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Remote Preparation of a Single-Mode Photonic Qubit by Measuring Field Quadrature Noise
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An electromagnetic field quadrature measurement, performed on one of the modes of the nonlocal
single-photon state «|1, 0) — B|0, 1), collapses it into a superposition of the single-photon and vacuum
states in the other mode. We use this effect to implement remote preparation of arbitrary single-mode
photonic qubits conditioned on observation of a preselected quadrature value. The preparation efficiency
of the resulting qubit can be higher than that of the initial single photon.
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Remote state preparation (RSP) is a quantum com-
munication protocol which allows indirect transfer of
quantum information between two distant parties by
means of a shared entangled resource and a classical
channel. Unlike the celebrated teleportation scheme [1],
the sender (Alice) does not possess a copy of the source
state, but is aware of its full classical description. To
implement RSP, she performs a measurement on her share
of the entangled resource in a basis chosen in accordance
with the state she wishes to prepare. Dependent on the
result of her measurement, the entangled ensemble col-
lapses either onto the desired state at the receiver (Bob’s)
location, or can be converted into it by a local unitary
operation.

Although RSP has been formulated [2] and investi-
gated theoretically [3] as a tool of quantum communica-
tion only recently, its concept can be traced back to the
seminal work of Einstein, Podolsky, and Rosen (EPR) [4],
who have considered an entangled state of two particles
with correlated positions and momenta. By choosing to
measure either the position or the momentum of her
particle, Alice can remotely prepare Bob’s particle in
an eigenstate of either observable, thus instantaneously
creating either of two mutually incompatible physical
realities at a remote location.

Aside from many experiments on the EPR paradox,
both in the original [5] and in the Bohm-Bell [6] con-
figurations, controlled collapse of an entangled wave
packet has been utilized experimentally to prepare a
single photon by means of conditional measurements on
a photon pair generated via parametric down conversion.
When a single-photon detector, located in one of the
emission channels, registers a photon, the entangled pair
state collapses into a single photon in a well-defined
spatiotemporal mode traveling along the other emission
channel. This technique was proposed in 1986 [7] and has
since been employed in many experiments.

In most theoretical and experimental work on con-
trolled state collapse, the observable measured by Alice
coincided with the one that defines the entanglement
basis. Upon the measurement, the EPR state will collapse
into an eigenstate of this observable. If Bob measures the
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same observable as Alice, his result will be highly corre-
lated with Alice’s.

In the experiment reported here, such a straight-
forward correlation is not present. We start with a two-
mode optical state entangled in the photon number (Fock)
basis, |¥) = a|1),4]0)5 — Bl0)4|1)5. To perform RSP,
Alice measures the quantum noise of the electric field
quadrature observable X,,, which is only weakly corre-
lated in this ensemble. A particular result obtained by
Alice does not mean that Bob, by measuring the same
observable, would acquire the same (or similar) value.
Yet, as we demonstrate, the RSP scheme is fully func-
tional: the measurement by Alice collapses the EPR state
into a pure single-mode photonic qubit x|0) + y|1).

In other words, we prepare a bit of quantum informa-
tion encoded in a discrete (photon number) basis by
measuring a continuous observable (field quadrature).
So far, discrete- and continuous-variable quantum infor-
mation science has developed with little overlap between
these two domains. One of the main messages of this
Letter is that these two subfields are in fact closely
intertwined and that a number of novel phenomena can
be observed at their interface.

Other work investigating this interface includes theo-
retical proposals to improve the degree of squeezing in a
two-mode squeezed state [8] and generating Schrodinger-
cat states [9]. Foster et al performed a cavity QED
experiment in which detection of a photon coming out
of a cavity prepared an optical state with a well-defined
phase [10].

A conceptual scheme of our experiment is shown in
Fig. 1. A single photon |1) incident upon a beam splitter
with transmission a@® and reflection B generates the
entangled state |W) which is shared between Alice and
Bob. With each incoming photon, Alice performs a ho-
modyne measurement on her part of the entangled state
with the local oscillator set to a preselected phase 6,. If
her measurement result is equal to a preselected value Q
(which we call conditional quadrature), she notifies Bob
via a classical channel. Upon receipt of Alice’s message,
Bob performs a homodyne measurement of his fraction of
|¥) to characterize the remotely prepared state.
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FIG. 1 (color online). Scheme of the experiment. A photon
incident on a beam splitter generates a nonlocal single-photon
state. Alice performs a quadrature measurement using her
homodyne detector, thus preparing a state x|0) + y|[1) at
Bob’s location. Inset: Schematic of the actual experimental
arrangement. The four beam splitters must be kept interfero-
metrically stable with respect to each other.

Alice’s homodyne measurement is associated with the
quadrature operator

X oa = Xcosh, + Psind,, (1)

X and P being the canonical position and momentum
observables ([X, P] = i/2). By detecting a particular
quadrature value Xy44 = Q, Alice projects the entangled
resource |W) onto a quadrature eigenstate (Qg4l:

[p) = N{(Qpal V)
= N (a{QpalDal0)s — B{QpalO)sl1)5), (2)

which is just a coherent superposition of the single-
photon and vacuum states

lp) = x[0) + y|1), (3)

with x = N a{Qy|1)and y = — N B{Qy|0) (N is a nor-
malization factor). These coefficients are the well-known
stationary solutions of the Schrodinger equation for a
particle in a harmonic potential [11]:

(0,10 = (0I0) = (7% )1/4eQ2; 4

. 2 \1/4 . )
(Ql1) = e 0|1y = z(;) Oci%e-C. (5

By choosing particular values of @ and Q, Alice can
remotely prepare any random vector on the surface of
the Bloch sphere.

In our experiment the initial single-photon state was
prepared by means of a conditional measurement on a
biphoton produced via parametric down conversion. We
used frequency-doubled 2-ps pulses from a mode-locked
Ti:sapphire laser running at A = 790 nm which under-
went down conversion in a BBO crystal, in a type-I
frequency-degenerate, but spatially nondegenerate con-
figuration. A single-photon detector (Perkin-Elmer),
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placed into one of the outcoming channels, detected
biphoton creation events and triggered the quantum com-
munication protocol described above. A more detailed
description of our laser setup can be found in Refs. [12,13].

The actual geometric arrangement of the RSP appara-
tus is shown in the inset to Fig. 1. The experiment re-
quired high interferometric stability of all modes
involved, so the distance between Alice’s and Bob’s sta-
tions had to be minimized. Because the single-photon
state has no optical phase, only the relative phase between
Alice’s and Bob’s modes 6, — 6 has a physical meaning
and affects the homodyne statistics. We have therefore
chosen to control this difference directly rather than
each phase individually. This was done by means of a
piezoelectric transducer as shown in the figure.

The local oscillator pulses for homodyne detection
have been provided by the master Ti:sapphire laser.
Their spatiotemporal modes had to match the respective
modes of the nonlocal single-photon state. Mode match-
ing was optimized via the technique described in [12],
i.e., by simulating the single photon by a classical pulse
and maximizing the visibility of the interference with the
local oscillators at each beam splitter.

Optical losses, dark counts of the trigger detector, and
nonideal mode matching result in some distortion of the
RSP scheme. Fortunately, almost all these imperfections
can be accounted for by assuming that the single photon
entering the first beam splitter has some admixture of the
vacuum state:

A1y = nlIX1] + (1 = 1)[0X0l, (6)

where 7) is the cumulative quantum efficiency incorpo-
rating the imperfections of the entire apparatus. It can
be evaluated by individual reconstruction of optical
ensembles arriving to each homodyne detector. Both
Alice’s and Bob’s ensembles are statistical mixtures of
the form (6), with the single-photon fractions of a7 and
B*n, respectively. We found 1 = 0.55 [14]. Note that
Eq. (6) is valid even though some of the losses occur after
the photon has been split into two modes.

Regarding inefficiencies according to Eq. (6), we write
the remotely prepared ensemble as

p s = Elgp)ippl + (1 — E)|0XO0], (7
where |i5) is given by Eq. (3) and the qubit preparation
efficiency is

_ n(@(QI1)? + BXQI0)
n(a*(QI1)* + BXQl0)*) + (1 — n)Ql0)*’

2

®)

The “‘success rate,” i.e., the fraction of those events in
which X,, approximates Q, is proportional to

R = n(a*(QI1)* + BXQI0)*) + (1 — nXQI0Y. (9

Our data acquisition procedure was based on post-
selection. Homodyne measurements at Bob’s station
were performed every time, independent of Alice’s result.
We varied the relative phase 8, — 6 slowly and with each
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incoming photon, acquired a pair of values (X4, Xgp)
from both homodyne detectors. Then we selected those
pairs for which Xy, approximated a particular conditional
quadrature Q within a certain margin of error (Fig. 2) and
reconstructed the optical ensemble associated with the
respective Bob’s data.

For reconstruction, we utilized the novel likelihood-
maximization method [15,16]. This technique, previously
not applied to experimental homodyne tomography, war-
rants a higher reconstruction fidelity than the inverse
Radon transformation used traditionally, and ensures
physical plausibility of the reconstructed ensemble.

We have executed two data acquisition runs using two
different beam splitters with transmission a? equal to 0.5
and 0.08. With each beam splitter, a large data set of about
300000 points was acquired for a full relative phase
cycle. The data were binned up according to the value
of Xy, with the bin size of 0.071, except the last two bins
which were twice as wide. Maximum-likelihood estima-
tion of Bob’s ensembles associated with each bin yielded
density matrices in the Fock basis. As expected, all
matrix elements except pog, Po1> P10, and p;; were negli-
gibly small. This allowed us to interpret the reconstructed
ensembles in accordance with Eq. (7), i.e., as a statistical
mixture of the state |i;,) and the vacuum, and to evaluate
the qubit value |y|? and its preparation efficiency E for
each postselected subset of the experimental data. The
success rate is given by the relative size of each subset.
These quantities, along with their theoretical predictions,
are plotted in Fig. 3. Good agreement between theory and
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FIG. 2 (color online). 61440 samples of homodyne measure-
ments by Alice and Bob acquired for 8, — 8z = 0. Although
both parties measure the same quadrature, the quantum noise
exhibits little correlation. Inset: a histogram of Bob’s data
conditioned on X,4 = 0.71 (shaded area of the main plot).
This is one of the marginal distributions of the Wigner function
in Fig. 4(b).
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experiment is achieved, except for relatively high Q
values where the preparation rate is reduced and so are
the respective data subsets.

Figure 3(a) shows that the fraction |y|?> of the single
photon in the qubit decreases with increasing conditional
quadrature Q. This is easily interpreted by reviewing the
vacuum and single-photon wave functions (4) and (5). The
quadrature probability density associated with the single-
photon state is generally broader than that of the vacuum
and vanishes at Q = 0. If Alice detects X, = 0, she can
tell with certainty that her mode is in the vacuum state
and the photon must have been reflected to Bob. On the
contrary, detection of a large quadrature value by Alice is
much more likely if her mode contains a photon — and
Bob’s does not.

As evidenced by Fig. 3, a highly reflective (a? = 0.08)
beam splitter provides a more profitable preparation rate
and efficiency for qubits with a high single-photon frac-
tion (low Q) than a symmetric beam splitter. For qubits
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FIG. 3 (color online). (a) Single-photon fraction |y|?> in the
qubit as a function of the preselected quadrature Q. With a
symmetric beam splitter, values of Q below 1/2 correspond to
a prepared state with a single photon fraction greater than 50
percent. (b) Relative success rate of remote state preparation.
(c) Preparation efficiency of the remotely prepared state. For
Q > 1/2, the efficiency of the output state is higher than that of
the initial single photon.
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FIG. 4 (color online). Examples of Wigner functions of the
remotely prepared ensembles reconstructed from the experi-
mental data. (a) Q = 0.35, highly reflective beam splitter;
(b) Q =0.71, symmetric beam splitter. Insets show cross
sections through symmetry planes.

with a high vacuum fraction the relation is inverse. This is
further illustrated in Fig. 4 where experimental Wigner
functions of two ensembles prepared using different beam
splitters and Q values are plotted.

One surprising feature associated with the protocol is
that the preparation efficiency E of the remotely prepared
state can be higher than the efficiency of the initial single
photon as long as the conditional quadrature value Q
exceeds 1/2 [Fig. 3(c)]. In other words, the reported
scheme features not only preparation, but also, for qubits
with a sufficiently high vacuum fraction, purification of
the prepared qubit [17]. At optical wavelengths, the vac-
uum state is readily available; yet it is remarkable that this
“free”” vacuum can be incorporated into the prepared
qubit in a controlled, coherent manner.

The observed purification effect raised our curiosity
about a possibility of extension to single photons. Can one
distill a high-purity single-photon state from a large set
of mixtures (6) with moderate efficiency [18]? This prob-
lem is relevant to a variety of recently reported solid-state
sources which are capable of generating single photons
“on demand” but in a poor spatiotemporal mode [19].
Purification would make such sources applicable to the
linear optical quantum computation scheme [20].

In conclusion, we have reported remote state prepara-
tion of single-mode photonic quantum bits in a counter-
intuitive scheme. We started with a two-mode quantum
state with the entangled discrete degree of freedom (num-
ber of photons), and by measuring a continuous observ-
able (field quadrature) in one of the modes collapsed the
entangled state into a coherent superposition of two Fock
states in the other mode, again in the discrete domain.
Surprisingly, the preparation efficiency of the resulting
qubit can be higher than that of the initial single photon.

This experiment demonstrates, in our opinion, the
potential of combining discrete and continuous-
variable techniques in quantum information technology
applications.

We thank the Deutsche Forschungsgemeinschaft and
the Optik-Zentrum Konstanz for support.
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