steinberg, Kwiat and Chiao [1993]). In an extension of this experiment, 
Steinberg and Chiao [ 19951 determined the delay times for the transmission of 
photons through a dielectric mirror as a function of the angle of incidence. These 
measurements made it possible to study the energy dependence of the tunneling 
time. 

The interpretation of the apparently superluminal velocities observed has been 
discussed by Landauer [1993]. One explanation is that the whole transmitted 
wave packet comes from the leading edge of the much larger incident wave 
packet. 

7.5. INTERACTION-FREE MEASUREMENTS 

An interesting application of complementarity discussed by Elitzur and Vaidman 
[I9931 and by Vaidman [1994] is in interaction-free measurements. At issue 
is the determination of whether or not a perfectly efficient detector occupies a 
certain region of space, without actually triggering this detector. To dramatize the 
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Fig. 7.5. Scheme for interaction-free measurements (Kwiat, Weinfurter, Heaog, Zeilinger and 
Kasevich [1995]). 

situation, the detector is pictured as a bomb which has unit detection efficiency 
and is triggered by the absorption of a single photon; one must determine whether 
the bomb is present, or not, without allowing a single photon to be absorbed. 

A Mach-Zehnder interferometer can be set up so that all photons exit through 
a specified output port if the detector, or bomb, is not located in one arm of the 
interferometer. The presence of the bomb in this arm destroys the interference 
required for all photons to exit only through the specified port. It follows that the 
presence of the bomb can be detected through the observation of a photon exiting 
from the other port. However, for an interferometer constructed with 50:50 beam 
splitters, the probability of triggering the bomb is 50%, while the probability of 
knowing unambiguously that the bomb is present, without triggering the bomb, 
is only 25%. Accordingly, while this scheme permits, in principle, interaction- 
free measurements of the presence of the bomb, it is far from ideal. The basic 
strategy for interaction-free measurements is, therefore, to exploit the wave-like 
behavior of light to increase the probability of establishing the presence of an 
absorber, while reducing, or eliminating, the probability of a photon traversing 
the path in which the absorber lies. 

Kwiat, Weinfurter, Herzog, Zeilinger and Kasevich [ 19951 have proposed an 
interaction-free measurement scheme which, assuming a loss-free system, can 
raise this ratio for interaction-free measurements to as close to unity as desired. 
As shown in fig. 7.5, a beam splitter is placed in an optical cavity; the single 
photon is generated on one side of the beam splitter (say, the left) and the detector 
(the bomb) is placed on the other side. For a reflectivity 

R = cos’(&), 

the photon will be found in the right side of the cavity, after N time cycles, 
with probability cos2(x/2N) if the bomb is not present; however, if the bomb is 
present, the wave function of the photon is continually projected back on to the 
left half of the cavity, with the probability of finding the photon in the left half 
of the cavity, after N cycles, tending to unity as N + DC). 
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9 8. Quantum Limits to Interferometry 

8.1. NUMBER-PHASE UNCERTAINTY RELATION 

Dirac [1927], in his formulation of quantum electrodynamics, quantized the field 
by treating the photon number n and phase @ as canonically conjugate quantities, 
rather than the variables XI and X2 of eq. (2.17). However, quantization of 
the phase variable is not straightforward, due to the periodicity of the phase 
and the lower bound for the spectrum of the photon number operator (Susskind 
and Glogower [ 19641, Paul [1974]). Despite this difficulty, the number-phase 
uncertainty relation defined by eq. (7.1) has proved useful for characterizing 
the limited precision of phase measurements with laser light sources (Serber 
and Townes [1960], Friedburg [1960]). The inequality defined by eq. (7.1) 
quantifies the trade-off between reducing photon-number fluctations in the source 
and reducing the phase noise, and the coherent state of light can be regarded 
as a minimum-uncertainty state in the strong-field limit (Carruthers and Nieto 
[1965, 19681). The difficulty with the periodicity of the phase can be alleviated 
by replacing the phase operator by noncommuting operators corresponding 
to cos@ and sin@ (Louise11 [1963], Susskind and Glogower [1964]), leading 
to a modified version of the uncertainty relation (7.1) involving An, AcosQ 
and Asin@. 

Gerhardt, Welling and Frolich [ 19731 and Gerhardt, Buchler and Litfin [1974] 
attempted to measure directly the phase fluctuations of a microscopic radiation 
field, in order to check the number-phase uncertainty relation. They sent 
coherent light from a laser into a Mach-Zehnder interferometer and attenuated 
the light in one path to a mean photon number between 3 and 12. The resultant 
increase in phase fluctuations induced a random phase shift in the beam in 
that arm. This field was then amplified by a Q-switched laser with a gain 
factor of 101o. The field in the second arm of the interferometer served as 
the reference field for homodyne detection of the output. In order to minimize 
external disturbances, the phase deviation between two pulses separated by less 
than a microsecond was measured. The results of these experiments did not agree 
with the uncertainty relations of Carruthers and Nieto [ 19651, but Nieto [ 19771 
showed that they agreed better with measurements of a phase-difference operator, 
rather than with measurements of absolute phase. 

It must be kept in mind that although direct measurements of phase, and, 
therefore, of number-phase uncertainty relations, cannot be performed, indirect 
measurements of phase are possible. Alternate versions of phase operators 
can be constructed for particular phase-sensitive measurements (Barnett and 
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Fig. 8.1. Interferometer used to measure the phase difference between two beams of light (Noh, 

Fougiires and Mandel [ 19911). 

Pegg [1986], Noh, Fougeres and Mandel [1991, 1992a,b]) or inferred from 
measurements of quasiprobability distributions such as the Wigner function, as 
in the experiments performed by Smithey, Beck, Cooper and Raymer [1993]. 

The optical system used by Noh, Fougeres and Mandel [1991, 1992a,b] is 
shown in fig. 8.1. In this arrangement, the two input fields are mixed by four 
beam splitters, and four photo detectors are used to count the photons emerging 
from four output ports. A 90' phase shifter is inserted in one arm of the 
interferometer. 

For this measurement scheme, the cosine and sine operators can be taken to 
be 

where n3, n4, ns and n6 correspond to the photon counts registered by 
the detectors D3, D4, Ds and D6, respectively. The operators describe the 
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measurement statistics well in the limit that the photon-number fluctuations at 
each detector are small compared to the mean photon number. 

A theoretical analysis then shows that for input fields with (A,), (A2) << 1 ,  the 
dispersions of and 2, obey the inequalities 

so that both the cosine and the sine of the phase difference are ill-defined. This 
result is confirmed experimentally. The probability distribution P(42 - $ 1 )  of 
the phase difference can then be derived by imposing a phase shift $s on the 
field at input port 2, and repeating the measurements for a range of values of @s 

from -n to n. 

8.2. THE STANDARD QUANTUM LIMIT 

The quantum limit in interferometry is usually obtained from an argument which 
balances the error due to photon-counting statistics against the disturbances of 
the end mirrors produced by fluctuations in radiation pressure (Edelstein, Hough, 
Pugh and Martin [1978], Forward [1978]). According to this argument, since the 
number of photons which pass through the interferometer in the measurement 
time z is 

where P is the laser power, fluctuations in the laser power produce an uncertainty 
in n given by the relation 

A n  M n-1’2. (8.4) 

The existence of this quantum limit is now well established, but the argument 
leading to it has been open to question, since it relies on the assumption that the 
power fluctuations in the two arms are uncorrelated. 

A more rigorous analysis (Caves [ 19801) reveals two different, but equivalent, 
points of view on the origin of the fluctuations. The first attributes them to the 
fact that each photon incident on the beam splitter is scattered independently, 
thereby producing binomial distributions of photons in the two arms which 
are precisely anticorrelated. The second ascribes them to vacuum (zero-point) 
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fluctuations in the field entering the interferometer from the other input port. This 
field acts in antiphase on the laser fields in the two arms. It follows, therefore, 
that the photon-counting error is an intrinsic property of the interferometer. 

The standard quantum limit (SQL) in interferometry is obtained by inserting 
eq. (8.4) into eq. (7.1) to obtain the corresponding uncertainty in the measured 
values of the phase: 

where H is the mean photon number. This limit poses problems in measuring 
extremely small displacements and is critical in such applications as the detection 
of gravitational waves. One way to overcome the SQL is by injecting squeezed 
states into one or both ports of the interferometer (Caves [ 198 11, Bondurant and 
Shapiro [ 19841). 

8.3.  INTERFEROMETRY BELOW T H E  SQL 

A schematic of a Michelson interferometer designed to detect gravitational 
radiation (Caves [1980]) is shown in fig. 8.2. This interferometer uses a delay 
line in each arm, and although only two reflections on each mirror are shown, a 
larger number can be used to increase the effective length of each arm (Billing, 
Maischberger, Riidiger, Schilling, Schnupp and Winkler [ 19791). A change in the 
difference of the lengths of the optical paths in the two arms due to a gravitational 
wave results in a change in the phase difference between the beams, which can 
be measured by the intensity change at the detector. 

The SQL can be overcome in such an interferometer by using squeezed light. 
A limit. 

is achievable in principle by feeding suitably constructed squeezed states into 
both input ports of the interferometer. In actual experiments with a polarization 
interferometer, an increase in the signal-to-noise ratio of 2dB, relative to 
the shot-noise limit, has been achieved using squeezed light generated by an 
optical parametric amplifier (Grangier, Slusher, Yurke and LaPorta [ 19871). The 
maximum improvement in sensitivity can be obtained by preparing the light 
entering each of the two input ports of the interferometer in a state that consists 
of exactly j photons (Yurke, McCall and Klauder [ 19861, Holland and Burnett 
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Fig. 8.2. Schematic of a Michelson interferometer for detecting gravitational waves (Caves [ 19801). 

[ 19931, Sanders and Milburn [ 19951). States conforming to this requirement can 
be generated, for example, with two-mode four-wave mixers (Yurke, McCall 
and Klauder [1986]). The difference in the photo counts at the two output 
ports can then be processed to obtain the phase difference. However, to achieve 
maximum sensitivity, the deviation of the phase difference 4 from zero must be 
less than I h .  This requirement can be met by the use of a feedback loop that 
holds 4 at zero. 

8.4. INTERFEROMETERS USING ACTIVE ELEMENTS 

An analysis based on the theory of Lie groups shows that conventional 
interferometers using only passive elements can be characterized by an SU(2)- 
group symmetry. An alternative class of interferometers, characterized by an 
SU( 1 , 1)-group symmetry (Yurke, McCall and Klauder [ 1986]), exploits the fact 
that the output of an active element, such as a four-wave mixer or degenerate 
parametric amplifier, depends on the relative phases of the pump and the 
incoming signal. In these interferometers, beam splitters are replaced by such 
active elements, and no light is fed into the input ports. They offer the possibility 
of attaining a phase sensitivity approaching I h  with fewer optical elements. 
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In one arrangement, the beam splitters of a conventional interferometer are 
replaced by four-wave mixers. When the two optical paths are equal, no light is 
delivered to the photodetectors, since the pairs of pump photons converted into 
pairs of four-wave output photons at the first four-wave mixer are converted back 
into pump photons at the second four-wave mixer. An alternative arrangement 
uses two degenerate parametric amplifiers. The output is then sensitive to the 
difference between the phases accumulated by the signal and pump beams. 

Q 9. Conclusions 

The dawn of the twentieth century saw the introduction of a duality to the 
behavior of light. Depending on the experiment chosen, light appeared to behave 
either as a wave or as a collection of particles. The quantum theory of light 
evolved in response to the need to reconcile these two contradictory aspects. 

Starting from the early work of Dirac [1927] on the quantization of light, 
which treated photon number and phase as complementary quantities, and the 
use of coherent states of light to make the transition from classical to quantum 
descriptions of radiation, this progression led, eventually, to a single cohesive 
theory of quantum optics which has successfully described and predicted a 
diverse range of phenomena. 

However, despite the success of quantum theory in explaining nonclassical 
effects, the mystery of the quantum world is deep enough to provoke many tests 
of the theory itself. Optical interferometry has played an increasingly important 
part in these tests, ranging from early experiments which verified Dirac’s famous 
dictum to recent experiments involving Bell’s inequality. In all these cases, 
optical interferometry has provided evidence supporting quantum theory and 
refuting alternative theories. 

The mysterious aspects of quantum theory arise essentially because of the 
complementarity of wave and particle behavior. In the case of light, the 
complementarity of photon number and phase is still provoking research. The 
question of “What is phase?” has compelled researchers to conduct experiments 
to probe the limits to phase measurements, and theoreticians to ponder a 
definition of phase that is consistent with the axioms of quantum theory. 

The duality inherent in the quantum description of light provides two alternate 
pictures for describing interference phenomena in an intuitive way: the “semi- 
classical picture”, which treats the quantized light field as being composed 
of classical waves which can interact with quantized matter, and the “photon 
picture”, which treats the light quanta as fundamental. Each picture has its 
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advantages and limitations, depending on the experiment considered, but the two 
pictures overlap in discussions of weak semiclassical fields where the number of 
photons is small, and individual photons can be detected. 

In most situations, the “photon picture” gives a good description of the 
interference phenomena observed, provided that Dirac’s statement that “a photon 
interferes only with itself. . . ” is borne in mind. There are conceptual difficulties 
in applying this dictum to some of the higher-order interference effects described 
in this review, but a way out is to extend it to read “each pair of photons interferes 
only with itself”. 

An alternative explanation is to regard optical interference as due to the exis- 
tence of indistinguishable paths; on this basis, the effects observed are explained 
as a manifestation of the correspondence between the mutual coherence and 
the indistinguishability of two light beams (Mandel [1991]). We can then apply 
Feynman’s rules for interference, after taking into account the fact that outcomes 
which are distinguishable, even in principle, do not interfere. In all other cases, 
the coherent addition of the probability amplitudes associated with each path, 
and the evaluation of the squared modulus of this sum, yields the probability of 
detection of a photon. This far-reaching principle appears to provide an intuitive 
understanding of all interference effects. 
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