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Diluted maximum-likelihood algorithm for quantum tomography
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We propose a refined iterative likelihood-maximization algorithm for reconstructing a quantum state from a
set of tomographic measurements. The algorithm is characterized by a very high convergence rate and features
a simple adaptive procedure that ensures likelihood increase in every iteration and convergence to the
maximum-likelihood state. We apply the algorithm to homodyne tomography of optical states and quantum
tomography of entangled spin states of trapped ions and investigate its convergence properties.
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I. INTRODUCTION

Quantum tomography (QT) is a family of methods for
reconstructing a state of a quantum system from a variety of
measurements performed on many copies of the state. QT is
of particular importance for quantum information processing,
where it is used to evaluate the fidelity of quantum state
preparation, capabilities of quantum information processors,
communication channels, and detectors. Theoretically pro-
posed in [1] and first experimentally implemented in the
early 1990s [2], QT has become a standard tool in many
branches of quantum information technology.

Aside from the experimental procedure of conducting a
set of tomographically complete measurements on a system,
QT requires a numerical algorithm for extracting complete
information about the state in question from the measure-
ment results. From a variety of algorithms proposed, two
main approaches have become popular among experimental-
ists. One approach is based on linear inversion: because the
statistics of the measurement results is a linear function of
the density matrix, the latter can be obtained from the former
by solving a system of linear equations. Examples are the
inverse Radon transformation [3] or the quantum state sam-
pling method [4] that were almost exclusively used in optical
homodyne tomography until recently.

The second approach is maximum-likelihood (MaxLik)
quantum state reconstruction, which aims to find, among all
possible density matrices, the one which maximizes the
probability of obtaining the given experimental data set [5].
To date, the maximum-likelihood approach has been applied
to various quantum problems from quantum phase estimation
[6] to reconstruction of entangled optical states [7,8].

MaxLik reconstruction has several advantages with re-
spect to linear inversion. First, with linear inversion, statisti-
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cal and systematic errors of the quantum measurements are
transferred directly to the density matrix, which may result in
unphysical artifacts such as negative diagonal elements. Sec-
ond, MaxLik allows one to incorporate additional informa-
tion that may be known about the density matrix into the
reconstruction procedure. Third, experimental imperfections
(such as detector inefficiencies) can be directly incorporated
in to the MaxLik reconstruction procedure.

One approach to quantum MaxLik reconstruction is to
express the density matrix as a function of a set of indepen-
dent parameters, in a way that upholds the positivity and
unity-trace constraints for all parameter values. Then one can
apply any iterative optimization method to find the set of
parameter values that maximize the likelihood. Because the
log likelihood function for QT is convex, the optimization
problem is well-behaved and most iterative optimization
methods are guaranteed to converge to the unique solution.
This approach was used by James ef al. in their work on
tomography of optical qubits [8]. In application to homodyne
tomography, the method was elaborated by Banaszek et al.
[9] and used in an experiment by D’Angelo et al. [10].

Generic numerical optimization methods are often slow
when the number of parameters (the square of the Hilbert
space dimension) is large. An alternative algorithm described
below, which takes advantage of the structure of the MaxLik
reconstruction problem and has good convergence properties
was proposed by [11] and later adapted to different physical
systems such as external degrees of freedom of a photon [12]
and the optical harmonic oscillator [13]. Thanks to its good
properties, this method has been widely used in recent ex-
periments on optical homodyne tomography of both single-
and multimode optical states [14]. Despite its success, no
argument guaranteeing the monotonic increase of the likeli-
hood in every iteration step has been presented. Although to
our knowledge the experimental practice has not yet faced a
counterexample, theoretically such counterexamples do exist
and there remains a risk that the algorithm could fail for a
particular experiment.

In this paper, we propose an iteration which depends on a
single parameter e that determines the “length” of the step in
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the parameter space. For e — o, the iteration becomes that of
Refs. [12,13]. On the other hand, we prove that the likeli-
hood will increase in every iteration step for e—0. We thus
obtain a simple adaptive procedure, which, by choice of pa-
rameter €, allows us to find a compromise between the con-
vergence rate and the guarantee on the likelihood increase.

II. THE NONLINEAR ITERATIVE ALGORITHM

We now describe the iterative scheme used in Refs.
[12,13]. A generic tomographic measurement is described by
a positive-operator-valued measure (POVM), with the out-
come of the jth measurement associated with a specific posi-

tive operator f[jBO, with Ejf[j normalized to the identity

operator. In the case of sharp von Neumann measurements,
I1; is a projection operator.

Let N be the total number of measured quantum systems
and f; be the number of occurrences for each measurement
result II;. The likelihood of a particular data set {f;} for the
quantum state p is given by E(ﬁ):HjPrf-f, with

Prj=Tr[ﬁjﬁ] (1)

being the probability of each outcome.
Our goal is to find the density matrix p which maximizes
the log-likelihood

log £(p) = 2 f;log(Pr)). 2)

As was shown in Ref. [5], a state p, that maximizes the
likelihood (2) obeys a simple nonlinear extremal equation

R(po)bo= poR(po) = po. 3)

where we introduced the state dependent operator
. lw fina
R(p)=—2, =LII.. 4
B= 52 ol )

Note that R(p) is a non-negative operator. Following Ref.
[15], where a similar method was proposed to estimate an
unknown quantum measurement, Eq. (3) can be stated in a
slightly different but equivalent form

R(po) poR(po) = po- (5)

For simplicity, we assume that the measurements are suffi-

cient to ensure that there is a unique maximum-likelihood
state py.

In the case where the density matrix p is restricted to

matrices that are diagonal, the problem of finding a solution

to Eq. (3) can be solved by the well-known expectation-

maximization algorithm [17]. If Ris always diagonal in the
same basis, expectation-maximization reduces to computing

the next iterate according to p**=R(p®)p* in the hope of
converging to a fixed point that necessarily satisfies Eq. (3).
The expectation-maximization algorithm is guaranteed to in-
crease the likelihood at every iteration step. However, this
iteration cannot be used for the quantum problem because
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without the diagonal restriction, it does not preserve the posi-
tivity of the density matrix. A possible remedy is to apply the
expectation-maximization iteration to the diagonalized den-
sity matrix followed by a unitary transformation of the den-
sity matrix eigenbasis [7,16].

References [12,13] instead propose to base the iterative
algorithm on Eq. (5). We choose an initial density matrix

such as ﬁ(o)zj\/[f] (which avoids any initial problems with
zero Prj), and compute the next iterate p**!) from p* using

P = NMR(M)PIR(BM)], (6)

where A denotes normalization to trace 1 and the positivity
of the density matrix is explicitly preserved in each step.
Hereafter we refer to the scheme of Eq. (6) as the “RpR
algorithm.”

Despite the RpR algorithm being a quantum generaliza-
tion of the well-behaving classical expectation-maximization
algorithm [17], its convergence is not guaranteed in general.
This is evidenced by the following counterexample. Assume
that we made three measurements on a qubit with a single

apparatus with I1,=]0)(0|, IT,=|1)(1|, detecting |0) once and
|1) twice. The measurement is tomographically incomplete
because no information is gained about the off-diagonal ele-

ments of the density matrix. From Eq. (4), we find R
=(Ily/poo+211,/p;,)/3. Using the uniformly mixed p©
=ﬁ0/ 2+ﬁ1/ 2 as a starting point, we obtain, in step 1:

A 24 4. A1) _ 1A R
R=§H0+§H1; P =H0/5+4H1/5, (7)
and in step 2:
. 5. 5.
R==Iy+>1,; pP=p0. 8
30T gt p (®)

The iterations produce a cycle of length two. The second step
strictly decreases the likelihood.

III. THE “DILUTED” ITERATIVE ALGORITHM

To improve the convergence of the RpR iteration let us
modify it along the lines used for calculating the mutual
entropy of entanglement in [18], namely by mixing the gen-
erator of the nonlinear map (5) with a unity operator

R ﬁ+ e]% ]f+ Eﬁ
ﬁ(k+1) = [(ﬁ<k),6) =N] ,3(/‘) s (9)
1+e€ 1+e€

where € is a positive number. Loosely speaking, the nonlin-
ear map is diluted and the iteration step is controlled by e.
Now let us prove that using the modified algorithm (9), the
likelihood is increased in each step if e<<1 is sufficiently
small.

In the linear approximation with respect to €, we can re-
write Eq. (9) as

piD =0+ Ap (10)

with
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Ap=eRp® + pPR - 2pW). (11)

To obtain Egs. (10) and (11), we approximated (1+¢€)™2=1
—2¢€ and used the relation

Tr(Rp) = Tr(pR) = 1, (12)

which is a consequence of the definition (4) of R. The nor-
malization factor N is 1 to first order in .

We now evaluate the likelihood associated with the new
state p*+1) and compare it to that of p¥), neglecting terms of
second and higher order in e:

log L(p**V) =2 f;log Tr(I;p**1)

= 2 f; log[Pr; + Tr(ijAﬁ)]

1 A
=> fjlogPrj+log[1 +—P Tr(HjA[))]
rA

J

=log L(pP) + >, IJ—:rLTr(ijAﬁ)
J

=1log L£(pP) + Tr(RAP)
=log L(p™) + 2 Tr(RPpMR) - 1].  (13)

In the second equality above, we used Eq. (1); in the fourth,
the definition (2) of the likelihood and the approximation
log(1+a)=~ a for a<<1; and in the sixth, the cyclic property
of the trace and Egs. (11) and (12).

We complete the proof by showing that

Tr(RAR) = Tr(RPR)Tr p = Tr2(Rp) = 1. (14)
Indeed, the positive density matrix has a positive square root
p=(p'")?, and thus Tr(RpR)Tr p=(Rp"2,Rp™)(5"?,5"")
and Tr2(Rp)=|(Rp"?, p"?)|2, where the scalar product of ma-

trices is defined as (A,é):E,-’ jA;Bﬁ=Tr(AU§). Consequently
the Cauchy-Schwarz inequality can be applied to yield the
inequality in Eq. (14).

We have thus proven that under the application of itera-
tions (9), the likelihood is nondecreasing provided that € is
chosen sufficiently small in every step. Suppose we find a
density matrix p such that there is no €>0 that yields a
proper increase in the likelihood when the iteration (9) is

applied. Then
Tr(RpR) =1. (15)

According to Egs. (12), (14), and the equality condition in
the Cauchy-Schwarz inequality, Eq. (15) can be fulfilled if
and only if Rp2=p"2 or, equivalently, Rp=p. The latter
equality characterizes the maximum-likelihood state, so p
= Po-

Proper use of the diluted iterations requires a strategy for
choosing € at each step. Asymptotic convergence of the di-
luted iterations may depend on this strategy. As we show in
the Appendix, one strategy that converges to p, is to choose
the € which maximizes the likelihood increase in every itera-
tion. However, this strategy is computationally expensive be-
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cause it requires solving a one-dimensional optimization
problem.

One possible alternative approach is as follows.

(1) Begin with the RpR (6) iterations, which are identical
to the diluted iterations (9) with e— oo, Verify that the like-
lihood increases in each step.

(2) In the event the likelihood does not increase and be-
fore terminating the iterations, use the diluted iteration (9),
trying smaller values of € to determine whether significant
increases in likelihood are still possible. If so, continue the
iterations as needed with these smaller values of e.

(3) When the iterations appear to have converged or stag-
nated, find the value of € at which the likelihood increase is
maximized and attempt additional iterations using this value.
If the likelihood and/or the density matrix does not exhibit
significant further changes, one can be sure the iteration se-
quence has converged to the maximum-likelihood solution.

Another approach is to choose € randomly according to a
distribution with nonzero density in a neighborhood of 0. To
ensure nondecreasing likelihood, each iteration requires re-
peatedly choosing e randomly until one is found for which
the likelihood increases. The argument in the Appendix can
be expanded to show that if € is chosen in this way, then the
iteration has a nonzero probability of escaping from any
nonmaximume-likelihood density matrix.

We note again that in all practical cases studied so far the
RpR algorithm exhibited good convergence and monotonic
increase of the likelihood. The diluted iteration may become
necessary for low-dimensional systems where the nonlinear
RpR iteration may “overshoot.” Characterizing the situations
where this can happen is an open problem.

Finally, let us mention that in some tomography schemes,
one or more POVM elements (measurement channels) IT jare

not accessible and, consequently, GEEJTAIj may not be nor-
malizable to the unity operator on the reconstruction sub-
space. Then the extremal map (5) should be replaced by

G 'R(po)pyR(py)G™'=p, to avoid biased results, see, e.g.,
[7]. Obviously, the corresponding iterative procedure can be
diluted in a similar way as was done with the original RpR
algorithm.

IV. EXAMPLES

First, consider the counterexample discussed above. A
simple numerical test shows that replacing the RpR iteration
by Eq. (9) warrants convergence for any finite €; the likeli-
hood monotonically increases for e<25.7.

Second, we studied the dataset of 14,153 points obtained
in the experiment on homodyne tomography of the coherent
superposition of the vacuum and the single-photon Fock
state [19]. This is the same dataset as that analyzed in Ref.
[13]. This reference discusses the specifics of application of
the likelihood-maximization procedure to continuous-
variable measurements. We studied the dependence of the
convergence speed on the parameter €.

The Hilbert space was restricted to 14 photons. We first
ran the iterations for a very long time until the density matrix
and the likelihood no longer changed. In this way, we ob-
tained the density matrix p, that maximizes the likelihood for
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FIG. 1. Iterations required for homodyne tomography data. The
number of iterations required for convergence as a function of e.
Results for three tolerances are shown: 1073 (a), 107> (b), and 1077
(c). The rightmost column represents the RpR algorithm (e— ).
The dataset is the same as that used in Ref. [13]: 14,153 quadrature
samples of the state approximating a coherent superposition of the
vacuum and the single-photon states.

this dataset with high accuracy (limited by the floating point
representation).

We then reinitialized the density matrix and ran the di-
luted RpR algorithm with various values of €. We repeated
the iterations until the pairwise difference between all matrix
elements of p*) and p, was below a preselected tolerance for
each matrix element. Three tolerance values were investi-
gated: 107, 1075, and 1077, The numerical experiment was
conducted on a 2.8-GHz Pentium 4 computer [21]. The code
was written in DELPHI [21]. Each iteration took about 0.3 s.

The result of this experiment is shown in Fig. 1. The RpR
algorithm showed a monotonic likelihood increase and con-
verged to the set tolerances within 15, 30, and 49 iterations,
respectively. The convergence rate of the diluted algorithm
improves with increasing € and approached that of the RpR
algorithm for large values of €. One sign of systematic over-
shoot of the RpR algorithm would be a minimum in the three
curves of Fig. 1 at e<<o. We did not observe such an effect.

Third, we considered a dataset consisting of 21,832 indi-
vidual experiments with four ion qubits. The goal of the
experiment was to purify one entangled pair of ions from
two [20]. In order to determine the fidelity of the purified
pair and for the purpose of checking that the experiment did
not introduce spurious entanglement, incomplete state to-
mography was used. Specifically, each tomographic mea-
surement involved first determining the number of qubits in
state |0) among the first pair of qubits and then performing a
pair of /2 pulses at various phases on the second pair of
qubits (the purified pair) before determining its number of
ions in state |0). Repetition of these combinations of pulses
and measurements suffices for determining the fidelity of the
purified entangled state. The actual measurements involve
counting the number of photons scattered from an ion pair.
This number has a Poissonian distribution whose mean de-
pends on the number of ions in state |0). Thus each experi-
ment results in two counts, one from each measurement. Ev-
ery combination of counts can be associated with a
measurement operator of a POVM that also depends on the
phases in the pair of 7/2 pulses. Although we cannot deter-
mine the density matrix of the complete four-qubit state p
with these measurements, there is sufficient information to
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FIG. 2. Required iterations for ion-qubit tomography data. See
the caption of Fig. 1 for an explanation of the axes and interpreta-
tion of the curves. The tolerances used are 1072 (a), 1073 (b), 107*
(c), and 1077 (d). The underlying data was used in the analysis for
[20].

deduce the density matrix p’ obtained from p by phase de-
cohering the first pair of qubits in the logical basis and then
symmetrizing each pair of qubits. The symmetrization pro-
cess is equivalent to randomly switching the qubits in each
pair. The diluted RpR iteration with the appropriate POVMs
preserves the decohered and symmetrized form of density
matrices. Starting from the completely mixed initial state, it
converges to the maximum-likelihood solution for p’. The
code for the ion-qubit tomography was written in R [22] and
required about 0.3 s per iteration on a 1.6 GHz Pentium 4
laptop. The behavior of the iterations is shown in Fig. 2 and
is similar to the behavior of the iterations for the homodyne
tomography shown in Fig. 1. Again, no sign of overshoot
was detected in these curves.

In summary, we have proposed an iterative likelihood-
maximization procedure for quantum tomography, which is
applicable when the RpR iteration does not monotonically
increase the likelihood. We have found the sufficient condi-
tion under which the iterations converge to the maximum-
likelihood solution. The algorithm has been tested on two
sets of experimental data.
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APPENDIX: CONVERGENCE OF DILUTED ITERATIONS

Consider the diluted iterations (9). For any fixed €, we
cannot exclude the possibility that the iteration stagnates,
even if the likelihoods continue to increase. The problem is
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that the direction of change in p for small €, which is com-
puted as a fixed function of p, may differ substantially from
the direction of steepest ascent. Although the likelihood is
guaranteed to increase for sufficiently small €, the direction
of change could become increasingly parallel to surfaces of
constant likelihood, thus leading to an iteration that never
reaches the maximum-likelihood solution . Alternatively, if
€ is held fixed, the iterations could converge into a limit
cycle or a more complicated limit set, thus avoiding p,.

Here we show that if at each step, € is chosen to maximize
the likelihood increase, the iterations converge to pg in the
limit. To see this, we first notice that Ié(ﬁ) is continuous as
a function of p on the set S of density matrices for which the
likelihood is not 0. This is because if p € S, then Prj>0 for
all j with f;> 0. It follows that the iterate I defined by Eq. (9)
is also a continuous function of the density matrix and
e=0.

The initial density matrix p® (the completely mixed
state) is in S because, for any j, Prj([)(o)):Tr[l_A[jp(O)]
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OCTr[ﬂ j] >(. The choice of € guarantees that the likelihood
is nondecreasing, so each subsequent iterate p*’ must be in
S as well. The sequence p¥) is bounded and must thus have
at least one limit point p;,, which also belongs to the interior
of S.

Suppose that p,;# py. As we showed in the text, this im-

plies that the likelihood of i(ﬁ,,e) strictly increases for suf-
ficiently small e. In particular, there is a §>0 and an €, such
that the likelihood increase at p; is at least &. Because the
likelihood increase is also a continuous function of p and €
on a neighborhood of p, there is a (possibly smaller) neigh-
borhood S in which the maximum-likelihood increase ex-
ceeds &/2. Because p; is a limit point, one can choose an
iterate p¥ in S5 so that its likelihood is within (say) &/4 of
that of p;. Then the next iterate’s likelihood exceeds that of p,
by at least 6/4. The likelihood is nondecreasing, and by con-
tinuity, future iterates cannot have p; as a limit point, contra-
dicting the assumption on p;, We conclude that p;=p,, as
desired.
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