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Abstract

Dynamical symmetries in closed systems lead to conservation laws and to selection rules

that are based on those conservation laws. However, conservation laws are not applica-

ble to open systems that undergo irreversible transformations. More general selection

rules are needed to determine whether, given two states, the transition from one state

to the other is possible. Characterizing the asymmetry properties of quantum states

using quantum information theoretical tools and methods is particularly fruitful for this

purpose.

This thesis is concerned with the problem of finding new general selection rules that

hold for both open and closed systems. The usual approach to this problem relies heavily

on group theory and involves a detailed study of the structure of the symmetry group.

In this thesis, we approach the problem in a completely new way. Our approach is to

use entanglement to investigate the asymmetry properties of quantum states. In order

to do that, we embed the system’s Hilbert space in a larger tensor product Hilbert space,

whereby all symmetric states are mapped to separable states, asymmetric states are

mapped to entangled states, and the symmetric transformations between two states are

replaced by local operations on their bipartite images.

Our method is not restricted to only a specific group but applies, in general, to all

symmetries that are associated with semi-simple compact Lie groups and their associated

Lie algebras. The mapping of the original states to bipartite states that act on the larger

Hilbert space enables us to use the well studied theory of entanglement to investigate

the consequences of dynamic symmetries. For example, the monotonicity condition on

measures of entanglement provide us with new selection rules. Under reversible transfor-

mations, the entanglement of the bipartite image states becomes a conserved quantity.

These entanglement-based conserved quantities are new and different from the conserved
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quantities based on expectation values of the Hamiltonian symmetry generators.
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Chapter 1

Introduction

1.1 Background and motivation

Symmetries arise in all contexts and all facets of life. They are essential to aesthetics,

art and mathematics. Symmetry also plays an important role in physics. Some of

the deepest results in physics are linked to symmetries in nature [87]. For example,

arguments based on symmetries of space and time play a vital role in development of

the theory of special relativity [73, 87]. The exact solutions to Einstein’s field equations

of general relativity also use space-time symmetries extensively [73]. Symmetries are

also effectively employed in high energy physics, especially the symmetry associated with

the group SU(3) that is at the heart of the Standard Model [26]. Supersymmetry, an

extension of the symmetries of standard quantum field theories, forms the basis of the

efforts to unify quantum mechanics and general relativity [17,27].

Recognizing the symmetries of a given situation, together with the dynamical con-

sequences that follow from them, is an important step towards a full understanding of

the problem and its eventual solution. In many situations where the detailed dynamical

laws are not yet discovered, studying the symmetries usually provides the first clues to a

deeper and more detailed understanding of the phenomenon. The discovery of the details

of the respective dynamical law usually comes only afterwards.

Even in cases where the laws are in principle known, taking advantage of the existing

symmetries can immensely simplify the calculations involved. In many cases, it can

even render an otherwise computationally intractable task feasible [25, 56, 72, 112]. The

fact is that the evolution of most quantum systems is simply too complicated to be
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solved analytically or even to be simulated numerically in an efficient way, at least in the

absence of powerful quantum computers [22,28,52,56,72,83,106,112,113]. Many realistic

situations involve either open dynamical systems, or closed systems with Hamiltonians

that contain numerous parameters, so that determining how they vary with time is at

the present time not computationally tractable [28, 56, 64, 83, 106, 108, 113]. In all such

cases, symmetry-based approaches are powerful substitutes for actual detailed analysis

of the complex dynamics involved.

A key result concerning dynamical symmetries is the theorem by Emmy Noether

that relates the underlying symmetries to conservation laws and to respective conserved

quantities [68,69,107]. Noether’s theorem plays a central role in the study of dynamical

symmetries of closed systems in classical mechanics [69]. Equivalent theorems in quantum

mechanics play a similarly important role. The classical theorem, as well as its quantum-

mechanical counterparts, states that a closed system undergoing reversible and symmetric

time evolution is always accompanied by a corresponding conservation law [107].

In quantum mechanics, in particular, this conclusion is straightforward. A symmetric

Hamiltonian implies that the expectation value of the operators that represent the gen-

erators of the symmetry group are conserved quantities. Yet, closed systems undergoing

reversible time evolution are not the most general case appearing in nature. The detailed

state of the environment and its interactions with the system under study cannot always

be accounted for. Hence, the more general case must also involve open systems and

irreversible transformations. In fact, open systems are far more ubiquitous than closed

systems. The time evolution of open systems, even when the dynamics satisfies a sym-

metry, can be very different from the unitary evolution governed by symmetry preserving

Hamiltonians. Generally, no conserved quantities are associated with symmetric dynam-

ics of open systems, and thus, the consequences of dynamical symmetries cannot always

be reduced to selection rules based on conservation laws [60]. In fact, it was realized
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recently that even for closed systems, the conservation laws that arise from the quantum

mechanical equivalents of Noether’s theorem do not capture all the consequences of the

symmetry in question [59,61]. It is therefore necessary to look beyond conservation laws

in order to determine how states evolve under symmetric dynamics.

The goal of the present thesis is to find new and more general conditions for deciding

when transitions between states are possible, assuming that the dynamical evolution

satisfies a symmetry associated with a semi-simple compact Lie group. We refer to

such conditions as selection rules. The key idea in our approach involves embedding the

system within a larger space comprised of two-party states. We show that symmetric time

evolutions can be regarded as a strict subset of local operations. This, in turn, enables

us to directly apply the theory of quantum entanglement to the problem of symmetric

dynamics. We introduce new selection rules derived from entanglement theory, and

in particular, we show how entanglement measures can act as conserved quantities for

reversible temporal evolutions. This leads to new conservation laws emerging out of

entanglement theory. Our results are reported in two published papers [85, 86].

As an introduction, we first provide a background review of symmetries in physics

in Section 1.2. In Section 1.3, we discuss the general features of resource theories as

studied in the field of quantum information science. Then, we present an overview of

entanglement as a quantum informational resource in Section 1.3.1. We also present the

study of dynamical symmetry from the point of view of resource theories in Section 1.4.

We present a short review of the relevant literature in Section 1.5. Finally, in Section 1.6,

we outline, in more detail, our original contributions to the study of asymmetry and its

significance.
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1.2 Symmetry in physics

By symmetry, we mean invariance under a set of transformations [102]. The subject of

symmetry can be a physical system, the state of a physical system, the Hamiltonian, or in

general, the dynamical laws under which a system evolves. When the symmetry belongs

to the dynamical evolution of the system, it is referred to as dynamical symmetry. In any

case, the transformations that leave the respective structure unchanged form a group.

Thus, every symmetry is identified with a group of transformations, or more specifically,

by a representation of that group. We denote the symmetry group as G for the rest of

the thesis.

Nature exhibits various symmetries that are reflected in the laws of physics. Sym-

metries that the laws of physics preserve include spatial-translation symmetry, time-

displacement symmetry, rotational symmetry and boost symmetry. Together, they form

the Galilei group of continuous transformations in the non-relativistic regime or the

Poincaré group in the relativistic regime.

Besides the continuous symmetries, there are also discrete symmetries. The main

discrete transformations in physics include space inversion (parity flip, P), momentum

inversion (time reversal, T) and inversion of charge or baryon number (charge conjuga-

tion, C). Today, we realize that the discrete symmetries are not individually respected in

nature. So far as we know, nature is always invariant under combinations of the three,

known as the CPT transformation. In other words, all Hamiltonians are believed to

remain invariant under the combination CPT, but need not remain invariant under each

individual discrete transformation [82].

Classically, the evolution of a closed system can be expressed in terms of an action

functional defined as the time integral of the system’s Lagrangian function. The laws of

motion can be derived from minimizing the system’s action, known as the principle of least
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action. Noether’s first theorem deals with actions that satisfy a differentiable symmetry

and vanish on the boundary of the region of space-time over which the Lagrangian is

being integrated. In such cases, the theorem states that a function of the system’s

parameters exist that remains conserved throughout the time period during which the

system’s evolution is determined by that action [68,69].

In classical mechanics, an alternative description of closed system dynamics is in

terms of the system’s Hamiltonian and the Poisson brackets. The Hamiltonian H is a

function of position, q, and momentum, p. In the Hamiltonian framework, Noether’s

theorem is straightforward: To every continuous symmetry of a Hamiltonian system,

there corresponds a conserved quantity. By a continuous symmetry of a Hamiltonian,

we mean a vector field that generates a one-parameter family of transformations that

preserve the Hamiltonian under the Poisson brackets [15].

In quantum mechanics, the dynamics of a closed system undergoing a reversible trans-

formation is described by a Hamiltonian operator, and the role of the Poisson bracket is

replaced with the commutator of operators. In the presence of a symmetry associated

with the group G, the Hamiltonian commutes with the group action, i.e. with every

element of the representation of the group carried by the system’s Hilbert space. For

example, a Hamiltonian with rotational symmetry commutes with every rotation opera-

tor representing an element of the group SO(3). In the general case of an open system

interacting with the environment, no Hamiltonian can be attributed to the system alone.

Only the joint system comprised of the original open system together with the environ-

ment can be regarded as an isolated closed system with a well-defined Hamiltonian. The

dynamics of the system alone is determined by tracing out the terms associated with

the environment from the Hamiltonian. In the absence of prior entanglement between

the system and the environment, i.e. when the environment carries no prior memory

of the system, the resulting transformation is, in general, a trace preserving completely
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positive (CP)-map. The symmetric time evolution of an open system implies that the

CP-map describing the evolution of the system must commute with the representation

of the group. Such a map is known as a G-covariant map [8].

1.2.1 Symmetry and reference frames

Symmetry in physics is closely linked to the notion of reference frames. Reference frames

are usually treated as idealized frameworks external to the system under study. Ideal

reference frames do not undergo any temporal dynamical evolution. However, in practice,

all reference frames are in fact physical systems. A physical system acts as a reference

frame for some physical degree of freedom, like the angular momentum, if its states,

associated with different values of that degree of freedom, are distinct and distinguishable,

in the sense that a measurement exists whose outcomes distinguish the different states.

Thus, a frame of reference is a system with an inherent asymmetry with respect to a

particular set of transformations, such as rotations in space. Also, one must be able to

jointly measure the state of the reference frame together with a given system in order to

determine the value of the respective degree of freedom for that given system.

In classical systems, distinct states are automatically completely distinguishable.

Hence, a classical system whose states remain distinct, and is stable during the dy-

namical evolution of the system under study, is a good approximation to the idealized

external reference frame. For example, solid rods are usually envisioned as physical sub-

stitutes for a coordinate axis, albeit one of bounded size. A sphere, on the other hand,

does not qualify as such because it is rotationally symmetric. Its states with respect to

different angles of rotation are completely indistinguishable.

In quantum theory, distinct states are not necessarily fully distinguishable. Fully

distinguishable states are only those that are mutually orthogonal. For degrees of freedom

that transform under continuous groups, the states of a perfect reference frame, in the
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Figure 1.1: The state of the system and the physical reference frame can be expressed

relative to an external idealized frame and then averaged over all possible alignments of

the external reference frame.

above sense, must therefore act on an infinite-dimensional Hilbert space. The dimension

of the Hilbert space on which the states of a system act is a good candidate for the

“size” of the quantum system. Hence, in the case of continuous groups, no system

of finite size can be a perfect reference frame [9]. Unlike the classical case, the finite

size of the reference frame in the quantum regime leads directly to a lack of complete

distinguishability of the reference states as the Lie group has infinitely many members,

and introduces errors even within the finite range of the reference frame’s applicability.

More importantly, a quantum reference frame must interact with the system under study,

and must ultimately be measured jointly with that system when the respective degree of

freedom of the system is measured. Therefore an efficient finite-sized quantum reference

frame has inevitably a limited lifespan [6].

Once we treat the reference frame as a physical system with its own dynamics, it

must be possible to express the joint state of a system S with the reference frame R

solely in terms of their relative internal degrees of freedom without referring to any

other system [9]. The dynamic system acting as a reference frame in this description is

also known as an internalized reference frame, or, alternatively and more succinctly, an

internal reference frame [8, 9].
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As the reference frame is now internalized and must be assigned a state, we need

yet another external reference frame in the background relative to whose alignment the

state of the reference system can be determined (see Figure 1.1). On the other hand, as

said before, we want ultimately to be able to describe the relative state of the system

and the internal reference frame without having to refer to any specific alignment of

the background frame. To this end, we first describe their joint state relative to the

frame in the background, and then average uniformly over all possible alignments of the

background frame (see Figure 1.1). The uniform averaging is a reflection of a complete

lack of knowledge of the actual relative alignment of the internal and the background

reference frames, so that all alignments are equally likely. If some alignments are more

likely than others, then the uniform averaging is replaced with a weighted averaging with

more likely alignments having higher weights associated with them than the less likely

ones [8, 9].

Let ρS denote the state of the system S relative to the external reference frame

and σR denote the state of the quantum system acting as the internal reference frame1.

The passive transformation of the external reference frame is equivalent to an active

transformation of the joint state ρS⊗σR via a representation of the symmetry group US⊗

UR, where US is a unitary representation carried by the Hilbert spaces of system S,

and UR is a unitary representation carried by the Hilbert spaces of system R. The

averaging over the alignments of the external reference frame is known as ‘twirling’ or

the ‘twirling operation’ [8, 9]

Let us denote the averaging with the superoperator G, known as the twirling super-

1In Chapter 2, we will go through in more detail the technical definitions of the concepts used in
the present chapter. However, the technical subtleties are not necessary to follow the line of arguments
presented in this chapter.
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operator:

G (ρS ⊗ σR) =

∫
dµg US(g)ρSU

†
S(g) ⊗ UR(g)σRU

†
R(g), (1.1)

where the integration is done uniformly over the group with dµg denoting the group-

invariant (Haar) measure2.

The twirling operation destroys coherence between certain subspaces of the Hilbert

space H of the joint systems and imposes a direct sum structure on the Hilbert space,

H =
⊕
q

Hq, (1.2)

where Hq are so-called ‘charge’ sectors, labelled by the index q, each carrying an in-

equivalent representation of G. Moreover, the index q is a conserved quantity under the

corresponding symmetry. For example, the group SO(3) of spatial rotations is usually

parametrized by two angles. Similarly, in order to include the spin degrees of freedom

as well, we can consider the group SU(2) (with the same algebra) instead. In this case,

the parameter q in (1.2) labels the total angular momentum of the system. Physically,

the above mathematical structure is equivalent to a “superselection rule” (SSR) [8]. We

now briefly go over the notion of a superselection rule and its historical development.

1.2.2 Superselection rules

Historically, superselection rules were introduced as new extra axioms laying out addi-

tional overall restrictions on the laws of quantum mechanics [105]. Previously, it was

posited that there exists a one-to-one correspondence between all Hermitian operators

on the one hand, and the physical observables of measurable quantities on the other [98].

The new axioms limited the quantum observables to a strict subset of all Hermitian

operators. In particular, they stated that some observables in quantum mechanics, like

2For a more detailed discussion of Haar measures and the twirling operation see Sections 2.1.1 and 2.2
respectively.
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charge, boson number or parity, must satisfy superselection rules, i.e. their observables

must have a direct sum structure [105].

Superselection rules were initially understood as arising due to an overall symmetry

in the laws of nature. Not only does the particular Hamiltonian of a system commute

with the superselected observable (and the symmetry transformations associated with

that observable’s degree of freedom), but all other observables of the system have to

commute with the superselected observable as well and remain invariant under the re-

spective symmetry transformations. This, in turn, implies that for any observable O,

the cross term 〈ei|O|ej〉 = 0, where |en〉 denotes the eigenstates of the superselected

observable A, and where |ei〉 and |ej〉 are assumed to have different eigenvalues. The line

of reasoning is as follows: 〈ei|OA|ej〉 = 〈ei|AO|ej〉, and thus ej 〈ei|O|ej〉 = e∗i 〈ei|O|ej〉.

It follows that 〈ei|O|ej〉 = 0, as ei 6= ej by assumption.

A “selection rule” determines when the cross terms of a given Hamiltonian H of a

system vanishes between two states, 〈ei|H|ej〉 = 0, due to that Hamiltonian’s particular

symmetry. The terminology for a “superselection” rule was thus chosen for the cases

where the cross terms of not only the Hamiltonian but every other observable O of the

system vanish between two such states, 〈ei|O|ej〉 = 0.

Consequently, no physical observable can distinguish between coherent superpositions

of the form

|ψω〉 = c1|ei〉+ eıωc2|ej〉, c1, c2 ∈ C+, for different phases ω, as

〈ψω|O|ψω〉 = |c1|2〈ei|O|ei〉+ |c2|2〈ej|O|ej〉 (1.3)

is independent of the phase ω. Similarly, for a mixed state, the cross terms between

different basis elements |ei〉 vanish in the average Tr(Oρ) for all observables O. Hence,

the interference between different eigenstates of the superselected observable cannot be

observed. The situation is, in effect, indistinguishable from the case where states cannot
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be prepared in coherent superpositions of this form to begin with, which brings us back

to the imposed direct-sum structure on the Hilbert space.

The discussion of quantum reference frames in the previous section relates the exis-

tence of a superselection rule of an observable to the availability of a suitable reference

frame. It implies that superselection rules need not be regarded as axiomatic. Rather,

whenever a suitable reference frame for a degree of freedom is hard to come by, an effec-

tive superselection rule is in place, whereas degrees of freedom for which many suitable

reference frames are naturally formed, or are easily prepared, are not bound by any su-

perselection rules. For example, many objects around us break the rotational symmetry

to some extent, and thus can act as Cartesian frames or, at least, as direction indicators.

On the other hand, preparing a Bose-Einstein condensate, that can act as a reference

frame for the phase associated with particle number, or a superconductor that can be the

reference frame for the phase associated with charge number [1], need forming environ-

ments with very low temperatures, among other things, and the knowledge to engineer

the right circumstances. Consequently, total particle numbers and total charge numbers

appear to come naturally with a superselection rule. This possibility was first recog-

nized by Aharonov and Susskind for the charge superselection rule [1]. In later years,

a similar observation in the context of quantum optics helped resolve the controversy

about whether coherent optical states do in fact exist or are merely suitable fictions [66].

It was realized that the state of an optical system can be treated correctly either as a

coherent superposition or an incoherent mixture of different photon-number eigenstates,

depending respectively on whether or not it is expressed relative to a background phase

reference [7,76]. For a historical account and a more detailed exposition of the controversy

see Section 1.5.

What is most relevant to our work is that the superselection rule specifies the general

form of restrictions that are imposed by the dynamical symmetry on quantum trans-
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formations, or equivalently, on the system’s temporal evolution. The symmetry group

characterizing the dynamical symmetry is identified with the group of transformations

of the reference frame, whose absence is what leads to the superselection rule.

1.3 An overview of resource theories

A resource is anything that enables the performance of a task or allows one to perform the

task better or easier. Resources that improve the performance of quantum information

processing tasks are known as quantum information resources [13, 53, 58, 67]. Quantum

information resources come in different shapes and forms. A resource can be classical or

quantum, noisy or noiseless, static or dynamic.

Shared correlation between two parties is an important resource. The correlation

between parties can be classical or quantum. If two parties can communicate classically,

they can always correlate their actions or their choices of local operations, and prepare

states that are correlated classically.

Quantum correlations are known as entanglement [67]. If Alice and Bob, who are

spatially separate share a maximally entangled state, like a Bell state, they can use

the entanglement in a teleportation protocol to transmit another (in general unknown)

quantum state to each other [14]. The entangled state is an example of a static quantum

resource. Teleportation can be viewed as a conversion of the static entanglement resource

to a noiseless quantum channel which is a dynamic resource (see Figure 1.2). Similarly,

superdense coding, whereby Alice and Bob use their shared entanglement to transmit two

bits of classical information, converts the static quantum resource of entanglement to a

noiseless classical channel that is also a dynamic resource (see Figure 1.3). Entanglement

is measured in units of “ebit”. An ebit is the amount of entanglement that is contained

in a maximally entangled two-qubit state, also known as a Bell state.
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Resources can also be noisy. Whereas a pure entangled state is a noiseless quantum

resource, a mixed entangled state is a noisy resource. Roughly speaking, a mixed state

is a statistical mixture of pure states. A decoherent channel is an example of a noisy

dynamic resource.

Figure 1.2: Teleportation of a qubit can be regarded as a conversion of one ebit of

entanglement, which is a static noiseless quantum resource, into a noiseless quantum

channel, which is a dynamic noiseless quantum resource [34].

Resources come in different combinations of classical, quantum, static, dynamic, noisy

or noiseless. Thus, there are many types of resources available. In fact in the broadest

sense, quantum information theory can be viewed as a theory of interconversion among

different resources. In the past two decades, the field of quantum information has amassed

powerful tools that can be exploited in order to quantify and categorize asymmetry re-

sources and determine the conditions under which asymmetry resources can be converted

to each other, as well as to other types of quantum resources.

A powerful tool for the study of resource theories is the concept of the resource mono-

tones. Monotones are real-valued functions of states that change monotonically as the

system undergoes a time evolution permitted by the resource theory’s set of restrictions.

An example of a resource monotone is the optimal rate of conversion of a given state
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Figure 1.3: Superdense coding can be regarded as a conversion of one ebit of entangle-

ment, which is a static noiseless quantum resource, to a noiseless classical channel, which

is a dynamic noiseless classical resource capable of transmitting to 2 cbits or classical

bits [34].

to some standard resource. The rate cannot increase as the system evolves, because

otherwise, the rate would not have been optimal.

More generally, the motivation for monotones is that they provide operational mea-

sures to quantify the strength of resources. If one is faced with a certain task and one

wants to know what is the maximum probability with which the task can be performed,

or the maximum number of particular states that one can acquire using symmetric oper-

ations, the definition of that task already involves an optimization over all allowed opera-

tions. It should not be possible to do better by first pre-processing the resource, because

the definition of the task assumes that all the preprocessing has already been done. In

such cases, a measure of the resource strength cannot increase under restricted transfor-

mations. Entanglement monotones are real functions of states that do not increase under

deterministic local operations and classical communication (LOCC) or, more generally,

functions that do not increase on average under a set of non-deterministic LOCC trans-

formations (see Section 2.4). In the resource theory of asymmetry, we consider functions

that are non-increasing under symmetric transformations [35, 37]. Monotones can also
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be used to determine whether certain states can or cannot be transformed to each other

under the restrictions that define the resource theory. A state cannot be transformed to

another state with a higher value of the monotone.

1.3.1 Entanglement as a resource

Entanglement plays a central role in quantum information theory. In fact, entanglement

was viewed as ‘not one but the characteristic trait of quantum mechanics’ by Erwin

Schrödinger, one of the founders of quantum theory itself [78]. An entangled state, like

the state of an EPR-pair introduced in [24], is the state of two or more systems such

that the state of each individual system independent of the state of the other system

is undefined. Historically, entanglement was first discussed by Albert Einstein, Boris

Podolsky and Nathan Rosen in their famous 1935 EPR-paper [24]. Their treatment was

in the context of foundations of quantum mechanics, and in particular, the controversy

over the interpretation of quantum states. Entanglement was next investigated by Er-

win Schrödinger who coined the term in his 1935 papers with Max Born [78] and Paul

Dirac [77].

Later in 1964, John Stewart Bell showed that the correlation between two systems

that are not entangled cannot be regarded as a “classical” correlation between the values

of some hidden variable that the two systems had shared at an earlier time when they

were interacting [11]. Bell tacitly assumes it impossible that some form of instantaneous

action at the distance updates the correlation at the moment when either one of the two

states is measured. The assumption that no action at a distance of this kind is possible is

known as “local realism”. Bell’s result is expressed as an upper bound, known as “Bell’s

inequality”, on the strength of any such classical correlation that adheres to local realism.

Bell showed that quantum mechanics breaks this bound. Hence, entanglement denotes

correlations that are truly quantum by nature and have no classical counterparts.
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The correlations in entangled states can be used as resources for communication, par-

ticularly for communication of quantum information. According to the laws of quantum

mechanics a qubit can be in any superposition of the two eigenstates of any of its observ-

ables. A quantum system whose state is fully expressed as a superposition of eigenstates

is said to be in a “superposition state” exhibiting quantum coherence [67]. Of course,

at any time, only one of the two eigenstates are obtained after measurement. Based on

the observed outcome of a measurement, the state of the qubit, like that of any other

quantum system, changes to the corresponding eigenstate3.

Nevertheless, the amplitudes in the superposition are continuous magnitudes, and

thus a full specification of the qubit prior to measurement requires an infinite number of

classical bits. It follows that the information required to prepare an arbitrary qubit can-

not be passed down classical information channels. Moreover, a qubit in a superposition

state is highly susceptible to the effects of the environment that act on it as a source of

noise. In an ordinary noisy channel, the environment can be thought of as performing

random measurements on the state of the qubit, thus destroying the coherence of the ini-

tial state. This process of noise is known as “decoherence”. Hence, decoherent channels

can, at best, communicate classical information, i.e. information that can be stored and

accessed in decohered quantum states.

The entanglement of a state can be higher than the entanglement of another state in

yet another respect. When one state can be transformed to the other via local operations,

but the reverse transformation by local means is not possible, the first state has higher

entanglement. Local operations are operations that act on each part of an entangled

state separately. This approach involves converting entangled states to each other, which

is another instance of the interconversion of resources [95]. Interestingly, the two different

ways that the entanglement of a state can be more than another coincide in the case of

3that is, unless the qubit was already in one of the eigenstates of the observable being measured prior
to the measurement, in which case it will remain there unchanged.
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pure states [43]. For example, for a system of two qubits in a pure state, there are four

maximally entangled states, also known as Bell states,

|ψ±〉 :=
1√
2

(|0〉A ⊗ |1〉B ± |1〉A ⊗ |0〉B)

|φ±〉 :=
1√
2

(|0〉A ⊗ |0〉B ± |1〉A ⊗ |1〉B) . (1.4)

The entanglement of a Bell state is maximal as it can be utilized to perform perfect

quantum teleportation and superdense coding, where perfect means that the protocol is

successful with probability one. The Bell states are also maximally entangled as they can

be transformed with certainty to any other bipartite state using LOCC transformations,

but the reverse transformation is not possible with certainty.

Alongside maps between resources that take one entangled state to another via a

single transformation, we can also consider asymptotic transformations of states. In an

asymptotic transformation many copies of one state are transformed to a state that is

‘close’ to multiple copies of the final state. Furthermore, the result approaches multiple

copies of the final state to any required accuracy in the limit when the number of copies

of the initial state tends to infinity. Closeness of the states are determined by various

distance measures in quantum theory such as fidelity or the trace distance. The rate

of interconversion of the two states is yet another measure of the relative strength of

their entanglement, and, in the case of pure states, ordering entangled states in terms of

this measure is again consistent with the ordering of entangled states based on the other

viewpoint [43,45,92].

The most general resource-theoretic view of entanglement can be summed up as

follows: Due to the restriction of allowed operations to LOCC, entangled states can no

longer be formed out of non-entangled, or separable, states. However, if distant parties

share entangled states, they can take advantage of the entanglement that they share to

perform operations that are otherwise impossible due to LOCC restrictions. For example,
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they can be used to teleport separate parts of the state and bring them together, in which

case the LOCC restriction becomes irrelevant.

This last view is the one that carries over most naturally to the resource theory of

asymmetry. Entanglement satisfies the two essential attributes that separates resources

from non-resource states: First, the resource states cannot be prepared from non-resource

states under the given restriction. Second, Resource states can be used to circumvent,

totally or partially, the respective restriction when they are included along with the target

state to undergo joint operations, as in the teleportation protocol where the target state

and the pair of entangled states were both acted upon during the teleportation process.

1.4 The resource theoretic approach to the study of dynamical

symmetries

We now see that we can treat the resource theory of asymmetry like entanglement. The

symmetry, or invariance, of the dynamics imposes a restriction of its own on the allowed

quantum transformations.

If a state that breaks the symmetry is available, for example the state might have

been prepared before the symmetry was imposed on all systems, it can be used to perform

quantum transformations that break the symmetry. When an invariant operation, cor-

responding to a symmetric time evolution, is performed on the joint states of the target

system together with a non-invariant state, the effect of the transformation on the target

state alone need not remain symmetric anymore [8]. States that break the symmetry are

therefore resources for lifting the symmetry condition.

The situation is similar to how entangled states are used in the teleportation protocol

to circumvent the LOCC restrictions due to the lack of a quantum channel. Here, too, if

Alice shares a “symmetry channel” with Bob and wants to transmit a quantum system,
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like a qubit, she can join a non-invariant resource state to the qubit, and send them

together through the channel (see Fig 1.4). The channel imposes the symmetry condition

on the joint system, but leaves the relative degrees of freedom of the two systems intact.

The information of the initial qubit becomes encoded onto these relational degrees as the

joint state goes through the channel.

Recall the G-twirling superopertor defined of the joint states of a system and an

internal reference frame in Eq. (1.1) of Section 1.2.1. For simplicity, let us assume that

the internal reference frame is in a pure state that we denote by |e〉 ∈HR, where e ∈ G

is the group identity. We similarly denote the states UR(g)|e〉 by |g〉 for every g ∈ G.

Let the operator UR be the representation of G carried by HR, the Hilbert space of the

reference system. The internal reference frame plays the same role as the resource state

in the previous discussion, and Alice can send it to Bob together with a target state

that she intends for Bob to receive, operate on or measure. A state acting as an internal

reference frame is also known as a token of Alice’s background reference frame. The

two states are twirled as in Eq. (1.1), so the (joint) state that Bob receives is invariant.

However, information about a non-invariant target state can be encoded in the joint

invariant state.

One can define an encoding map from operators on HS to G-covariant operators

on HS ⊗HR [8]:

$ : A 7→ G (A⊗ |e〉〈e|) , (1.5)

and use the map $ to define the covariant versions of the states and operators as

ρInv
SR :=

1

dR
$(ρS),

OCov
SR := $(OS), (1.6)

where dR denotes the dimension of HR. The state ρInv
SR is the invariant counterpart of

the initial state ρS in the sense that the map $ preserves the statistics of the Born rule
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and, consequently, all the statistical predictions associated with the original state. In

particular, if Mk is a member of a G-covariant measurement4, we have

TrSR

(
MCov†

k MCov
k ρInv

SR

)
= TrS

(
M †

kMk ρS

)
. (1.7)

In other words, the probabilities of any outcome of the original measurement and its

corresponding covariant version are always the same [8].

Bob then operates on the two systems and recovers the initial qubit. The ‘decoding’

operation D is the Hilbert-Schmidt adjoint5 of the map $, normalized to be trace pre-

serving [9]. The encoding and decoding maps together yield an effective decoherence of

the form

(D ◦ $) (ρS) =

∫
dµg p(g) US(g)ρSU

†
S(g), (1.8)

where

p(g) ∝ |〈e|UR(g)|e〉|2 (1.9)

is a probability distribution [9].

The case of a perfect reference frame corresponds to p(g) = δ(g−1e) = δ (g−1) ,

where δ (g) is the delta function on G defined by
∫

dµg δ(g)f(g) = f(e) for any con-

tinuous function f of G [8]. In this case, the decoding map completely recovers the

original state,

(D ◦ $) (ρS) = US(e)ρSU
†
S(e) = ρS. (1.10)

Since we consider Lie groups in the present thesis, the condition (1.10) for a perfect RF

system is satisfied only if the dimension of HR is infinite6. If we deal with systems of

4Measurements and G-covariant measurements are reviewed briefly in Section 2.3.3
5The Hilbert-Schmidt adjoint of a superoperator E is defined in terms of the Hilbert-Schmidt inner

product of two arbitrary operators A and B via Tr
(
AE†(B)

)
= Tr (E(A)B).

6The method also applies to finite groups, where the integrals are replaced by discrete sums and the
uniform weight dµg by the inverse of the group size. For finite groups, perfect reference frame systems
with finite-dimensional Hilbert spaces can be prepared. See [8] and [37] for examples of such systems.
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bounded size and finite-dimensional Hilbert spaces, then the decoding process is always

accompanied by decoherence. When the state of the reference system is itself G-invariant,

however, p(g) is a uniform distribution, and the decoding process is of no help. The result

of Eq. (1.8) is the same as twirling the state of the system by itself,

G(ρ) :=

∫
dµg US(g)ρSU

†
S(g). (1.11)

Of course, if Bob does not receive the reference token at all, then he has to take a

partial trace of the density operator of G(ρS ⊗ |e〉〈e|), resulting once again in the same

invariant state:

TrR (G(ρS ⊗ |e〉〈e|)) = G(ρS). (1.12)

We can view this encoding and decoding procedure as a model for the physical process

through which Bob gains information about Alice’s reference-frame alignment. As long

as he has not received the token, the states prepared by Alice are twirled, and thus G-

invariant, relative to his frame. Once he receives the token, he can retrieve the state

as it was originally prepared by Alice with some probability. Finite-dimensional and

bounded-sized tokens provide Bob with only partial information about Alice’s reference

frame and thus lead to an ‘effective’ decoherence.

We can choose some resource state, say the state |+〉 := (1/
√

2) (|0〉+ |1〉) for exam-

ple, to represent the refbit, or ‘unit’ asymmetry [89]. The degree of asymmetry of other

states in units of the rebit would then the rate with which they can be asymptotically

converted to the refbit by covariant transformations [37,89]. A refbit is analogous to an

ebit, the maximally entangled qubit state |Φ+〉 = (1/
√

2) (|00〉+ |11〉) acting as the unit

of entanglement. However, what state one chooses to be the refbit is quite arbitrary,

because a maximally asymmetric state does not always exist [37].

Conserved quantities are not the only thing that can be deduced from symmetry

arguments. For example, there also exist quantities that are not conserved but change
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Figure 1.4: Alice can include a non-invariant state with the target state through the

channel. The relational degrees of freedom are not affected by the effective decoherence

in the channel. Bob performs a joint operation on the two states that he receives and

recovers the original target state aligned with his reference frame.

monotonically. In other words, they are guaranteed not to increase (or decrease) during

a symmetric time evolution7.

Asymmetry monotones can be viewed as generalizations of conserved quantities. An

important application of Noether’s theorem is to help determine when a transition from

one state to another is not allowed due to violation of some conservation law. The rules

that specify which transitions are possible are the selection rules [38]. Conservation laws

alone do not provide all the selection rules induced by the symmetry. The question what

combination of rules and conditions is sufficient to fully determine all the consequences

of a given symmetry is still an open question. Comparing the values of an asymmetry

monotone for two states of a system may determine whether or not transition from one

state to the other is possible under symmetric time evolutions.

The above discussion shows that there is much more to symmetry than conservation

laws. To extract all the dynamical consequences of a symmetry, we need to treat the

symmetry as a full-fledged resource theory. This insight points to quantum information

7We need consider only monotones that are non-increasing, as any non-decreasing monotone can
always be multiplied by negative one to become a non-increasing one.
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theory as the most conducive approach to the study of symmetry in quantum systems [8].

One particular symmetry-breaking task that can be performed using an asymmetry

resource is preparing additional asymmetric states from symmetric ones. The auxiliary

resource state, relative to which the target state is prepared in the above scheme, is the

finite-sized quantum reference frame. As mentioned, both the finite size and the quantum

nature of the asymmetry resource distinguish it from an ideal reference frame [6].

In fact, a quantum reference frame is exactly the same thing as an asymmetry re-

source [61]. If the reference frame were invariant under the group of transformations, its

states corresponding to different values of the respective degree of freedom would not be

distinct anymore and thus could not act as a reference frame for that degree of freedom

at all. The more asymmetric or non-invariant the state of the system is, the larger is the

orbit of any of its relevant states under symmetry transformations, and thus more of its

states are distinct. In other words, the system is a better quantum reference frame.

From a resource-theoretic point of view, the ensuing restriction on states and oper-

ations is a superselection rule, and, consequently, we can apply the resource theory of

asymmetry to situations where an external idealized reference frame is lacking. In a

communication setting like the one we discussed for entanglement theory, the restriction

arises due to a lack of shared reference frames between the parties, or equivalently, when

their local references are not aligned. Asymmetry, viewed as a resource for reference

frames, is also known as “frameness” in this context and has applications in many areas

such as data hiding, cryptography and quantum error correction [8, 35, 37, 49, 94]. That

is why the unit asymmetry of a standard state is termed a refbit, short for “reference

frame bit”, in analogy to ebits in entanglement theory and similar units in other resource

theories [89].
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1.5 A review of previous work

In this section, we review the main results of the resource theory of asymmetry, or

equivalently, the resource theory of frameness. As we saw earlier in Section 1.2.2, Wick

et al. introduced the notion of superselection rules (SSRs) for the first time as additional

axiomatic restrictions to quantum theory [105]. The possibility of linking a SSR with

the absence of a reference frame was first recognized by Aharonov and Susskind for the

charge superselection rule [1]. Aharonov and Susskind showed how a superposition of

different charge eigenstates can be prepared and observed relative to the state of a second

system. They also showed how lack of alignment between two Cartesian frames can lead

to an effective SSR for angular momentum.

Years later, a similar debate arose in the field of optics about whether coherent optical

states could be prepared at all, or whether coherence was merely a useful fiction, and a

superselection on photon numbers existed in the lab [66, 76]. In his 1997 paper, Klaus

Mølmer argued that if the state of the gain medium is quantized and assumed to be in

an incoherent mixture of energy eigenstates, and if the interactions between the atoms

in the gain medium and the field are assumed to conserve the total energy, then the

joint state of the gain medium and the electromagnetic field evolves into an incoherent

sum of entangled states comprised of excited and de-excited atoms, each correlated with

a different corresponding number of photons in the field [66]. It then follows that the

reduced density operator of the field itself must be in an incoherent mixture of different

photon number states. Mølmer further presented numerical simulations to demonstrate

that this conclusion does not contradict the usual experimental results. Sanders et al.

analytically verified those results [76].

In the debate that followed, what became known as ‘the optical coherence contro-

versy’, it was eventually realized that both descriptions are valid and equivalent [7]. The
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two pictures correspond to whether a suitable phase reference, or a clock, is treated as

an external reference frame or whether it is incorporated in the dynamics of the systems

involved [7]. These considerations were one of the factors that lead to the modern study

of quantum reference frames and their associated resource theories.

The need to study the impacts of SSR restrictions on quantum information processes

also arose in the field of quantum cryptography. The principal goal of classical cryp-

tography is to achieve computational security for cryptographic tasks. Computational

security requires the adversary, or the dishonest party, to complete an exceptionally diffi-

cult computational task. On the other hand, in quantum cryptography, the aim is instead

to achieve information-theoretic security, i.e. security that remains unbroken even if the

adversary or the dishonest party has access to unlimited computational power [54].

For some tasks, such as quantum key distribution, protocols with information-theoretic

security, also called unconditional security, have been devised and verified [62]. There

are tasks, however, like bit commitment [57, 63] or strong quantum coin flipping with

arbitrarily small bias, that have been demonstrated to lack information-theoretic secu-

rity [2, 23].

Popescu suggested that SSRs can pose restrictions on the cheating strategies and thus

enhance the security of cryptographic protocols, perhaps even allowing them to achieve

unconditional security [54]. Kitaev et al. showed that SSR cannot thwart a dishonest

party as long as his or her computational powers are assumed to be unlimited [54]. In

particular, in the case of compact symmetry groups with irreducible unitary representa-

tions, they demonstrated how a cheater can, in principle, prepare a reference state that

breaks the respective symmetry, use it to overcome the restrictions imposed by the SSR

and implement the cheating strategy. For the same reason, if a protocol is information-

theoretically secure in the absence of the SSR, it will remain so as long as the SSR arises

from compact symmetry groups [54]. In the same paper, Kitaev et al. also generalize
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the result to SSRs associated with general groups in case of two-party protocols.

Bartlett et al. showed how privately shared RFs can function as private keys allowing

for both classical and quantum communication over public quantum channels [5]. Ioannou

and Mosca [49] introduced an identification scheme based on bounded quantum RFs in

a quantum-public-key cryptographic framework that can be regarded as the public-key

analogue of the framework developed in [5].

Following the same general line of research, Verstraete and Cirac introduced a data-

hiding protocol in the presence of a SSR associated with the group U(1) to determine

whether the additional restriction allows the protocol to achieve unconditional secu-

rity [93]. In a data-hiding protocol, either classical or quantum information is distributed

among two or more parties in such a way that the information is retrieved only when

the parties come together to perform joint measurements. However, they also concluded

that although the security of the protocol is enhanced as a result of the SSR, it is not

enhanced enough to reach unconditional security. By taking advantage of suitable refer-

ence states, phase references in this case, it is still possible to circumvent the restriction

and thus successfully attack the protocol and break the security.

As entanglement is a key resource in quantum information theory, the study of the

effects of SSRs on the capacity of entangled states to perform various tasks became an-

other focus of research. The main question here is: How much of a state’s entanglement

remains accessible for use as a resource in quantum information processing tasks once

a SSR is imposed [10, 51, 88, 104, 109]. Wiseman et al. observed that performing tele-

portation, superdense coding or violating a Bell inequality requires operations that are

forbidden by a particle-number SSR for indistinguishable particles. They showed that

when the SSR is in effect, different already-existing operational entanglement measures,

i.e. measures that quantify how well a certain task can be performed by utilizing the

entangled state, assign different values to the strength of a state’s entanglement [109].
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For example, whereas in the absence of the SSR, all operational measures assign maxi-

mum entanglement to a Bell state, under a total-particle-number SSR, some operational

measures would not even designate a Bell state as entangled.

Wiseman and Vaccaro proposed a new measure of entanglement defined by the average

entanglement of the projections of the state into different subspaces, each of fixed local

particle number [109]. In effect, the new measure quantifies the amount of bipartite

entanglement that two parties can generate between two local and distinguishable register

states that each owns by local operations that satisfy the particle-number SSR.

Schuch et al. also considered the effects of a U(1)-SSR on the entanglement of bipar-

tite states [79]. They showed that entanglement is not the only resource in the presence

of the SSR. States can also be categorized in accordance to a second bipartite resource

arising due to the effects of the SSR. They introduced a second measure, beside en-

tropy of entanglement, to quantify the new resource they called superselection-induced

variance (SiV). The two measures together fully specify the necessary and sufficient con-

ditions for asymptotic bipartite pure-state transformations. Next, Gour et al. showed

that the equivalent of SiV for unipartite states, the number variance, is a monotone

under U(1)-covariant transformations and quantifies the asymptotic rate of reversible

interconversion between two bounded-sized quantum phase references [37]. One can also

view the number variance as a measure quantifying the rate at which one can distill

copies of the state |+〉 := (1/
√

2) (|0〉+ |1〉), chosen as the refbit for phase references.

The notion of a unit of shared quantum reference frame was introduced by van Enk [89]

and he initially coined the term refbit for such a unit. The choice of van Enk himself for

a refbit of phase references was the bipartite state (|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉) /
√

2. Gour et

al. generalized the notion of the refbit, or more accurately the notion of a local refbit, to

include unipartite states acting as quantum reference frames associated with a general

group G [37].
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The first function identified to be a monotone under G-covariant transformations was

introduced by Vaccaro et al. [88]. The monotone they called the G-asymmetry is defined

as the difference between the von Neumann entropy of a state and the von Neumann

entropy of that state after it has been averaged over the group. The G-asymmetry was

shown in [35] to be equivalent to the relative entropy of frameness, a measure introduced

in analogy with the well-known relative entropy of entanglement [91].

The notion of a measure for frameness, meaning a measure of the quality of a reference-

frame token, was first made explicit by Bartlett et al. [6], where the authors study mono-

tone functions under deterministic G-covariant transformations. The authors introduce a

measure of frameness in terms of the average probability of success of estimating quantum

states with the help of a bounded-sized quantum reference-frame token. The problem

of estimating physical parameters that identify a particular transformation from a given

symmetry group, and the problem of determining the optimal signal states and the op-

timal estimation strategies were studied in [19]. Yet another line of research involves

determining the efficiency, consumption, degradation and transmission rates of various

bounded-sized reference frames [4, 9, 20, 103]. For an extensive review see [8].

Frameness monotones were studied in detail in [37], where they were classified into

three categories: deterministic monotones, ensemble monotones and stochastic mono-

tones. The authors introduce particular frameness monotones for the specific groups Z2,

U(1) and SU(2), and under the more restrictive conditions of pure-state-to-pure-state

interconversion. Further work on frameness monotones include the paper by Gour et

al. [36], where the authors study frameness resources under time-reversal SSR that now

involves an anti-unitary representation of the group Z2. In [81], the authors provide an

operational interpretation for G-asymmetry in terms of the accessible information in an

alignment protocol associated with the cyclic groups ZM , as well as the group U(1), and
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relate the G-asymmetry to the Holevo quantity [42].

We discuss the contributions of the present thesis in the next section.

1.6 The original contributions of the thesis

We first present our method of linking the resource theories of asymmetry and entan-

glement for the special case of the symmetry group U(1) in Chapter 3. We introduce

the map between pure states of the original system to a set of bipartite pure states, and

show how U(1)-covariant time evolutions correspond to LOCC transformations. The

group U(1) is the simplest Lie group, and by focusing on this group first, we demonstrate

the main ideas of the thesis in their simplest form before going to the general case. Al-

ready, we find many new results even though the group U(1) is Abelian and despite the

focus primarily on pure states.

In Chapter 4, we build on the earlier work and generalize the method and the re-

sults of the previous chapter to general Lie groups. The key idea here is to embed the

system’s Hilbert space H within a larger tensor product space HA ⊗HB. We show

that covariant maps can be ‘simulated’ by a restricted subset of LOCC transformations.

Figure 4.1 demonstrates what we mean by simulate in this context. Two states related

by a G-covariant transformation Ecov are mapped by the LOCC-simulating isometry to

two bipartite states that are related by LOCC transformation represented by Ẽlocal.

We show that such isometries can be found for symmetries associated with semi-simple

compact Lie groups. Moreover, for any asymmetric state, we show that there exists an

isometry that maps it to an entangled state. Hence, the entanglement in the image space

captures many of the asymmetry properties of the state. Our results follow from an

application of the Wigner-Eckart theorem, generalized to all semi-simple Lie groups [16],

that allows us to determine the general form of all covariant transformations [37]. Our
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Figure 1.5: Simulating a covariant transformation Ecov by a LOCC transformation Ẽlocal.

results demonstrate that the resource theory of asymmetry is equivalent to a subclass of

entanglement theory restricted to a specific set of local operations.

From this key insight flows many important consequences. Every entanglement mea-

sure or monotone, can be utilized to quantify the asymmetry properties of quantum

states. For reversible time evolutions, the entanglement monotones become conserved

quantities associated with novel conservation laws. However, unlike Hamiltonian-based

conservation laws that are in terms of expectation values of the generators of the sym-

metry, the new conserved quantities give rise to new selection rules that work not only

for reversible transformations but also for the more general case involving irreversible

transformations and open-system dynamics.

Finally, we introduce a second form of embedding within a bipartite setting that

does not lead directly to LOCC operations to simulate the symmetric time evolution.

Nevertheless, we show that new and additional selection rules for the general case of

both closed and open systems can be constructed from entanglement considerations by

taking advantage of this second embedding.

In Chapter 7, we summarize the main results of the thesis and elaborate their signif-

icance in more detail. We also highlight novel aspects of our approach that qualifies it

as an original contribution to the field. We also discuss some remaining open questions

as well as some new questions that have arisen from these results, and suggest possible
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new applications in other related research programs.
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Chapter 2

Preliminaries

In this chapter, we review some of the physical and mathematical background information

that is required in later chapters. We also introduce the symbols and notations that we

use in the rest of the thesis. This chapter is organized as followed. In Section 2.1, we

review some basic facts in group representation theory. Section 2.2 reviews the formal

treatment of symmetric evolutions and G-covariant transformations. In Section 2.3, we

discuss those elements of entanglement theory that are needed in later chapters. Finally,

Section 2.4 discusses monotones and the conditions that they satisfy.

2.1 Group representation theory

In this thesis we will only consider semi-simple compact Lie groups and Lie algebras.

We start with the definition of a Lie group and review some important topics in group

theory and representation theory that we use later in the thesis [18,30,65,114].

Definition 1. A Lie group is both a group and a differential manifold such that the

group’s binary operation and the group’s inverse operation are both differentiable func-

tions if the manifold is real, or analytic functions if the manifold is complex.

The dimension of a Lie group is equal to the dimension of the group’s manifold. Exam-

ples of Lie groups include the general linear groups GL(n,C) of n×n dimensional linear

operators, the special linear group SL(n,C) of unit determinant, the orthogonal, and spe-

cial orthogonal groups O(n) and SO(n), respectively, and the unitary and special unitary

groups U(n) and SU(n), respectively. The unitary group U(1) is Abelian and is the sim-

plest of all the unitary groups. In Chapter 3 we focus on this group to introduce some of
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the main ideas that are expounded and generalized to all Lie groups in Chapter 4. If the

manifold is compact, the group is also called compact. The groups O(n), SO(n), U(n)

and SU(n) are examples of compact Lie groups. The group of real numbers R with

the addition operator, and the group SU(1, 1)1 are examples of non-compact groups.

Compact Lie groups have a lot of characteristics in common with finite groups.

Let G be a Lie group whose manifold, M , is defined over the field F, where F is either

the field of real numbers R, or the field of complex numbers, C. Also let the group’s

manifold M be of dimension n. Consider an invertible and differentiable (or analytic)

curve γ : R F →M : t 7→ γ(t), passing through the group’s identity element e = γ(0).

The tangent vector to γ(t) at the identity is the vector

χ :=
dγ(t)

dt

∣∣∣∣
t=0

. (2.1)

Let the tangent vectors for two invertible differentiable curves γ and δ passing through

the group identity be χ and ξ respectively.

Definition 2. The commutator [χ, ξ] of tangent vectors χ and ξ is the vector at the

identity of the curve κ : F→M given by

κ(τ) := γ(τ 2)δ(τ 2)γ−1(τ 2)δ−1(τ 2), ∀τ ∈ F. (2.2)

In other words, the commutator [χ, ξ] is the coefficient of τ 2 in the Taylor expansion

of the curve κ at the identity [65]. The tangent vectors at e form a vector space that

we call the tangent space TeG. The commutator operation defined above, also known

as a Lie bracket, satisfies all the conditions of a bilinear operation of an algebra (see for

example [74]).

Definition 3. The Lie algebra g of the Lie group G is the tangent space TeG equipped with

scalar multiplication, vector addition and the commutator operation of Definition 2 [65].

1Let J =

(
0 1
−1 0

)
. The group SU(1, 1) is the group of 2× 2 matrices with determinant equal to

one that obey A†JA = J .
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A homomorphism between two Lie algebras g1 and g2 is a linear map f : g1 → g2

that preserves the commutation relations:

f ([χ, ξ]1) = [f(χ), f(ξ)]2 , ∀ χ, ξ ∈ g1. (2.3)

A subspace h ⊆ g that is closed under the commutator operation is called a Lie subalge-

bra.

Definition 4. A subset I ⊆ g is called an ideal if [χ,η] ∈ I for all χ ∈ g and η ∈ I.

In short, [g, I] ⊆ I. The ideal is called proper if I is a proper subset of g, i.e. I ⊂ g.

The ideal I is Abelian if for every η1,η2 ∈ I, the commutator [η1,η2] = 0.

The notion of Lie algebras and their representations plays an important role in the

study of asymmetry resources.

Definition 5. A Lie algebra is called simple if it contains no proper ideals, and it is

called semi-simple if it contains no proper Abelian ideals.

A group is said to be semi-simple if its associated algebra is semi-simple [111]. A

simple algebra is necessarily semi-simple. However, a semi-simple algebra is not always

simple. Instead, a semi-simple algebra satisfies the following condition:

Theorem 1. A Lie algebra g is semi-simple if and only if g can be expressed as a direct

sum,

g = g1 ⊕ · · · ⊕ gk, (2.4)

where gi are ideals of g, with each ideal forming a simple Lie algebra [65].

2.1.1 Group-invariant measures and group averages

Consider a measure space Ω. The σ-algebra, σ(Ω), is a non-empty subset of the power

set of Ω that is closed under complementation and countable unions. An invertible
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function f : (σ(Ω1))→ (σ(Ω2)) is called a measurable function if for every B ∈ σ(Ω2), its

inverse image is in σ(Ω1), i.e. f−1(B) ∈ σ(Ω1). In particular, we will be using measurable

functions that map Lie groups (or Lie algebras) to the group of linear automorphisms of

the system’s state space later in thesis, when we work extensively with the representations

of Lie groups and Lie algebras (see Section 2.1.2).

Definition 6. A Borel measure on Ω is a non-negative countably additive function from

the σ-algebra of Ω to the extended real number line, µ : σ(Ω) → R̄ that assigns zero to

the empty set and finite and non-negative values on compact subsets of Ω.

The function µ is countably additive if

µ
(⋃

Bi

)
=
∑

µ(Bi), (2.5)

for {Bi} a countable set of pairwise disjoint subsets of Ω. The extended real number

line R̄ is obtained by augmenting the real number system R by adding two elements

called the positive infinity +∞ and the negative infinity −∞.

Consider a Lie group G. For any fixed element h ∈ G, and a subset B ⊆ G, we denote

as hB = {hg| g ∈ G} the subset onto which the diffeomorphism g 7→ hg maps B. We

define Bh = {gh| g ∈ G} in a similar manner.

Definition 7. A Borel measure µL on a Lie group G is called left-invariant if

µ(hB) = µ(B), (2.6)

for every group element h ∈ G and every set B ∈ σ(Ω). Similarly, a measure µR is

called right-invariant if

µ(Bh) = µ(B), (2.7)

for all h ∈ G [19, 114].
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Theorem 2. Every Lie group G admits both a left-invariant and a right-invariant mea-

sure. Moreover, each left-invariant measure on G is unique up to a scalar factor, i.e. a

multiplicative constant in F. The same is true for each right-invariant measure of G [19,

114].

In general, the left-invariant and the right-invariant measures of a Lie group need not

be equal. If the left and right-invariant measures are equal (up to a scalar factor) the

group is called unimodular.

Theorem 3. All compact Lie groups are unimodular [19, 114].

As we deal only with compact Lie groups in the present thesis, we always utilize a

measure of the group that is both left and right-invariant.

Definition 8. A measure µ of the group G that is both left and right-invariant is called

a Haar measure of the group.

The Haar measures of a compact Lie group differ only by a multiplicative constant.

Furthermore, we use the Haar measures in the integrals of measurable functions, oth-

erwise known as Haar integrals. In the rest of the thesis, we assume that the Haar

measure of the Lie group is normalized:
∫
g∈G dµ(g) = 1, where

∫
g∈B dµ(g) = µ(B) for

every subset B of the group. The left invariance of the Haar measure implies∫
G

dµ(g) f(hg) =

∫
G

dµ(g) f(g), ∀ h ∈ G. (2.8)

A similar relation exists naturally for the right invariance as well. The Haar integral

formalism is developed in the general theory of Lebesgue integrals (see for example [101]).

2.1.2 Representations of groups and algebras

Given that we primarily work with quantum states and Hilbert spaces, we need to specify

how the appropriate Lie group acts on those mathematical objects. Representation theory

allows us to systematically study the action of groups on vector spaces and Hilbert spaces.
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Let H be the system’s Hilbert space over C, the field of complex numbers. We

assume that the input and output Hilbert spaces are the same. In cases where this is not

true we differentiate them by Hin and Hout respectively.

Definition 9. A representation T : G → GL(H ) of a group G acting on the space H

is a homomorphism from the group G to the group of linear automorphisms of H .

For groups with real manifolds, we consider homomorphisms that are differentiable.

For groups with complex manifolds we consider homomorphisms that are analytic. By

a differentiable or an analytic homomorphism, we mean a homomorphism whose matrix

elements Ti,j(g) with respect to any basis in H are, respectively, differentiable or analytic

functions of the local coordinates of g in G.

Definition 10. A unitary representation U : G → GL(H ) is a representation of the

group G such that U(g)−1 = U(g)† for all g ∈ G.

Equivalently, a representation U : G → GL(H ) is a unitary representation of G if

and only if for all g ∈ G

〈U(g)v, U(g)w〉 = 〈v,w〉, v,w ∈H , (2.9)

where 〈, 〉 denotes the inner product on H .

Definition 11. Two representations T1 and T2 of a group G carried by Hilbert spaces H1

and H2, respectively, are said to be equivalent if there exists an invertible linear trans-

formation A : H1 →H2 such that

T2(g) = A T1(g) A−1, ∀g ∈ G. (2.10)

The invertible linear transformation A is an isomorphism also known as an inter-

twiner. If H1 and H2 are the same Hilbert space then (2.10) is a change of basis.
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Theorem 4. Every representation of a compact Lie group is equivalent to a unitary

representation [65].

Proof. If T is not already a unitary representation, we define a new inner product (, )

on H with respect to which T becomes a unitary representation. Let

(v1,v2) :=

∫
G

dµ(g) 〈T (g)v1, T (g)v2〉. (2.11)

The integral is taken over the group with a Haar measure, consequently

(T (h)v1, T (h)v2) =

∫
G

dµ(g) 〈T (gh)v1, T (gh)v2〉

=

∫
G

dµ(g′) 〈T (g′)v1, T (g′)v2〉 = (v1,v2) . (2.12)

Let {|vi〉} be an orthonormal basis of H with respect to the original inner product

and {|wi〉2} be an orthonormal basis of H2, which is the Hilbert space with respect to

the new inner product (, ). Define the invertible linear transformation S : H → H2 as

the transformation that relates the two basis states, S|vi〉 = |wi〉2. It follows that

U(g) := S T (g) S−1 (2.13)

is a unitary operator for every g ∈ G as it satisfies (2.9).

From now on, we only consider unitary representations. The representation that maps

every group element to the identity operator is called the trivial representation, otherwise

the representation is called non-trivial.

Definition 12. A non-trivial representation T : G → GL(H ) is reducible if there

exists a proper subspace V ⊂ H that remains invariant under the action of the group

representation. In other words, a representation is reducible if for every vector |v〉 ∈ V ,

the state T (g)|v〉 ∈ V , for all g ∈ G. Alternatively, the representation T : G→ GL(H )

is called irreducible, or an irrep for short, if no such subspace V exists.
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Any subspace V satisfying Definition 12 is known as an invariant subspace of H .

Theorem 5. If G is a compact Lie group and if U : G → GL(H ) is a (unitary)

representation of G on a Hilbert space H , then the unitaries U(g) can be decomposed

into a direct sum of a discrete number of irreps [19].

A representation that, by a suitable choice of basis, can be written as a direct sum

of irreps is called fully reducible. Thus, every representation of a compact Lie group

is fully reducible to a sum of irreps where each irrep has finite dimension [18]. Every

finite unitary representation of a semi-simple group is also fully reducible. We use many

of the features of fully reducible representations later in the thesis. In particular, the

results of Chapters 3, 4 and 6 rely heavily on the direct sum decomposition of unitary

representations into irreps. We will come back to the direct-sum decomposition shortly,

but first we review how irreps are labeled and how their labels are related to the Lie

algebra of the group.

Two important results concerning irreducible representations are contained in two

lemmas known as Schur’s lemmas [18,65].

Lemma 6. If U : G → GL(H ) is an irrep and A : H → H is a linear map

that commutes with U(g) for all g ∈ G then A = λI, where I is the identity operator

and λ ∈ C.

Lemma 7. If U : G→ GL(H ) and V : G→ GL(H ) are two irreps and A : H →H

is a linear map such that A U(g) = V (g) A, for all g ∈ G, then either A = 0 or U ∼= V ,

i.e. A U(g)A−1 = V (g) for all g ∈ G, and A is invertible and an intertwiner between the

two representations.

It follows immediately from Schur’s lemmas that every irrep of an Abelian group must

be 1-dimensional.
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Now consider a representation U : G → GL(H ). Suppose g(x) = g(x1, · · · , xr),

with x ∈ Fr, is a point of the manifold in the neighbourhood of the point (0, · · · , 0)

corresponding to the group identity. We can use the properties of the manifold and

Taylor expand the unitary operator around this point:

U (g(x)) = I +
∑
k

xk

(
∂U(g)

∂xk

)∣∣∣∣
x=0

+ higher order terms in the coordinates xk.

(2.14)

The matrix

Xk :=

(
∂U(g)

∂xk

)∣∣∣∣
x0=0

, (2.15)

is called an infinitesimal generator of the group representation.

Theorem 8. The matrices {Xk} in Eq. (2.15) satisfy the relation

[Xi, Xj] =
∑
k

Ck
i,jXk, (2.16)

where [ , ] denotes the commutator of two operators in GL(H ). The numbers Ck
ij ∈ F

are called the structure constants of the Lie group.

Proof. Note that the Xk is determined by the derivative of U(g) at the identity and is

thus independent of the choice of x in Eq. (2.15). Hence, for simplicity, we consider the

representation of two group elements U(g(xi)) and U(g(xj)), where the coordinates xi

and xj both have all but one of their entries equal to zero. Furthermore, assume that

the sole non-zero element in both cases is equal to a given ε, in the ith and jth positions

respectively. In other words, both coordinates are of the form x = (0, · · · , ε, · · · , 0).

As U is a representation of G, it follows that

U(g(xi))U(g(xj))U
−1(g(xi))U

−1(g(xj)) = U(h(i, j, ε)), (2.17)
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for some h ∈ G, where h is a suitable function of i, j and ε: h = h(i, j, ε). Expanding the

right hand side of Eq. (2.17) as in Eq. (2.14) gives

U(g(xi))U(g(xj))U
−1(g(xi))U

−1(g(xj)) = I + ε2 [Xi, Xj] +O(ε3). (2.18)

Similarly, assuming h is parametrized as h = g(s1, · · · , sr), where each sk = sk(i, j, ε) is

again a function of i, j and ε, and expanding the right hand side of Eq. (2.17), we get

U(h) = I +
∑
k

skXk + higher order terms (2.19)

As there is no term of order ε in (2.18), it follows that sk(i, j, ε) must be of order ε2.

Equating the terms of order ε2 in Eqs. (2.18) and (2.19) leads to

[Xi, Xj] =
∑
k

Ck
i,j Xk, (2.20)

where each Ck
i,j := sk(i, j, ε)/ε

2 is a constant.

The infinitesimal generators Xk defined in Eq. (2.15) together with the commutator

on GL(H ) belong to a representation of the Lie algebra g [18]. In the present thesis we

deal primarily with representations of Lie groups and Lie algebras on the Hilbert space

of quantum systems and not with the abstract Lie group or Lie algebra itself. So, unless

otherwise stated,we refer to the representation of a Lie algebra simply as the Lie algebra

for brevity when the context is clear and unambiguous, and we denote it by LieG.

Definition 13. The adjoint operator of an infinitesimal generator Xi is the map X̆i

defined as

X̆i : LieG→ LieG : Xk 7→ [Xk, Xi], (2.21)

Let A =
∑

k akXk be an element of a semi-simple Lie algebra LieG. Consider the

eigenvector equation for the adjoint operator Ă:

ĂX = aX, (2.22)
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or equivalently,

[A,X] = aX. (2.23)

Theorem 9. If A has the maximum number of distinct eigenvalues, then the only eigen-

value that is degenerate ( ie. has multiplicity greater than one) is the eigenvalue zero [18].

Definition 14. The rank of the Lie algebra LieG is the degeneracy of the eigenvalue

zero of the adjoint operator with the maximum number of distinct eigenvalues.

A Lie group of rank ` is a Lie group whose Lie algebra is of rank `. Let us denote

the ` independent eigenvectors associated with the eigenvalue zero by Hi (i = 1, · · · , `).

In other words [A,Hi] = 0, where Ă is the adjoint operator with the maximum number

of distinct eigenvalues. Note that [A,A] = 0 too, so that A must be of the form A =∑
i λiHi. In fact, the operators Hi, i = 1, · · · , `, form a subalgebra of LieG called

the Cartan subalgebra of LieG [18]. In general, the Cartan subalgebra of a Lie algebra g

is the maximal Abelian subalgebra of g. Thus, the dimension of the Cartan subalgebra

is the same as the rank of the Lie algebra.

If G is of dimension r, then the remaining r − ` non-degenerate eigenvectors satisfy

the following relations [18, 111]:

[Hi, Hj] = 0, i, j = 1, · · · `

[Hi, Dα] = αiDα, αi ∈ F

[Dα, Dβ] = NαβDα+β, αi ∈ F (if α+ β 6= 0)

[Dα, D−α] =
∑
i

αi Hi. (2.24)

Thus, each operators Dα is simultaneously the eigenvector of all the adjoint opera-

tors H̆1, · · · , H̆` with eigenvalues α1, · · · , α` respectively, where αi ∈ F, for i = 1, · · · , `.

The eigenvalues can be regarded as elements of a vector α = (α1, · · · , α`) called a root
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vector (or a root for short). The roots span an `-dimensional vector space that we call

the root space of the Lie algebra.

The r operators {Hi} ∪ {Dα} belong to a representation of the Cartan-Weyl basis of

the Lie algebra. As the ` operators Hi all commute, we can build a set of simultaneous

eigenvectors |m〉 such that,

Hi|m〉 = mi|m〉, i = 1, · · · , `. (2.25)

The ` eigenvalues comprise a vector m = (m1, · · · ,m`), called a weight vector, or simply

a weight, of the representation of the Lie algebra. The weight vectors span a vector

space that we call the weight space ∆U . Also, let us define the operator vector H :=

(H1, · · · , H`). The set of relations in Eq. (2.24) imply (see [111]),

H Dα|m〉 = (m+α)Dα|m〉. (2.26)

A weight m is called positive if its smallest non-vanishing component is positive. The

weight m1 is said to be higher than m2, denoted as m1 >m2, if m1 −m2 is a positive

weight. If a weight j satisfies j > m for all the other weights m, then j is called the

highest weight in the representation. The following important theorem, that we present

without proof here, implies that that the highest weight of an algebra can be used to

label the irrep.

Theorem 10. Two representations with the same highest weight are equivalent [65].

Recall that a unitary representation U : G→ GL(H ) of a compact Lie group is fully

reducible, and we can thus write every matrix U(g) for every g ∈ G as the direct sum of

irreps Uj , i.e. in a suitable choice of basis,

U(g) =
⊕
j∈ΛU

λj Uj(g), (2.27)
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where j is the label for the inequivalent irreps, λj ∈ N is the multiplicity of the irrep

labeled by j in the representation and ΛU is the set of all irrep labels in the representa-

tion U . The Hilbert space that carries U can also be decomposed as the direct sum

H =
⊕
j∈ΛU

Hj , (2.28)

where each subspace Hj can, in general, carry multiple copies of the irrep Uj :

Hj =

λj⊕
λ=1

Hj,λ. (2.29)

As all the Hj,λ are equivalent, the subspace Hj is isomorphic to

Hj
∼= Mj ⊗Nj , (2.30)

where Mj is known as the carrier space acted on by the irrep Uj , and Nj is known as

the multiplicity space acted on by the identity (or trivial) representation of the group.

The suitable basis states that span the space Hj can be labeled as |j, λ;m〉, where m

denotes the `-dimensional weight vectors, j is the highest weight and consequently the

label of the irrep itself, and λ labels the multiplicity.

2.2 Symmetric transformations

Let B(H ) denote the set of bounded operators of H . The most general quantum trans-

formations that we consider in the present thesis are completely positive (CP) maps [67].

Consider a CP map E : B(H )→ B(H ) that takes density operators to density operators.

Every CP-map can be expressed as the sum

E(ρ) =
∑
i

KiρK
†
i , (2.31)

where Ki : H → H satisfy
∑

iK
†
iKi ≤ I, or equivalently, I −

∑
iK
†
iKi is a positive

semi-definite operator. The operators {Ki} are known as Kraus operators or operation

elements of the map E [67].
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Let G be a group of transformations, and define the map U(g) : B(H )→ B(H ) as

U(g)[•] := U(g)(•)U †(g), (2.32)

where U : G → B(H ) : g 7→ U(g) is a representation of the group G, and the bullet

sign • represents any member in the domain of the map. As we only consider compact

semi-simple Lie groups with fully reducible unitary representations in this thesis, we will

always assume that the representation of the group comes with a Haar measure.

Figure 2.1: G-covariant transformations are those transformations E such that

U(g)E(ρ)U †(g) = E
(
U(g)ρU †(g)

)
.

We say that the mapping E is symmetric with respect to G, or equivalently, that E

is G-covariant, if for all ρ and for all g ∈ G (Figure 2.1),

E ◦ U(g)[ρ] = U(g) ◦ E [ρ]. (2.33)

In particular, if the CP-map consists of a single unitary V , E [•] = V (•)V †, then the

condition of G-covariance in Eq. (2.33) becomes

[U(g), V ] = 0, ∀g ∈ G. (2.34)

The unitary V is called G-invariant in this case. Similarly, a symmetric state ρ is any

state that remains invariant under the application of the group representation, also known

as a G-invariant state,

[U(g), ρ] = 0, ∀g ∈ G. (2.35)
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Consider the uniform average of the group action:

G[ρ] :=

∫
dµ(g) U(g)[ρ], (2.36)

where dµ(g) denotes the group’s Haar measure. The averaging superoperator G in

Eq. (2.36) is known as the G-twirling operation. It follows from the uniformity of the

measure that twirled states are invariant under the action of any element of the group,

i.e. they are G-invariant. In fact, it can be shown that every G-invariant state can be

expressed as the outcome of a twirling operation [8].

If we decompose the Hilbert space as in Eq. (2.37),

H =
⊕
j,λ

Hj,λ, (2.37)

the form of the G-twirling of a state ρ can be expressed as

G[ρ] =
∑
j,λ

pj,λΠj,λ, (2.38)

where Πj,λ denotes the projection of ρ onto subspace Hj,λ that carries the jth irrep.

The definition of G-covariance in Eq. (2.33) is equivalent to

E = U(g) ◦ E ◦ U(g−1), ∀g ∈ G. (2.39)

Clearly, if {Ki} is a set of Kraus operators of a G-covariant CP-map E then Eq. (2.39)

implies that
{
U(g)KiU

†(g)
}

is also a set of Kraus operators for E . Now, two operator-

sum representations of the same channel E are related by a unitary matrix. Therefore,

it follows that

U(g)KiU
†(g) =

∑
i′

uii′(g) Ki′ (2.40)

where uii′(g) are the elements of a unitary matrix u(g). It was shown in [37] that if

the {Ki} are linearly independent, then u(g) is also a representation of the group G.
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Furthermore, bringing the matrix u(g) to the block diagonal form,

u(g) =
⊕
j,λ

uj,λ(g) (2.41)

of the group’s irreps simply amounts to a different unitary remixing of the Kraus opera-

tors, and is thus allowed. This, in turn, means that the Kraus operators of a G-covariant

CP-map can be grouped into subsets that mix only among themselves, each labeled by

the irrep labels of the group. Thus, every G-covariant CP-map admits a Kraus decom-

position, labeled Kj,m,α, with α being a multiplicity index, such that

Kj,m,α =
∑
m′

u
(j)
m,m′(g) Kj,m′,α, ∀g ∈ G. (2.42)

For each irrep label j, Kraus operators of the set {Kj,m,α} are called irreducible tensor

operators of rank j.

A CP-map with a Kraus decomposition comprised of a set of irreducible tensor oper-

ators,

Ej,α(•) =
∑
m

Kj,m,α (•) K†j,m,α, (2.43)

is an irreducible G-covariant operation. Every G-covariant CP-map can be expressed as

a sum of irreducible G-covariant operations.

2.2.1 The collective representation

The representation of symmetry groups for composite systems that we consider in the

present thesis is the so-called collective representation. Consider a composite system

comprised of, say, two systems with corresponding Hilbert spaces H1 and H2. Assuming

that the unitary representations of a group element g ∈ G on the Hilbert spaces are U1(g)

and U2(g), respectively, the collective representation of that same group element on the
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composite system is the tensor product U1(g)⊗U2(g). Most symmetries studied in physics

are represented on the state space of composite systems as collective representations.

The generalized Clebsch-Gordan (CG)-coefficients

 j1 j2

m1 m2

∣∣∣∣∣∣∣
j3

m3

 relate the ba-

sis |j1,m1〉 ⊗ |j2,m2〉 to the basis |j3,m3; (j1, j2)〉 that reduces the tensor product, also

known as the Kronecker product, of the two irreps U12 := U1 ⊗ U2,

|j3,m3; (j1, j2)〉 =
∑
m1,m2

 j1 j2

m1 m2

∣∣∣∣∣∣∣
j3

m3

 |j1,m1〉 ⊗ |j2,m2〉. (2.44)

Here, we have dropped the multiplicity index λ, as the CG-coefficients do not depend on

the multiplicity. We use |j;m〉, or |j, λ;m〉 instead of |j,m; (j1, j2)〉 or |j, λ,m; (j1, j2)〉

for brevity whenever the context is clear.

The tensor product, or Kronecker product, of two irreps is, in general, not irreducible.

In fact, if the group is semi-simple, then the representation of the Kronecker product is

fully reducible. If the irreps in the Kronecker product have no additional multiplicities

due to the “coupling”, the algebra, and the group, are called simply reducible.

If the algebra is not simply reducible, then the change of basis will instead take the

following form

|j3, µ3;m3; (j1, j2)〉 =
∑
µ3

∑
m1,m2

 j1 j2

m1 m2

∣∣∣∣∣∣∣
j3, µ3

m3

 |j1,m1〉 ⊗ |j2,m2〉, (2.45)

where µ3 is the label for the additional multiplicity arising from the tensor product of

the initial two irreps due to the the coupling, and is known as the outer multiplicity.

The CG coefficients are zero unless m1 +m2 = m3 [111].

The Wigner-Eckart theorem specifies the form of the matrix elements of KJ ,M ,α in the

basis {|j, λ;m〉} as we now discuss. For a simply reducible algebra, the Wigner-Eckart
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theorem states that the matrix elements of Kj,m,α are given by

〈j ′, λ′;m′|KJ ,M ,α|j, λ;m〉 =

 j J

m M

∣∣∣∣∣∣∣
j ′

m′

 〈j ′, λ′ ‖ KJ ,α ‖ j, λ〉, (2.46)

where 〈j ′, λ′ ‖ KJ ,α ‖ j, λ〉 is known as the reduced matrix element independent of m

and m′, and

 j J

m M

∣∣∣∣∣∣∣
j ′

m′

 are the generalized CG-coefficients. If the algebra is not

simply reducible, the general form of the Wigner-Eckart theorem takes the form

〈j ′, λ′;m′|Kj,M ,α|j, λ;m〉 =
∑
µ′

 j J

m M

∣∣∣∣∣∣∣
j ′, µ′

m′

 〈j ′, λ′ ‖ KJ ,α ‖ j, λ〉µ′ , (2.47)

where µ′ is the outer multiplicity of the Kronecker product.

A set of linearly independent operators {Kj,m}m, for a with fixed j, is said to form

an irreducible tensor operator belonging to the representation labeled by j under the

group G if under the operation of the group they transform as

U(g)Kj,mU
−1(g) =

∑
m′

〈j;m|U(g)|j,m′〉 Kj,m′ . (2.48)

The irreducible tensor operators with respect to the SU(2) algebra are also known as

spherical tensor operators (for example see pp. 193-195 in [3]). We utilize the Wigner-

Eckart theorem extensively in Chapter 4.

2.3 Entanglement as a quantum resource

2.3.1 Composite systems

The Hilbert space of a composite quantum system comprised of two subsystems, each

associated with Hilbert spaces HA and HB respectively, is the Kronecker product of the

individual Hilbert spaces,

HA ⊗HB. (2.49)
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The generalization for more than two systems is straightforward. The Hilbert space of a

composite system of n subsystems is the tensor product of the n Hilbert spaces. Here,

we only consider the case of bipartite systems.

If the joint state of a composite system ρ ∈ B(H ) can be expressed as the tensor

product of states acting on each subsystem,

ρAB = ρA ⊗ ρB, (2.50)

where ρA ∈ B(HA), and ρB ∈ B(HB), the system is said to be in a product state.

Definition 15. A system whose state can be expressed as a convex sum of product states

ρAB =
∑
i

pi ρA ⊗ ρB, (2.51)

is said to be in a separable state, where the pi ∈ R+ are probabilities that sum to one.

We denote the set of separable states by SEP . If a system is not in a separable state, it

is said to be entangled.

Given the state of a composite system, the state of a subsystem is reached by taking

the partial trace of the overall state

ρA = TrB(ρAB). (2.52)

The resulting density operator is known as the reduced density operator. The partial

trace over the system B is defined as

TrB (|a1〉A〈a2| ⊗ |b1〉B〈b2|) := Tr (|b1〉B〈b2|) |a1〉A〈a2|. (2.53)

The reduced density operator for the system B is calculated in an analogous way.

2.3.2 Quantum operations

The general form of a quantum transformation on the state of a composite system that

we consider is described by the completely positive (CP)-map, E : B(H )→ B(H ), with
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the operator sum decomposition

E(ρAB) =
∑
i

Ki ρAB K
†
i .

The operators Ki are the Kraus operators discussed in Section 2.2. A quantum operation

is separable if its operator elements can be written as a tensor product of operators, Ki =

Ki,A ⊗Ki,B. If Ki cannot be expressed as a tensor product, the transformation E is said

to be non-separable.

2.3.3 Generalized measurements and POVMs

Measurements in quantum mechanics are described by a set of operators {Mi}, known as

measurement operators, that act on the Hilbert space of the system under measurement.

Each index i corresponds to one of the possible outcomes of the measurement. If the

state of the system is described by ρ, then the probability of outcome i is given by

pi = Tr(M †
iMi ρ), (2.54)

and the (normalized) state of the system after the measurement is

ρi =
Mi ρ M

†
i

pi
. (2.55)

The sum of the probabilities pi must add to one. Thus, the measurement operators must

satisfy

∑
i

M †
iMi = I, (2.56)

known as the completeness equation.

If the measurement operators are a set of mutually orthogonal projectors Pi, so

that PiP
′
i = δi,i′Pi, then the measurement is called a projective measurement.The differ-

ent possible states after the measurement are orthogonal to each other and are thus fully

distinguishable.
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An observable is a Hermitian operator acting on the system’s Hilbert space. Consider

the spectral decomposition of an observable A,

A =
∑
i

aiPi. (2.57)

Each Pi is a projector to the eigenspace of A with eigenvalue ai. Whenever the ith outcome

is actualized after the measurement, it is understood that the observable A is measured

to have the magnitude ai. If the resulting state after a projective measurement undergoes

the same projective measurement immediately after the first one, the outcome will remain

the same and the resulting state will not change [67].

However, not all measurements need be projective measurements. Other measurement

schemes also exist that correspond to more general measurement operations, where, for

example, a projective measurement is performed on a larger system and then the ancillary

parts traced out. In such cases the states after the measurement need not all remain

orthogonal to each other, and a second round of the same measurement could change

the outcome. Measurements comprised of a general set of measurement operators are

known as generalized measurements as long as the operators satisfy the completeness

equation (2.56) [67].

In some cases, the actual eigenvalues of the observable being measured are not of

primary importance. Rather, we are interested only in the probabilities of each outcome.

In order to study the statistics of generalized measurements, we define

Ti := M †
iMi. (2.58)

The set of operators Ti are sufficient to determine the probabilities of different measure-

ment outcomes:

pi = Tr(Tiρ). (2.59)
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The set {Ti} is called a positive operator-valued measure, or a POVM. The two conditions

for a set of operators to be a POVM are that they be positive and satisfy

∑
i

Ti = I. (2.60)

Projective measurements, for example, are special cases of POVM where Ti are equal

to the projectors Pi. Of course, under additional restrictions like a SSR, not every POVM

can be implemented. Nevertheless, for such restrictions a subset of both projective and

generalized measurements could still feasible, i.e. those measurements whose POVM still

satisfy the SSR restrictions.

2.3.4 Local operations with classical communication (LOCC)

An important class of separable operations is called local operations with classical com-

munication (LOCC). The LOCC transformations correspond to the following scenario:

Alice and Bob can only perform local operations on their share of the bipartite state,

but they are allowed to communicate classically and correlate their local operations with

each other. An LOCC transformation can always be decomposed in to Kraus elements

of the form Ki = Mi,A ⊗ Ui,B, where Mi,A is a generalized measurement by Alice, and

Ui,B is a unitary by Bob [67].

2.3.5 Pure state entanglement

A bipartite state |ψ〉AB can alway be expressed in a standard form as

|ψ〉AB =
∑
i

√
pi |vi〉A ⊗ |wi〉B, (2.61)

where {|vi〉A} and {|wi〉B} are orthonormal states. The basis in which the state is

expanded in (2.61) is particularly suitable for the study of entanglement as it simplifies

many features of the bipartite state. The real numbers {pi} are known as Schmidt

coefficients. A direct corollary is that the reduced states ρA and ρB (see Eq. (2.52)) have
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the same eigenvalues. If we sort the Schmidt coefficients p = (p1, · · · , pd) and q =

(q1, · · · , qd) of two pure states, |ψ〉AB and |φ〉AB respectively, in decreasing order p1 ≥

· · · ≥ pd, and q1 ≥ · · · ≥ qd, where d is the dimension of the system’s Hilbert space,

then p is said to be majorized by q, denoted by p � q, if the following inequalities hold,

p1 ≤ q1,

p1 + p2 ≤ q1 + q2

...

p1 + · · ·+ pd ≤ q1 + · · ·+ qd. (2.62)

The states being normalized, the last term is actually always an equality, where both

sides are of course equal to one.

Theorem 11. (Nielsen’s theorem) [67]. The state |ψ〉AB can be transformed to a state |φ〉AB

by LOCC if and only if p � q, or equivalently, if and only if,

Ek (|ψ〉AB) ≥ Ek (|φ〉AB) , k = 1, · · · , d, (2.63)

where Ek (|ψ〉AB) =
∑d

i=k pi.

Definition 16. The functions

Ek (|ψ〉AB) :=
d∑
i=k

pi (2.64)

are known as Vidal’s monotones [95].

A similar condition exists for non-deterministic transformations in terms of the aver-

age monotones [50].

Theorem 12. The state |ψ〉AB can be transformed by LOCC to one of the states in the

ensemble {|φi〉AB, pi}, each |φi〉AB with probability pi respectively, if and only if,

Ek (|ψ〉AB) ≥
∑
i

pi Ek (|φi〉AB) , k = 1, · · · , d. (2.65)
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Finally, the following corollary deals with the case of single copy stochastic transfor-

mation of two pure states.

Corollary 13. The maximum probability to convert |ψ〉 to |φ〉 using LOCC is equal to

Pmax (|ψ〉 → |φ〉) = min
k=1,··· ,d

{
Ek (|ψ〉)
Ek (|φ〉)

}
. (2.66)

Recall the maximally entangled bipartite states, or the Bell states, of Eq. (1.4):

|ψ±〉 :=
1√
2

(|0〉A ⊗ |1〉B ± |1〉A ⊗ |0〉B)

|φ±〉 :=
1√
2

(|0〉A ⊗ |0〉B ± |1〉A ⊗ |1〉B) . (2.67)

The Bell states can be transformed to each other by local unitaries. The entanglement

of Bell states is greater than all other two-qubit states with unequal amplitudes. The

entanglement is greater in two different ways. For one, a Bell state can be deterministi-

cally transformed to states with unequal amplitudes, but the reverse is not possible. On

the other hand, using Bell states to perform tasks, such as teleportation, has a higher

success rate than when one uses any other bipartite state, where the success rate is mea-

sured by some suitable figure of merit. For pure states, the two notions of strength of

entanglement coincide. For mixed states the two notions are not in general equivalent.

For the case of higher dimensional states, generalizations of Bell states in the form of

full-rank states comprised of tensor products of Bell states, are more entangled than all

other states.

For a general pure state, the entropy of entanglement is given by,

E(|ψ〉AB) := S (TrB (|ψ〉AB〈ψ|)) , (2.68)

where S(ρ) = −Tr(ρ log ρ) is the von Neumann entropy. The entropy of entanglement

quantifies the asymptotic rate of conversion of multiple copies of a pure state to (any one

of) the Bell states. The entanglement of a Bell state thus acts as a unit of entanglement
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strength and is known as an ebit. For mixed states, the convex roof extension of the

entropy of entanglement can be regarded as a measure of entanglement. The measure is

known as the entanglement of formation, and is formally defined as

EA(ρ) := min
{|ψi〉,pi}

∑
i

pi E(|ψ〉AB). (2.69)

The quantification of entanglement in terms of the LOCC transformations in the asymp-

totic limit is one possible route to take to quantify the entanglement as a resource.

Another approach to identifying entanglement measures is to assign entanglement to

a state in terms of some measure of ‘distance’ of that state to the set of separable states.

Examples of such distance-based measures of entanglement that we use later in the thesis

(see section 5.6) include the geometric measure of entanglement, the relative entropy of

entanglement (REE) and the robustness of entanglement. At this point, we only give a

formal definition for each of them:

Definition 17. The geometric measure G(ρ) [100] is defined as

G(ρ) := − log2

{
max
w∈SEP

Tr(ρw)

}
. (2.70)

Definition 18. The relative entropy of entanglement (REE) is defined to be

ER(ρ) := max
w∈SEP

S(ρ ‖ w), (2.71)

where

S(ρ ‖ w) := Tr(ρ logw)− S(ρ), (2.72)

is known as the relative entropy of the states ρ and w. For a review of the role of relative

entropy in quantum information theory, including entanglement theory, see [90].

Definition 19. The global robustness of entanglement [96] is the function

rE(ρ) := min

{
t

∣∣∣∣ 1

1 + t
(ρ+ t∆) ∈ SEP, ∆ ∈ B(H )

}
. (2.73)

where H is the Hilbert space of the state ρ.
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Finally, another alternative route is to take an axiomatic approach and consider any

real function that changes monotonically under LOCC transformations as a function that

quantifies some aspect of the state’s entanglement. The ensuing entanglement monotones

are examples of a more general notion of monotone in resource theories. We consider

them in a general setting in the next section.

2.4 Monotones in resource theories

In this section, we establish a set of reasonable conditions that a valid asymmetry measure

should satisfy, and we provide insight and background for this choice of conditions.

Every restriction on quantum operations defines a resource theory that determines

how quantum states that cannot be prepared under the restriction may be manipulated

and used to circumvent the restriction. Here we discuss briefly how the strength of

these quantum states as resources is quantified. We will focus on entanglement theory

and the theory of asymmetry that is associated with a group G of transformations.

In entanglement theory, the quantum operations or CP-maps are confined to LOCC,

and only separable states can be prepared by LOCC (assuming no access to previously

existing entanglement). In the resource theory of quantum asymmetry, the only allowed

operations are G-covariant CP maps, and the only states that can be prepared without

any resources are G-invariant states.

A quantum state cannot turn into a stronger resource by the set of restricted (or al-

lowed) operations. Therefore, the strength of the resource must be quantified by functions

that do not increase under the set of allowed operations, ie. by monotones.

The most general quantum transformations that we consider in the present thesis

are those that convert an initial state ρ into one of a set of possible final states, say σx,

occurring with probability px, where the index x is a positive integer, x ∈ Z+. Such a
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general quantum transformation is described by a CP map E : B(H ) → B(H ) that

is itself composed of a number of CP (in general trace decreasing) maps {Ex}, so that

E =
∑

x Ex, and

σx := Ex[ρ]/px, (2.74)

where the probability px = Tr (Ex[ρ]). We say that E is G-symmetric if all {Ex} are

G-covariant.

The ensemble of outcomes is written as {σx, px}. This ensemble can be equivalently

expressed as a density operator

σ̃ :=
∑
x

px σx ⊗ |x〉I〈x|. (2.75)

The set of states {|x〉I} consist of mutually orthogonal unit states belonging to the

Hilbert space HI of an ancillary system I, such that when the system is in the state σx

the ancillary system is prepared in the state |x〉 labeled by the same index x.

States of the ensemble {σx, px} can always be prepared by first preparing the den-

sity operator σ̃ and then performing the measurement M = {|x〉I〈x|} on the ancillary

system I and keeping a record of the outcome. We assume there is a second ancillary

system R that records the label x of the measurement outcome. For example, the sys-

tem R could be the measuring device that by the end of the measuring process ends up

in the state τ
(R)
x whenever |x〉I was the outcome of the measurement. We also assume

the states τ
(R)
x with different values of x are mutually orthogonal and belong to a set of

orthogonal (or classical) states, each labeled by a different value of the index x.

The density operator σ̃ can be reproduced again from the ensemble by losing the

information about the measurement outcome, ie. by tracing out the record-keeping

ancillary system from the joint state of the system and both ancillas I and R after the
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measurement:

σ̃ = TrR

(∑
x

σx ⊗ |x〉I〈x| ⊗ τ (R)
x

)
. (2.76)

We conclude that the density operator σ̃ contains the same information as the ensem-

ble {σx, px}.

A single state ρ ∈ H is, in effect, an ensemble with one member. The non-

deterministic transformations that convert the state ρ to an ensemble {σx, px} have a

deterministic counterpart that converts the state ρ⊗ |1〉〈1| to the state σ̃ with probabil-

ity one. We can now define an asymmetry, or similarly an entanglement monotone, in a

general setting:

Definition 20. A function A : B (H ⊗HI)→ R+ is called an asymmetry (or, similarly,

an entanglement) monotone, if, for any state ρ ∈ B (H ), it satisfies

A (ρ⊗ |1〉I〈1|) ≥ A

(∑
x

px σx ⊗ |x〉I〈x|

)
, (2.77)

where the states σx are the states that ρ is converted to by G-covariant (or by LOCC)

transformations (see Eq. (2.74)).

Of course, if the outcome of the transformation is a single state σ, i.e. if the trans-

formation ρ→ σ is already deterministic to begin with, then Definition 20 implies

A (ρ⊗ |1〉I〈1|) ≥ A (σ ⊗ |1〉I〈1|) . (2.78)

Thus, for every state ρ ∈ B(H ), one can also define the function A(ρ) := A (ρ⊗ |1〉I〈1|)

of ρ alone, that changes monotonically under deterministic G-covariant (or LOCC) trans-

formations:

Definition 21. The function A : B(H ) → R+ : ρ 7→ A (ρ⊗ |1〉I〈1|) is called a deter-

ministic monotone.
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A natural question to ask at this stage is how the deterministic monotone func-

tions A(ρ) and A(σx) relate to each other when ρ is converted to one of the states of

the ensemble {σx, px} with probability less than one. The answer is that a deterministic

monotone A need not always change monotonically in case of a non-deterministic trans-

formation, even though the corresponding monotone A, in terms of which A is defined,

always does.

One possible situation in which a deterministic monotone A does change monotoni-

cally is, for example, when A(ρ) ≥ A (
∑

x pxσx) and A is a linear or a convex function so

that A (
∑

x pxσx) ≥
∑

x pxA(σx). More generally, if a deterministic monotone A has the

(additional) property that it remains non-increasing on average under non-deterministic

transformations, it belongs to a category of monotones known as ensemble monotones:

Definition 22. The asymmetry (or entanglement) monotone A : B (H )→ R+ is called

an ensemble monotone if it satisfies

A(ρ) ≥
∑
x

px A(σx), (2.79)

whenever a G-covariant (or LOCC) transformation converts a given state ρ to one of the

states of an ensemble {σx, px}.

A well-known example of an ensemble monotone is the entropy of entanglement (2.68).

A counterexample is the Z2-monotone AZ2(|ψ〉〈ψ|) = − log(|p0 − p1|) for qubit pure

states of the form |ψ〉 = p0|0〉+p1|1〉 [37]. The function AZ2 is not an ensemble monotone

as it becomes infinite if even one of the final states of a non-deterministic transformation

is the state |+〉 = 1√
2
|0〉+ 1√

2
|1〉. Thus, the set of ensemble monotones is a strict subset

of the set of deterministic monotones of Definition 21.

Finally, if the function A remains a monotone for each outcome σx, separately:

A(ρ) ≥ A(σx), ∀σx ∈ {σx, px} . (2.80)
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then A is known as a stochastic monotone [37]. The Schmidt-rank of a pure state is an

example of a stochastic entanglement monotone.

Clearly, for two sets of numbers, if the ith number of the first set is no larger than

the ith number of the second set, then the average over the first set is no larger than

the average over the second set. Thus, every stochastic monotone is automatically an

ensemble monotone as well (and of course a deterministic monotone too). The reverse,

however, is not always true in entanglement theory [48]. The entropy of entanglement, for

example, is not a stochastic monotone. Nor is it true in the resource theory of asymmetry

that every ensemble monotone is automatically a stochastic monotone, as shown in the

case of AZ2 , among other examples [37].

Finally, let us define the notion of faithfulness of a monotone:

Definition 23. An asymmetry (or an entanglement) monotone A : B (H ) → R+ is

faithful if it satisfies the following condition: A(ρ) = 0 if and only if ρ is a G-invariant

(or, respectively, a separable) state.

In other words, if a faithful monotone assigns the value zero to a state, we can be

sure that the state is not a resource (and consequently no other monotone will assign a

non-zero value to that state either).

Of course, specific monotones can satisfy additional conditions. One such character-

istic is convexity. The monotone A is convex, if for any ensemble {σi, pi},∑
i

pi A(σi) ≥ A

(∑
i

piσi

)
. (2.81)

However, in general a condition such as convexity may not be necessary for a valid

entanglement, or asymmetry, monotone. For example, the logarithmic negativity (which

provides an upper bound for distillable entanglement) is a useful measure of entanglement

but it is not convex [70]. In Chapter 3, we focus on convex measures. However, for the

general result expounded in Chapter 4 the extra conditions like convexity are not required.
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Chapter 3

Constructing monotones for quantum phase references in totally

dephasing channels

Before presenting the main result of the thesis, it is instructive to introduce the key

ideas of our approach in a simpler setting. In this chapter, we consider the special case

of the Abelian Lie group U(1) as the symmetry group. We also confine our attention

primarily to pure states. In the next chapter, we consider the general case that applies

to all semi-simple compact Lie groups, and to mixed states as well as pure states.

This chapter is organized as follows: In Section 3.1, we briefly review the structure

of the resource theory associated with the group U(1). In Section 3.2 we introduce pure-

state asymmetry monotones and prove two useful lemmas that we use in later sections.

In Section 3.3, we introduce the first sketch of the mapping to bipartite states. In 5

we present some of the applications that follow from the mapping. Already, despite the

simple and the limited scope that we have chosen in this chapter, we see that whole

classes of new asymmetry monotones can be constructed for the symmetry group U(1).

Even though U(1) has a simple group structure, the resource theory associated with it is

important in its own right. Throughout this chapter, we use the terms asymmetry and

frameness interchangeably. Also, we refer to the restriction as U(1)-covariance, U(1)-

superselection rule, or U(1)-SSR for short.
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3.1 Covariant transformations for the symmetry group U(1) and the lack

of shared phase references

Now we consider the case of U(1)-covariance following the approach of Gour and Spekkens [37].

The Abelian group U(1) has a unitary representation θ 7→ U(θ) = exp(−ıθn̂) with spec-

trum {n ∈ Z+}. We refer to n̂ as the number operator.

The Hilbert space of the particular physical system under study can be expressed as

the direct sum H =
⊕

n Hn with n an irrep index for U(1) and Hn the multiplicity

subspaces. The eigenstates |n, β〉 of the number operator form a basis for Hn where β

is a multiplicity index. Operations on multiplicity spaces are unaffected by the U(1)-

SSR, and, as a result, any pure state can be transformed via the U(1)-covariant unitary

transformation to a standard form. We already discussed the standard form of pure

states for a general group in Section 5.1. Here we once again develop the specific form

of the transformation for the group Abelian U(1) where the irrep label and the weight

label are identical. Consider the pure state

|ψ〉 =
∑
n

cn|ψn〉, (3.1)

where |ψn〉 ∈Hn are normalized states, and let λn := |cn|2. We apply the Gram-Schmidt

process to extend |ψn〉 to a full orthonormal basis {|ψn〉}∪{|φn,β〉}β of the subspace Hn.

The extra states |φn〉 do not affect the state |ψ〉, but they are needed to fully specify the

unitary transformation that takes |ψ〉 to its standard form. The unitary transformation

U :=
∑
n

(
c∗n
|cn|
|n, 0〉〈ψn|+

∑
β 6=0

|n, β〉〈φn,β|

)
, (3.2)

is U(1)-covariant, in fact it is U(1)-invariant, and takes the state |ψ〉 to the standard

form,

|ψ〉 =
∑
n

√
λn|n〉, (3.3)
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where |n〉 is shorthand notation for a fixed choice of the multiplicity index, for example,

the state |n, 0〉. The spectrum of the state |ψ〉 is defined to be the set,

spec(|ψ〉) := {n;λn > 0}. (3.4)

The U(1)-covariant operator E can be expressed in a Kraus operator decomposition as

E [ρ] =
∑
`

K̂
(α)
` ρK̂

(α)†
` , (3.5)

where the Kraus operators are of the form,

K̂
(α)
` =

∑
n

k
(α)
`,n |n+ `〉〈n|, (3.6)

for ` an integer, and for k
(α)
`,n ∈ C such that

∑
i |k

(α)
`,n |2 ≤ 1 with equality holding if

the transformation is trace-preserving [37]. In this notation, ` represents the number-

shift imposed by the Kraus operator and α an index for a particular `-shifting Kraus

decomposition.

States that are not U(1)-invariant are resources that Alice or Bob can use to cir-

cumvent SSR restrictions, and asymmetry, or frameness, denotes this quantum resource.

Here we focus on the U(1)-SSR that corresponds to lacking a common phase, for example

the phase of a laser in homodyne measurements or orientation in a plane.

3.1.1 U(1)-asymmetry and phase references

Let us go over the link between symmetry resources and reference frames for the partic-

ular case of the symmetry group U(1). We cast the theory in a quantum communica-

tion context in which two parties, Alice and Bob, collaborate so that Alice can effect a

completely-positive map E to her state ρ ∈ B(H ), for H the Hilbert space and B(H )

the space of bounded operators that act on H . Also let P (H ) be the projective space

of the Hilbert space H . For a finite Hilbert space H = Cd, the projective Hilbert space

is the complex projective space PCd−1.
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Alice and Bob have identical systems, so their Hilbert spaces are isomorphic, but

we assume that Alice lacks the tools to perform mapping E and relies on Bob, who

has this capability. Alice sends the state ρ to Bob via a (completely-positive trace-

preserving) communication channel C : B(H ) → B(H ), but unfortunately Alice and

Bob lack shared reference frame information. Lacking shared reference frames implies a

superselection rule (SSR) on the transformation E that Alice, with Bob’s collaboration,

wishes to implement [8].

The specific channel we consider is a random unitary channel (RUC) for the group U(1).

We denote the channel as U(θ) such that U(θ)[ρ] = U(θ) ρ U †(θ) for θ ∈ U(1). The

group U(1) is the group parametrizing unitary channels connecting Alice to Bob that

perform phase shifts. Thus, when Alice and Bob lack shared phase frame informa-

tion, U(1) is the group of transformations between the frames. The lack of reference

frame information is manifested as a complete ignorance of θ by Alice and Bob; mathe-

matically, this complete ignorance corresponds to a uniform prior distribution for θ over

the Haar measure for the group U(1), where dµ(θ) = 1
2π

dθ. If they had some prior knowl-

edge about the actual phase θ0 that connects the two frames, then the measure dµ(θ)

for values of θ close to θ0 would have to be greater than other values of the phase, and

the thus the appropriate measure would no longer be the uniform Haar measure. See the

discussion in Section 1.4 for a more detailed analysis.

Alice sends the state ρ to Bob via the channel U(θ0), and Bob then effects the map-

ping E and sends the resultant state E ◦ U(θ0)[ρ] back to Alice. For U †(θ0)[ρ] :=

U †(θ0) ρ U(θ0), and given Alice’s uniform lack of knowledge of θ, she receives the state

ẼU(1)[ρ] :=

∫
U(1)

dµ(θ) U †(θ) ◦ E ◦ U(θ)[ρ]. (3.7)

As this relation holds for any ρ, we can write

ẼU(1) :=

∫
U(1)

dµ(θ) U †(θ) ◦ E ◦ U(θ) =: G (E) , (3.8)
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which is the twirling operation discussed in Chapter 2. Twirling is idempotent: Twirling

a twirled operator leaves the twirled operator intact. This imposes a direct-sum structure

on Alice’s Hilbert space, which is a SSR [8].

Of course, Alice and Bob can continue this procedure and send the state back and

forth, with Bob each time effecting a different map E1, E2, . . .. However every time

the same (unknown) angle θ0 connects the two local reference frames. Thus, the final

state that Bob sends to Alice after k consecutive repetitions of the procedure is the

state Ek ◦ · · · ◦ E1 ◦ U(θ0)[ρ], and Alice receives the state

ẼU(1)[ρ] :=

∫
U(1)

dµ(θ) U †(θ) ◦ Ek ◦ · · · ◦ E1 ◦ U(θ)[ρ]. (3.9)

In other words, only a single collective twirling is performed at the final state. Hence, we

can consider the consecutive repeated uses of the channel as a single collective procedure

that we denote by E = Ek ◦ · · · ◦E1, and it is this collective map E that we use henceforth.

A U(1)-covariant map E satisfies E◦U(θ) = U(θ)◦E for all θ, or equivalently, ẼU(1) = E .

Therefore the lack of reference information is not an impediment for Alice and Bob to

collaborate to effect E as long as E is U(1)-covariant. Note that we express everything

with respect to Alice’s RF and make a distinction between the preparation procedure by

Alice and the consequent transformations of the prepared state performed by Bob, who

has access to the prepared state only through the twirling channel. Alice can prepare

any state, including coherent superpositions that are restricted by the SSR.

However, as all operations afterwards are performed by Bob who does not have access

to Alice’s RF, the transformations of the state have to be U(1)-covariant. Thus, a

coherent superposition, like the state |ψ〉 in Eq. (3.3), is distinct from the mixture

ρ :=
∑
n

λn|n〉〈n|, (3.10)

that results from twirling the state. Let us compare the case where Alice prepares the

coherent state |ψ〉 versus the case where she prepares the invariant state ρ. Of course,
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Bob receives the twirled state ρ in either case and he is free to perform any operation on

the state he receives relative to his own RF before sending the state back to Alice.

With respect to Alice’s RF, however, the net result is a U(1)-covariant transformation

on a coherent supersposition in the first case and on the twirled mixture in the second

case (see Eqs. (3.7) and (3.8)). The two cases are distinct. For example, |ψ〉 can be

transformed to ρ while ρ cannot be transformed to |ψ〉 by U(1)-covariant operations,

i.e. by Bob when viewed in Alice’s RF. A state like |ψ〉 that is not U(1)-invariant is

a resource, while U(1)-invariant states like ρ are not. Alice can accompany a resource

state (known to herself and to Bob) with the target state that Bob is supposed to act

on and send them together to Bob. This way, the resource state acts as a token of

Alice’s phase reference and can be used to partially overcome the SSR-restriction on

transformations [8, 9]. The situation is a particular instance of the general detailed

discussion in Section 1.4, now applied to the group U(1). If Alice accompanies a U(1)-

invariant state instead of a resource with the target state, this is no longer possible.

Symmetric states, i.e. states that are U(1)-invariant, are non-resource states.

3.2 Pure-state monotones

In this section we briefly consider some of the features of monotones primarily defined for

pure states only. Pure-state monotones are functions that behave monotonically under

the more restricted set of allowed operations that map pure states to pure states only.

General monotones defined over all states, of course, must remain a monotone when

applied to pure states, but the reverse need not be true. Pure state monotones, thus

comprise a larger category that contains the set of all monotones. In what follows, we

use the terminology of the resource theory of asymmetry and the restriction of opera-

tions to U(1)-covariant transformations, but, again, the discussion equally applies to all
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resource theories. First, we formally define pure-state asymmetry monotones that are a

special case of asymmetry monotones discussed in Section 2.4, namely ensemble mono-

tones, but now defined over the projective space associated with the system’s Hilbert

space.

Definition 24. A function,

Apure : P(H ) → R+ : |ψ〉〈ψ| 7→ Apure (|ψ〉〈ψ|) , (3.11)

where P(H ) denotes the projective space of the Hilbert space H , is an ensemble pure-

state asymmetry monotone if it satisfies

A1. Apure(|ψ〉〈ψ|) = 0 for any U(1)-invariant state |ψ〉〈ψ| = G(|ψ〉〈ψ|);

A2. A pure(|ψ〉〈ψ|) ≥
∑

x pxApure(|φx〉〈φx|), for U(1)-covariant transformations Ex,

such that |φx〉〈φx| := Ex[|ψ〉〈ψ|]/px, px := Tr (Ex[|ψ〉〈ψ|]) .

Note that whereas entanglement monotones are zero whenever the state is separable,

the asymmetry monotones are zero when the state is invariant. Naturally, in the case of

pure-state asymmetry monotones, the monotone is zero when the pure state is invariant.

If an ensemble asymmetry monotone already exists for pure states, one way to extend

the pure-state monotone to a measure defined for all states ρ is according to the following

definition:

Definition 25. Given a pure-state asymmetry monotone

Apure : P(H )→ R+ : |ψ〉〈ψ| 7→ Apure (|ψ〉〈ψ|) ,

the convex-roof extension A is defined by

A : B(H )→ R+ : ρ 7→ A(ρ) = min
{|ψi〉,pi}

∑
i

pi Apure (|ψi〉〈ψi|) , (3.12)

with the minimum taken over all possible pure-state decompositions of ρ =
∑

i pi|ψi〉〈ψi|.
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For pure states (i.e. rank-one density operators) the two monotones are of course

always equal:

A(|ψ〉〈ψ|) = Apure(|ψ〉〈ψ|), ∀|ψ〉 ∈H . (3.13)

As we presently show, the convex-roof extension of a pure-state ensemble monotone

is an ensemble monotone for all states based on Definition 22. To see this, consider the

following two lemmas that follow directly from the definition of the convex-roof extension.

Lemma 14. The convex-roof extension of a pure-state asymmetry monotone is a convex

function.

Proof. Let ρ =
∑

i piρi, and let ρi =
∑

j pij|ψij〉〈ψij| be the optimal decomposition of ρi

in the sense of Eq. (3.12). The minimum average asymmetry of ρ is reached either by

the sum

A(ρ) =
∑
i,j

pipijApure (|ψij〉〈ψij|) =
∑
i

piA(ρi), (3.14)

or by some other ensemble
{
|φ(α)
` 〉, q`

}
forming ρ, in which case

A(ρ) =
∑
`

q`Apure (|φ`〉〈φ`|) <
∑
i

piA(ρi), (3.15)

so that in general A(ρ) ≤
∑

i piA(ρi).

Lemma 15. If

Apure : P(H )→ R+ : |ψ〉〈ψ| 7→ Apure (|ψ〉〈ψ|) , (3.16)

does not increase on average under U(1)-covariant transformations between pure states

( i.e. Apure is a pure-state ensemble monotone) then the convex-roof extension defined by

Eq. (3.12) is an ensemble asymmetry monotone (see Definition 22 in Section 2.4).

Proof. We need to show that, for any ρ and U(1)-covariant operation E =
∑

x Ex, we

have A(ρ) ≥
∑

x pxA(σx), where

σx := Ex[ρ]/px, px := Tr (Ex[ρ]) , (3.17)
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with px the probability of the xth outcome. The ensemble of outcomes is written as

{σx, px}. Assume {|ψi〉, qi} is the optimal decomposition of ρ in the sense that

A(ρ) =
∑
i

qiApure(|ψi〉〈ψi|). (3.18)

Let K̂
(α)
x,` be a choice of Kraus operators for Ex. Each K̂

(α)
x,` effects the mapping

|ψi〉 7→ |φ(α)
x,i,`〉 :=

K̂
(α)
x,`√
q

(α)
x,i,`

|ψi〉 , (3.19)

with probability q
(α)
x,i,` = ‖K̂(α)

x,` |ψi〉‖2. Thus,

σx =
1

px

∑
i.`,α

qiq
(α)
x,i,`|φ

(α)
x,i,`〉〈φ

(α)
x,i,`|. (3.20)

The convex-roof extension is a convex function (Lemma 14) so

A(σx) ≤
1

px

∑
i.`,α

qiq
(α)
x,i,`A(|φ(α)

x,i,`〉〈φ
(α)
x,i,`|)

=
1

px

∑
i.`,α

qiq
(α)
x,i,`Apure(|φ(α)

x,i,`〉〈φ
(α)
x,i,`|). (3.21)

The operators K̂
(α)
x,` are themselves U(1)-covariant, and as we have assumed that Apure is

an ensemble monotone on pure states,

Apure (|ψi〉〈ψi|) ≥
∑
x,`,α

q
(α)
x,i,`Apure

(
|φ(α)
x,i,`〉〈φ

(α)
x,i,`|

)
, (3.22)

readily follows. Putting everything together, we obtain

A(ρ) =
∑
i

qi Apure (|ψi〉〈ψi|)

≥
∑
i,x,`,α

qiq
(α)
x,i,`Apure

(
|φ(α)
x,i,`〉〈φ

(α)
x,i,`|

)
≥
∑
x

pxA(σx). (3.23)

Thus, the convex-roof extension is indeed an ensemble monotone.
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In other words, if a pure-state asymmetry measure is an ensemble monotone on pure

states, then the convex-roof extension is an ensemble monotone under all allowed CP-

maps. Therefore, we need only consider how a function behaves on pure-state to pure-

state transformations in order to determine if it is an ensemble monotone. Also note that

we do not interpret the convex-roof extension in terms of the cost of forming the state at

this stage. Rather, we treat the convex-roof extension only as an ensemble asymmetry

monotone under U(1)-covariant transformations.

3.3 Mapping to bipartite states

We are now in a position to explore the link between U(1)-covariant maps and LOCC

transformations. Although we discuss quantum RFs for phase, our results apply to

Abelian symmetry groups in general. Suppose there is a U(1)-SSR in place. This

means that it is impossible to prepare the state in a coherent superposition like, |ψ+〉 =

1√
2

(|0〉+ |1〉), or |ψ−〉 = 1√
2

(|0〉 − |1〉). Instead, only states like |0〉 or |1〉 can be pre-

pared, or mixed states like 1
2
I = 1

2
|0〉〈0| + 1

2
|1〉〈1| that happen to be the twirling of

either of the two earlier pure states. However, if by adding a second system, one

can prepare the pair of systems in a way that a well-defined relative phase exists be-

tween them. The states |ψ+〉SR = 1√
2

(|0〉S ⊗ |n〉R + |1〉S ⊗ |n− 1〉R) and |ψ−〉SR =

1√
2

(|0〉S ⊗ |n〉R − |1〉S ⊗ |n− 1〉R) are both preparable despite the SSR on total num-

ber, where, by the total number in a state |n1〉⊗|n2〉 we mean the sum n1 +n2. They are

derived from the original states |ψ+〉 and |ψ−〉 by identifying |m〉 with |m〉S ⊗ |n−m〉R

for m = 0, 1. Note that both bipartite states are entangled. Under the same mapping, the

states |0〉 or |1〉 that could be prepared initially and were thus non-asymmetry-resources,

are mapped to product states |0〉S ⊗ |n〉R, and |1〉S ⊗ |n− 1〉R.

The reason such entangled states can be alternatively regarded as a joint state of a
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system and a phase reference is the following: The states |ψ+〉 and |ψ−〉 can be expressed

alternatively as

|ψ±〉SR ∼= |n〉Total ⊗
1√
2

(|0〉Rel ± |1〉Rel) , (3.24)

in terms of a different decomposition of the Hilbert space into the ‘total number’ states

and ‘relative’ states. The relative states are, in fact, in a superposition of different relative

number states, relative, that is, to the total number n that labels the total number

state |n〉Total. The total number state |n〉Total thus acts as a bounded-sized substitute

for the reference state relative to which coherent superposition of states with different

number labels can be prepared, despite the global SSR on the joint system that of course

still remains in effect.

The same idea can be immediately generalized to higher dimensions. We bring all

states into the standard form without multiplicities: |ψ〉 =
∑

n

√
λn|n〉. Let nmin(|ψ〉)

and nmax(|ψ〉) denote the minimum and maximum values of n in the number spectrum

defined in Eq. (3.4), with the restriction nmax(|ψ〉)− nmin(|ψ〉) ≤ d. Let us define,

|ψ̃〉 =
∑
n

√
λn|n〉S ⊗ |nmax(|ψ〉)− n〉R ∈HS ⊗HR, (3.25)

by adding an auxiliary reference system R to the system S that signifies the original

system. Note that |ψ̃〉 is also a possible purification of the state ρψ, defined as

ρψ := G (|ψ〉〈ψ|) . (3.26)

Thus, if the original state was U(1)-invariant, i.e. equal to its twirling, then the bipartite

state to which it is mapped would be separable. But there is more to the mapping

than merely mapping non-resources to separable states and resource states to entangle

ones. More importantly, it preserves this structure when acted on by U(1)-covariant

transformations.



73

Consider a U(1)-covariant transformation K̂
(α)
` of Eq. (3.6) that maps

|ψ〉 7→ |φ(α)
` 〉 =

K̂
(α)
`√
p

(α)
`

|ψ〉 , (3.27)

with probability p
(α)
` = ‖K̂(α)

` |ψ〉‖2, where K̂
(α)
` effects the mapping

|ψ〉 7→
∑
n

√
λnk

(α)
`,n |n+ `〉. (3.28)

If we follow the same procedure for the mapping of the state |φ(α)
` 〉, noting that nmax(|φ(α)

` 〉) =

nmax(|ψ〉) + `, we arrive at

|φ̃(α)
` 〉 :=

1√
p

(α)
`

∑
n

√
λnk

(α)
`,n |n+ `〉S

⊗ |nmax(|φ(α)
` 〉)− (n+ `)〉R (3.29)

=
1√
p

(α)
`

∑
n

√
λnk

(α)
`,n |n+ `〉S ⊗ |nmax(|ψ〉)− n〉R.

Evidently, |ψ̃〉 can be transformed to |φ̃(α)
` 〉 via the local transformation K̂

(α)
` ⊗ IR,

where IR is the identity operator on R.

The states |ψ̃〉 and |φ̃(α)
` 〉 are dependent in the sense that one state can be mapped

to the other via operations acting only on the system S, i.e. via local operations. The

fact that the two bipartite states, in Eqs. (3.25) and (3.29), the purifications of the

twirled state, can be linked together by a local operation is due to the SSR restriction

on the operations K̂
(α)
` . To see this, suppose the restriction was lifted to allow a number

state |n〉 to transform to a superposition of two number states |n1〉+ |n2〉 with n2 > n1.

The purification process in (3.25) maps the outcome superposition to an entangled state

|φ̃(α)
` 〉 ∝

√
η1|n1〉S ⊗ |n2 − n1〉R +

√
η2|n2〉S ⊗ |0〉R, (3.30)

whereas the purified version of the initial state, |ψ̃〉 = |n〉S ⊗ |0〉R, is separable, and no

local operation can make it entangled.
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Our particular choice of auxiliary states in the purification process was motivated by

ensuring that the bipartite states always remain within a superselected block of some

fixed total number as in Eq. (3.25). Thus, we can see that the operators K̂
(α)
` in (3.6)

are precisely those Kraus operators that act on system S alone and, at the same time,

either keep the joint state of the two systems S and R within the multiplicity space of

total number nmax(|ψ〉) or transfer them both to the multiplicity space of another total

number nmax(|ψ〉)+`, for some ` ≥ −nmax(|ψ〉). System R acts as a sort of quantum phase

reference, in the sense that it enables system S to break the SSR locally while preserving

the overall SSR. The partial trace that results from lack of access to the reference system

R is equivalent to the twirling map on the initial unipartite state.

Once realized, however, we can simplify the mapping without losing any of its relevant

consequences. Consider the mapping that takes the state |m〉 to the state |m〉 ⊗ |m〉

instead of |m〉 ⊗ |n−m〉 as was the case before, consider the mapping,

|m〉 7→ |m〉 ⊗ |m〉. (3.31)

Again, non-resources, i.e. U(1)-invariant states, are mapped to separable states and re-

source states are mapped to entangled states. Furthermore, the corresponding operator

acting on the bipartite states that maps the image of the states to each other is related to

the original U(1)-invariant transformation as K̂
(α)
` → K̂

(α)
` ⊗T`, where T` :=

∑
n |n+`〉〈n|

is the operator of translation by amount `. Of course, in the new mapping (3.31), the

total number is no longer preserved. However, it does not need to preserve the total

number, because in the new picture that is presented in Chapter 4 we use the isometry

as a tool to quantify the resource state itself, and not the joint state of the system and the

reference frame together, that is bound by the global SSR. For example, the state could

have been prepared before the SSR was set in place, when Alice and Bob still shared

aligned reference frames with each other. So a resource state need not preserve the SSR.
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In our treatment in later chapters, only the operations that are performed on states must

be G-covariant and satisfy the SSR, not the states themselves.

The simple isometry in (3.31) is what allows us to map a problem of asymmetry

to one of entanglement, and symmetric transformations to local operations. In Chap-

ter 4, we show that an analogous map exists for all compact semi-simple Lie groups.

Appendix B brings the map that we defined here within the formalism of the LOCC-

simulating maps developed for general groups. In the rest of this chapter, we explore

some of the applications of the mapping to bipartite states that we introduced in (3.25).

3.4 Applications

Since the image states transform under local operations, whatever entanglement they

possess does not increase. Thus, any entanglement monotone of the bipartite states also

quantifies the asymmetry of the original state and gives rise to a corresponding asymmetry

monotone. All bipartite pure-state entanglement monotones can be expressed as concave

functions of the Schmidt coefficients of the states, or equivalently, the eigenvalues of the

reduced density matrix [95]. The reduced density matrix of the state |ψ̃〉 is the same as

ρψ defined in Eq. (3.26). Thus, from any entanglement monotone function defined for

states acting on HS ⊗HR, we can build a monotone under U(1)-SSR for states acting

on H by replacing the partial trace with the twirling map. We formalize this result in

the following proposition:

Proposition 16. Suppose a function f : B(H )→ R+ satisfies the following two condi-

tions.

E1. Unitary invariance: f(ρ) = f(Uρ U †), ∀U ∈ B(H ).

E2. Concavity: f(tρ1 + [1− t]ρ2) ≥ tf(ρ1) + [1− t]f(ρ2), ∀ t ∈ [0, 1].
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Then

Apure : P (H )→ R+ : |ψ〉 〈ψ| 7→ f(G (|ψ〉〈ψ|)),

is a pure-state ensemble monotone under U(1)-covariant operations, and its convex-roof

extension A : B (H )→ R+ is an ensemble monotone for all states.

Proof. We first prove that Apure is a pure-state ensemble monotone. Let E =
∑

x Ex

for Ex being U(1)-covariant completely positive operators that map pure states to pure

states. Given a pure state |ψ〉, we follow the notation of Definition 24:

|φx〉〈φx| :=
1

px
Ex [|ψ〉〈ψ|] , px := Tr (Ex [|ψ〉〈ψ|]) . (3.32)

Let the corresponding U(1)-covariant Kraus operators be indexed as

K̂x,j|ψ〉 =
√
px,j|φx〉, (3.33)

where
∑

j px,j = px. The purifications of ρψ and ρφx according to Eqs. (3.25) and (3.29)

are then related to each other by

K̂x,j ⊗ IR|ψ̃〉 =
√
px,j|φ̃x〉. (3.34)

The reduced density operator of the auxiliary system R does not change under the

transformation. For

τ := TrS

(
|ψ̃〉〈ψ̃|

)
, τx = TrS

(
|φ̃x〉〈φ̃x|

)
, (3.35)

we obtain

τ =
∑
x,j

px,jτx =
∑
x

pxτx. (3.36)

Condition E1 (unitary invariance) ensures that f is a function only of the state’s eigen-

values, and concavity ensures that

f(τ) = f

(∑
x

pxτx

)
≥
∑
x

pxf (τx) . (3.37)
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On the other hand

f
(

TrS

[
|ψ̃〉〈ψ̃|

])
=f
(

TrR

[
|ψ̃〉〈ψ̃|

])
=f (G (|ψ〉〈ψ|)) = Apure (|ψ〉〈ψ|) , (3.38)

and similarly for {|φx〉}. Finally, Eqs. (3.37) and (3.38) together imply

Apure (|ψ〉 〈ψ|) ≥
∑
x

pxApure (|φx〉 〈φx|) , (3.39)

which is the desired result. Lemma 15 ensures that the convex-roof extension F defined

by Eq. (3.12) is also an ensemble monotone for all states.

We can now build the counterparts of Vidal’s entanglement monotones for pure

states [95]. Let

λ↓(ρψ) =
(
λ↓1, . . . , λ

↓
d

)
, (3.40)

be the vector obtained by rearranging the coordinates of λ(ρψ) in decreasing order.

Corollary 17. The family of pure-state functions

Ak : P(H )→ R+ : |ψ〉〈ψ| 7→
d∑
i=k

λ↓i , k = 2, . . . , d, (3.41)

together with their convex-roof extensions are a family of U(1)-asymmetry ensemble

monotones.

This family of functions clearly satisfies both conditions of Prop. 16. Consequently,

we see that the outcomes of any U(1)-covariant transformation majorize the initial state

on average. This generalizes what was already established for the case of deterministic

transformations [37].

As another example, consider the entropy of the twirled state that is both concave

and unitarily invariant.
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Corollary 18. The entropy,

SF (|ψ〉〈ψ|) := −Tr (ρψ log ρψ) , (3.42)

is an ensemble monotone under a U(1)-SSR as defined in Section 2.4 (see Definition 22).

Here the density operator ρψ is the state obtained by twirling the state |ψ〉 as defined in

Eq. (3.26).

The entropy is equal to the relative entropy of frameness (G-asymmetry) for pure

states [35].

Conditions E1 and E2 in Prop. 16 are only sufficient conditions for U(1)-monotones

and not necessary ones, not even for monotones defined over pure states. If |ψ̃〉 can be

transformed to |φ̃(α)
` 〉 under general local operations, it does not follow that |ψ〉 is nec-

essarily transformable into |φ〉 under a U(1)-SSR. This reasoning follows simply because

the local transformation that takes |ψ̃〉 to |φ̃(α)
` 〉 need not have Kraus operators of the

form K̂
(α)
` ⊗ IR for K̂

(α)
` specified in Eq. (3.6). Thus, the asymmetry monotones, unlike

entanglement monotones, do not have to remain non-increasing on average for all local

operations and therefore need not be of the form derived in Prop. 16. The mappings

between the bipartite images constitute only a strict subset of all LOCC operations, ie.

local operations that either preserve the total number or shift it by a fix amount (as

discussed in Section 3.3).

As a counterexample, consider the normalized number variance

Vpure(|ψ〉〈ψ|) = 4
(
〈ψ|n̂2|ψ〉 − 〈ψ| n̂ |ψ〉2

)
. (3.43)

The variance is neither concave nor convex, and yet it was shown to be an ensemble

monotone over pure states [37, 79, 80]. In fact, the total-number variance of bipartite

states, unlike the von Neumann entropy, is not an entanglement monotone.

Note that if the state |ψ〉 is prepared without access to a resource after the SSR is

imposed, then it would be an invariant state and its variance is identically zero. However,
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if the state is prepared in the absence of the SSR, for example during a time when Alice

and Bob did share a reference frame, then its variance will not be zero. Similarly, Alice

could prepare the state relative to a bounded-sized token of her RF, so that the numbers n

are relative numbers and thus local quantities, while the SSR is global and acting on the

joint states. In fact, asymmetry resources are precisely those states that violate the SSR

and, consequently, cannot be prepared under the SSR restriction.

For similar reasons, majorization is a necessary but not a sufficient condition for pure-

state to pure-state deterministic transformations. Thus, the U(1)-asymmetry monotones

of Eq. (3.41), unlike Vidal’s monotones in entanglement theory, do not fully characterize

deterministic U(1)-covariant transformations [95].

Motivated by Wootters’s formula for the concurrence of bipartite two-qubit states [110],

later extended to bipartite qudit states [31,32,75], we can also construct a family of con-

currence measures for qudits with d ≥ 2. Let

Sk(λ(ρψ)) =
∑

m1<m2<···<mk

λm1λm2 . . . λmk
, (3.44)

for k = 2, . . . , d, denote the kth elementary symmetric function of the eigenvalues λ(ρψ) =

(λ1, . . . , λd) of ρψ. We assume that λn = 0 for nmax(|ψ〉) < n ≤ d. The summation is

over all terms λm1λm2 . . . λmk
whose subscripts satisfy the inequality m1 < · · · < mk, so

that each given set of the labels m1, · · · ,mk contributes only once to the final sum.

Definition 26. The family of concurrence-of-frameness functions are defined for pure

states as

Ck : P(H )→ R+ : |ψ〉 〈ψ| → fk(ρψ) :=

[
Sk (λ(ρψ))

Sk
(

1
d
, . . . , 1

d

)] 1
k

, (3.45)

and extended to mixed states via their convex-roof extensions.

The fk are concave functions of λ(ρ) [33]. Hence Prop. 16 guarantees that {Ck} are

ensemble monotones as summarized in the following corollary.
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Corollary 19. The concurrence Ck(ρ) for k = 2, . . . , d of a state ρ does not increase on

average under U(1)-invariant operations.

Note that non-resource states are number eigenstates hence not of full rank. Thus,

their concurrence is identically zero as is expected from Condition A1 in Def. 24.

Now, we demonstrate the similarity between the entanglement and asymmetry re-

source measures by calculating the concurrence of mixed qubit states. For a pure single-

qubit state (d = 2), C2(|ψ〉) = |〈ψ|X|ψ∗〉|, where ∗ denotes complex conjugation in the

basis {|0〉, |1〉}, and X = |0〉〈1|+ |1〉〈0| denotes the flip operator in this basis. Let

R :=
√√

ρρ̃
√
ρ, ρ̃ := Xρ∗X, (3.46)

and let the set of eigenvalues of R be µ(R) = {µ1, µ2}. In Section 3.4.2, we derive the

explicit dependence of µ1 and µ2 on the parameters of the spectral decomposition of ρ.

Proposition 20. The concurrence of frameness for a qubit state ρ is

C2 (ρ) = |µ1 − µ2|. (3.47)

Proof. The proof is similar to Wootters’s proof for concurrence of entanglement [110].

Without loss of generality we assume that µ1 ≥ µ2. Let

ρ = |φ1〉〈φ1|+ |φ2〉〈φ2| (3.48)

be the spectral decomposition of ρ, where each state |φi〉 is unnormalized. Also define

the matrix τij := 〈φi|φ̃j〉, where |φ̃j〉 = X̂|φj〉∗, which yields the symmetric relation

τij = τji [110]. As a symmetric matrix, τ can be diagonalized by a unitary U such

that τ ′ = UτU>, where

τ ′11 = µ1, τ
′
22 = −µ2 , τ

′
12 = τ ′21 = 0, (3.49)

and where {µ1, µ2} are the eigenvalues of R (in fact, the eigenvalues of R are the square

roots of the eigenvalues of ττ ∗ [110].). The unitary U relates the spectral decomposition
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of ρ to a different decomposition ρ = |ξ1〉〈ξ1| + |ξ2〉〈ξ2|. The average concurrence of the

ensemble {|ξ1〉, |ξ2〉} that realizes ρ is

〈C〉 =
2∑
i=1

|τ ′ii| = µ1 + µ2, (3.50)

and we define the average preconcurrence of this ensemble as

〈C̃〉 :=
2∑
i=1

τ ′ii = µ1 − µ2. (3.51)

If the concurrences of the states |ξi〉 are not equal, we can always interchange them by

an orthogonal transformation. Due to continuity, there must also be an intermediary

orthogonal transformation V that takes |ξi〉 to states |ζi〉,

|ζi〉 =
∑
j

Vi,j|ξj〉, (3.52)

with the following property: C2 (|ζ1〉〈ζ1|) = C2 (|ζ2〉〈ζ2|) = 〈C̃〉. Hence, the average

concurrence of the new decomposition also equals the preconcurrence,

〈C〉 = 〈C̃〉 = µ1 − µ2. (3.53)

For any other decomposition of ρ attained by the unitary operator V ′, let vij := V ′2ij

so that
∑

i |vij| = 1. The average concurrence is equal to

〈C〉 =
∑
i

∣∣∣∣∣∑
j

vijτ
′
jj

∣∣∣∣∣ ≥
∣∣∣∣∣µ1 −

∑
i

vi2µ2

∣∣∣∣∣
≥ µ1 −

∣∣∣∣∣∑
i

vi2µ2

∣∣∣∣∣ ≥ µ1 − µ2, (3.54)

where we assume vi1 are real, by a suitable change of the overall phase if necessary, so that∑
i vi1 = 1. Thus, the average concurrence of the ensemble {|ζ1〉, |ζ2〉} is the minimum

average concurrence.

As for entanglement, we can use the closed form of the average concurrence to cal-

culate the convex-roof extension of a set of other asymmetry monotones. The following

corollary specifies what type of monotones belong to this set.
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Corollary 21. If, for every pure state |ψ〉〈ψ| ∈ P(H ), a pure-state asymmetry mea-

sure Apure(|ψ〉〈ψ|) is equal to F (C2(|ψ〉〈ψ|)), where F : R+ → R+ is a non-decreasing

convex function, then the convex roof extension of Apure is also equal to the value of F(C2(ρ))

for all mixed states ρ. In other words,

A(ρ) = F(C2(ρ)), ∀ρ ∈ B(H ), (3.55)

with A the convex-roof extension of Apure.

Proof. Recall that there exists a decomposition with the minimum average concurrence

where C2(ρ) = C2(|ζ1〉〈ζ1|) = C2(|ζ2〉〈ζ2|) as defined in Eq. (3.52). Thus, for any other

decomposition of ρ =
∑

j q
′
j|ψj〉〈ψj|, we must have C2(|ζ1〉〈ζ1|) ≤

∑
j q
′
jC2(|ψj〉〈ψj|).

As F(C2) is non-decreasing and convex, we have

F (C2(ρ)) = F (C2(|ζ1〉〈ζ1|))

≤ F

(∑
j

q′j C2(|ψj〉〈ψj|)

)
≤
∑
j

q′j F (C2 (|ψj〉〈ψj|))

=
∑
j

q′j Apure(|ψj〉〈ψj|). (3.56)

Thus, F (C2(ρ)) is the minimum average pure-asymmetry Apure taken over all the pure-

state decompositions of ρ.

In the next section, we use this corollary to calculate the convex-roof extension of the

variance (3.43), which is the asymptotic measure of U(1)-asymmetry, as is shown in [37].

Finally, we note that this corollary can also be used for the convex-roof extension of the

asymptotic Z2-asymmetry measure [37].

3.4.1 Frameness of formation

Proposition 16 enables us to systematically construct asymmetry monotones under U(1)-

SSR, but as we noted earlier, not all U(1)-asymmetry monotones can be obtained this
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way. Yet, there is still a chance that the convex-roof extension of monotones that cannot

be obtained by the method of Proposition 16 may be expressed directly as a function of

monotones that can. In particular, Corollary 21 specifies which monotones can be related

in this way to the concurrence of frameness in the case of single-qubit states.

The number variance (3.43) is an important asymmetry monotone that does not meet

the conditions of Proposition 16, i.e. it is not a concave function of the twirled state.

Besides being an ensemble monotone, variance is the unique measure of asymmetry of

pure states in the sense that it quantifies the rate at which they can be asymptotically

formed from or distilled into the state |+〉 := (1/
√

2) (|0〉+ |1〉) [37]. The |+〉 state is

chosen as a standard unit resource state and is an instance of a unipartite, or local,

refbit [37, 89]. Thus, the convex-roof extension of the variance is the equivalent of the

entanglement of formation [14] and is therefore called the frameness of formation (FoF)

of the group U(1) [37].

Definition 27. The frameness of formation for the group G=U(1) of a state ρ in terms

of refbits |+〉 is

V (ρ) = min
{|ψi〉,qi}

∑
i

qi Vpure(|ψi〉〈ψi|), (3.57)

where Vpure(|ψi〉〈ψi|) = 4
(
〈ψi|n̂2|ψi〉 − 〈ψi| n̂ |ψi〉2

)
.

As we presently show, the variance of a qubit is a convex function of the concurrence, and

we can determine the FoF of a qubit analytically by relating the variance to the qubit’s

concurrence of frameness using Corollary 21. The outcome is analogous to Wootters’s

formula for the entanglement of formation of bipartite two-qubit states [110].

Proposition 22. The FoF of a single qubit is

V (ρ) = |µ1 − µ2|2 (3.58)

for µR = {µ1, µ2} the set of eigenvalues for state R =
√√

ρρ̃
√
ρ.
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Proof. Recall that |ψ〉 =
√
λ0|0〉+

√
λ1|1〉. We have C2(|ψ〉 〈ψ|) = 2

√
λ0λ1 and Vpure(|ψ〉〈ψ|) =

4λ0λ1. The frameness (3.43) is a convex, non-decreasing function of the concurrence,

V(C2) = C2
2 . The result follows from Corollary 21.

Schuch et. al. already identified the equivalent of the number variance in a bipartite

setting as a separate measure of non-locality under the joint restrictions of LOCC and

total-number SSR, where they call the bipartite measure the “superselection-induced

variance” and also show, among other things, that its convex-roof extension can be

obtained from the bipartite entanglement concurrence [79,80].

The SSR-induced variance and U(1)-frameness of formation are related, and the ar-

guments in Section 3.3 that relate asymmetry resources to entanglement through purifi-

cation of the twirled state makes the link between the two measures even more explicit.

However, although we employ bipartite states for purification, our aim is not to study

nonlocal asymmetry. Rather, the resources we consider are unipartite and are not re-

stricted by this SSR. Only the operations have to obey the SSR. The monotones and

measures of asymmetry we consider, including the concurrence of frameness and the

variance, are viewed as local RF resources and are treated on their own, independent of

entanglement theory.

Strictly speaking, the variance quantifies the rate of formation for states |ψ〉 =∑
n λn|n〉 whose number spectrum, spec(|ψ〉) (3.4), is gapless, i.e. states for which λn1 > 0

and λn2 > 0 implies that λn > 0 for all n between n1 and n2. For example, we call the

state whose spectrum is equal to the set {3, 4, 5, 6} as a gapless state, while the state with

spectrum {3, 4, 6} has a gap, since the number 5 is missing while both 4 and 6 belong to

the set. The reason is that states with gaps cannot be transformed to gapless states with

any non-zero probability under the U(1)-SSR. However, the problem can be solved by em-

ploying negligible amount of catalyst resources that makes it possible to asymptotically

transform gapless and gapped states to each other in a reversible manner [37,79,80]. Here,
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we have assumed all pure states are mutually interconvertible, by which we mean that

any of the pure states can be transformed to any other with some probability (not nec-

essarily probability one) under some, deterministic or non-deterministic, U(1)-invariant

transformation. Under this assumption, we can consistently interpret the convex-roof

extension of the variance as the minimum average cost, in terms of refbits, of preparing

the ensemble of states that realize the mixed state.

3.4.2 Explicit concurrence of frameness and U(1)-asymmetry of formation of a qubit

Let ρ = p|φ1〉〈φ1|+ (1− p)|φ2〉〈φ2| be the spectral decomposition of the state ρ. The two

states |φ1〉 and |φ2〉 have the same relative phase and can be simultaneously transformed

by U(1)-covariant transformations to states with real amplitudes on the Bloch sphere:

|φ1〉 = cos
α

2
|0〉+ sin

α

2
|1〉,

|φ2〉 =− sin
α

2
|0〉+ cos

α

2
|1〉. (3.59)

The two singular values of the state R(ρ) in Eq. (3.46) are

µ1,2 =

√
p(1− p) +

1

2
(1− 2p)2 sin2 α±K (3.60)

for

K :=
1

2

∣∣ (1− 2p) sinα
∣∣√(1− 2p)2 sin2 α + 4p(1− p). (3.61)

The state’s concurrence is equal to

C2(ρ) = |(1− 2p) sinα| , (3.62)

and

V2(ρ) = (1− 2p)2 sin2 α (3.63)

is the qubit U(1)-frameness of formation.
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The measure is zero for α = 0 and α = π corresponding to the number eigenstates |0〉

and |1〉. The measure V2 is also zero for the case of p = 1/2, irrespective of the value

of α, as it corresponds to the totally-mixed state that can be decomposed into |0〉 and |1〉

eigenstates with equal probability,

ρI :=
1

2
|0〉〈0|+ 1

2
|1〉〈1|. (3.64)

For all other value of the parameters, the variance of formation ensures that the state is

a U(1)-resource.

Here we have, for the first time, found a closed formula for the asymmetry of a (in

general) mixed state. The definition of the convex roof extension involves a minimization

over all states which is a computationally difficult task for a general state. We have

provided a closed formula that calculates the minimum value for a single-qubit state.

Moreover, it is the analogue of the formula of Wootters in entanglement theory, that was,

in its own turn, one of the first discovered closed formulas for computing an entanglement

measure of two-qubit mixed states.
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Chapter 4

Simulating symmetric transformations with local operations

In this chapter, we show that covariant CP-maps can be ‘simulated’ by a restricted subset

of local operations and classical communications (LOCC). The key idea is to embed the

system’s Hilbert space H within a larger tensor product space HA⊗HB. The embedding

is done with an isometry

H
iso−→ W ⊆HA ⊗HB, (4.1)

that has the following properties. First, the isometry maps symmetric states to separable

states. Furthermore, consider two density operators ρ and σ acting on H , and their

corresponding bipartite images ρ̃AB and σ̃AB that act on the image subspace W . If

there exists a covariant transformation Ecov that maps ρ to σ, i.e. σ = Ecov(ρ), then

there must also exist a local transformation Ẽlocal that maps ρ̃AB to σ̃AB, i.e. σ̃AB =

Ẽlocal(ρ̃AB) (Figure 4.1). In this sense, the local operator Ẽlocal simulates the covariant

map Ecov.

We show here that such isometries can be found for all covariant CP-maps that are

associated with finite-dimensional representations of compact semi-simple Lie groups.

Moreover, for any asymmetric state, we show that there exists an isometry that maps it

Figure 4.1: Simulating a covariant transformation Ecov by a LOCC transformation Ẽlocal.
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to an entangled state.

Hence, the entanglement in the image space captures important aspects of the asym-

metry properties of the original state. Our results follow from an application of the

Wigner-Eckart theorem, generalized to all semi-simple compact groups [16], that deter-

mines the general form of the Kraus operators of covariant transformations [37].

The study of the evolution of entanglement governed by the LOCC map Elocal opens

a new window to explore symmetric dynamics. In particular, it shows that important

features of the resource theory associated with the asymmetry of quantum states [37,60]

is captured by a particular sub-class of the resource theory of entanglement under a

restricted subset of LOCC transformations.

A comprehensive collection of theorems and theoretical tools has been developed to

study quantum entanglement for more than a decade [48, 71, 92]. The equivalence be-

tween asymmetry and entanglement resources allows us to take advantage of the reper-

toire of tools of entanglement theory in order to study the asymmetry properties of

quantum states. In particular, the established equivalence allows us to use any entangle-

ment monotone and construct a corresponding ‘asymmetry monotone’ 1. An asymmetry

monotone, as the name suggests, is a real function defined on the set of quantum states

such that its magnitude changes monotonically (i.e. non-increasingly) during a symmet-

ric evolution. In the case of reversible symmetric transformations, asymmetry monotones

of course remain conserved. They can thus be regarded as generalizations of conserved

quantities. Taking asymmetry monotones into account allows us to rule out classes of

transformations that cannot be ruled out based on conservation laws alone. Asymmetry

monotones can also quantify the strength of quantum resources, just as entanglement

1In [60, 61] it was called an ‘asymmetry measure’ and in [37] it was called a ‘frameness monotone’.
Here we use the terminology of asymmetry monotones rather than asymmetry measures since these
functions do not necessarily measure asymmetry, but can sometimes only detect it. To see it, consider
for example the asymmetry monotone that is equal to 7.2 for asymmetric states, and zero for symmetric
states. Clearly, this monotone does not measure asymmetry, only detects asymmetry.
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monotones measure the entanglement strength of states [95].

A state that lacks a particular symmetry encodes information about the physical

quantity that is associated with that symmetry. For example, a direction in space changes

to another direction via rotation. An angular-momentum eigenstate picks out a specific

direction in space and thus breaks the rotational symmetry. Therefore, the state of

an electron with non-zero angular momentum along a particular direction in space is

not symmetric under rotations and consequently encodes some information about that

direction. In contrast, a symmetric state does not carry any such information. So,

electrons in a rotationally invariant state of zero total-angular momentum contain no

information about any preferred direction.

So far, the study of asymmetry properties of quantum systems has mostly been fo-

cused on pure states. For example, interconversion of pure states under specific symmetry

groups has been studied [8, 37, 86] and a general classification of pure-state asymmetry

properties for arbitrary finite or compact Lie groups has been developed [61]. Prior to the

present result, little was known about the general properties of mixed-state asymmetry,

and, with few but important exceptions like the G-asymmetry [88] (also known as the

relative entropy of frameness [35]), asymmetry monotone functions of mixed-states were

not identified for symmetries associated with general groups.

Our work introduces a wide class of asymmetry monotones, defined for all states, pure

or mixed. Some of the asymmetry monotones we construct can only be defined in terms

of the entanglement of a bipartite system. A case in point is the negativity measure

of entanglement [97]. Negativity is specially interesting as it provides us with an easily

calculable asymmetry monotone for all states and for all types of symmetry.

Although monotones are extremely useful tools in resource theories [71,95], the condi-

tions for the symmetric evolution of states need not always come in the form of asymme-

try monotones. We derive a separate necessary condition for the existence of a covariant
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transformation from one state to another. However, the condition is such that it cannot

be expressed in terms of asymmetry monotones, though for reversible symmetric trans-

formations our necessary condition leads to new conserved quantities. We arrive at this

condition by a new isometry-embedding of the system’s Hilbert space into a different

tensor-product structure. This additional result shows that the isometry in Eq. (4.1) can

be useful even if it does not simulate covariant transformations with LOCC.

The chapter is organized as follows: We present our main result in Section 4.1. In

Section 4.2 we demonstrate how entanglement monotones can be applied to the resource

theory of asymmetry. Sections 5.2.1 and 5.3 focus on specific examples of asymmetry

monotones and how they compare with their entanglement counterparts. In Section 6, we

introduce a new isometry that in general does not simulate covariant maps with LOCC,

but nonetheless leads to new results on time-symmetric evolutions. In Appendix A, we

generalize the main result to general finite or compact Lie groups. Appendix B contains

a special form of the general results for the case of Abelian groups.

4.1 Simulating G-covariant transformations

The central idea of this thesis is to embed the system’s Hilbert space within a larger

Hilbert space in such a way that the covariant transformations between original states

map to LOCC transformations in the larger Hilbert space. We now proceed to make

precise the concepts and procedures involved. We use the notations introduced in Chap-

ter 2. As before, we assume that G is a compact semi-simple Lie group and the Hilbert

space H carries a fully-reducible unitary representation of G.

Definition 28. A LOCC-simulating isometry is an isometry C : B (H )→ B (W ), with

a bipartite image space W ⊆ HA ⊗HB (see Eq. 4.1), that satisfies the following three

conditions:
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(1) For any G-covariant map, Ecov, the map

C ◦ Ecov ◦ C−1 = Elocal : B (W )→ B (W )

is local; that is, Elocal can be implemented by LOCC.

(2) If ρ is G-invariant then C(ρ) is separable.

(3) There exists an asymmetric state (i.e. non-G-invariant state) σ for which C(σ) is

entangled.

The third point excludes trivial isometries that map every state, whether G-invariant

or not, to a separable state. One example of such a trivial isometry is simply adding an

ancilla state to every state ρ, i.e.,

ρ 7→ C(ρ) := ρ⊗ |0〉〈0|. (4.2)

Trivial isometries of this sort are of course always possible, but they differentiate

neither between G-invariant and non-invariant states, nor between G-covariant or non-

covariant transformations. Thus, they tell us nothing about the states’ asymmetry prop-

erties or about the conditions under which covariant transformations are possible. The

other extreme, that of mapping every asymmetric state to an entangled state, although

ideal, is not likely to always be possible. The isometries that we consider here do not

fall under either extreme. Nevertheless, we are able to find a set of isometries that is

complete in the sense that for any asymmetric state there exists at least one isometry

in the set that takes it to an entangled state. In this sense, entanglement capture all

aspects of asymmetry.

4.1.1 The main isometry

The Wigner-Eckart theorem determines the matrix elements of an irreducible tensor op-

erator, like the Kraus operators of G-covariant transformations, in the basis |j, λ;m〉
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introduced in Chapter 2. An important consequence of the Wigner-Eckart theorem

is the existence of the so-called selection rules. The generalized CG coupling coeffi-

cients

 j J

m M

∣∣∣∣∣∣∣
j ′

m′

 are zero unless the weights m, M and m′ satisfy the relation,

m+M = m′. (4.3)

The matrix elements that do not satisfy Eq. (4.3) must vanish. It thus follows from the

Wigner-Eckart theorem that the only thing a G-covariant Kraus operator KJ ,M ,α does on

the weight m of a basis state is to translate it by M , independently of the other relevant

parameters, j, J , λ and α. We exploit this fact in the following definition and theorem

when we introduce an isometry that satisfies the three conditions of definition 28.

Definition 29. Let HB denote the Hilbert space spanned by the states labeled as |m〉

where m ranges over the representation weights of the Lie algebra of the group, and let

W := span {|j, λ;m〉 ⊗ |m〉} ⊂H ⊗HB. (4.4)

The isometry C is defined by its action on the basis kets as:

|j, λ;m〉 7→C |j, λ;m〉 ⊗ |m〉. (4.5)

We now show that C satisfies all the conditions of definition 28.

Theorem 23. C is a LOCC-simulating isometry.

Proof. First, note that as the states |m〉 are orthonormal, if |ψ〉 7→C |ψ̃〉 and |φ〉 7→C |φ̃〉,

then we have 〈ψ̃|φ̃〉 = 〈ψ|φ〉. Similarly Tr(C (ρ)C(σ)) = Tr (ρσ), as can be similarly

verified by considering the spectral decompositions of density operators. Thus, the map C

is indeed an isometry. To see that the first condition in definition (28) is satisfied, consider

a G-covariant CP-map Ecov whose operator sum representation is given in terms of Kraus
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operators {KJ ,M ,α}. We define

K̃J ,M ,α := KJ ,M ,α ⊗ TM , (4.6)

where,

TM :=
∑
m

|m+M〉〈m| (4.7)

is a translation operator. Let Elocal denote the CP-map whose operator sum representation

corresponds to the Kraus operators K̃J ,M ,α given in Eq.(4.6). Note that from Eq. (4.3)

it follows that Elocal = C ◦ Ecov ◦ C−1. We need to show that Elocal can be implemented by

LOCC. Indeed, the operator TM , being merely a translation operator, is unitary (assum-

ing the range of the weights in the decomposition (2.37) is unbounded). Therefore, the

map Elocal can be implemented as follows: Alice perform a ‘local’ measurement described

by the Kraus operators {KJ ,M ,α} and send the part M of her measurement outcome

to Bob, who then performs the unitary transformation TM . Hence, the first criterion of

Definition 28 is satisfied.

Secondly, recall that any G-invariant state ρ is equal to its own G-twirling (see

Eq. 3.8),

ρ =
∑
j,λ

pj,λΠj,λ, (4.8)

where the projection Πj,λ is equal to

Πj,λ =
∑
m

|j, λ;m〉〈j, λ;m|. (4.9)

The state C(ρ) is thus equal to

C(ρ) =
∑
j,λ

pj,λ
∑
m

|j, λ;m〉〈j, λ;m| ⊗ |m〉〈m|, (4.10)

which is clearly a separable state.
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Finally, a state of the form

|ψ〉 = c1 |j1, λ1;m1〉+ c2 |j2, λ2;m2〉, (4.11)

is mapped to the entangled state,

|ψ̃〉 = c1 |j1, λ1;m1〉 ⊗ |m1〉+ c2 |j2, λ2;m2〉 ⊗ |m2〉. (4.12)

This completes the proof.

The example in Eq. (4.11) suggests that if a state has coherence in m it is mapped to

an entangled state. In the next proposition, we make this claim rigorous and give neces-

sary and sufficient conditions for a general mixed state ρ to be mapped to an entangled

state by the isometry C.

Proposition 24. Let Πm be the projection

Πm :=
∑
j,λ

|j, λ;m〉〈j, λ;m| .

Then, the isometry C maps a state ρ to an entangled state if and only if there exists m

such that [ρ,Πm] 6= 0; i.e. ρ has coherence in m.

Proof. Every state ρ̃ acting on W is the image of some state acting on H , i.e. ρ̃ = C(ρ).

If ρ̃ is a separable state, it must have a pure-state decomposition comprised of product

states

ρ̃ =
∑
i

qi|φ̃i〉〈φ̃i|,

where each |φ̃i〉 is both a product state and the image of some state |φi〉 under the

isometry C. This is because C is a linear invertible map, and any pure-state decomposition

of ρ corresponds to a pure-state decomposition of ρ̃ and vice versa. Thus, since |φ̃i〉 =

C(|φi〉) is a product state, |φi〉 must have the form

|φi〉 =
∑
j,λ

ci;j,λ|j, λ;mi〉. (4.13)
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where ci;j,λ are some complex coefficients and the superposition above consists of a single

value for m = mi. Otherwise, containing two different values for m in the above

expansion necessarily renders the state |φ̃i〉 entangled. Consequently, the form of the

initial state ρ corresponding to ρ̃ = C(ρ) must be,

ρ =
∑
i

qi|φi〉〈φi| ,

with |φi〉 as in Eq (4.13). According to Eq.(4.13) each |φi〉〈φi| commutes with Πm for

all m and therefore [ρ,Πm] = 0. The argument works in the other direction as well.

In other words, if every pure-state decomposition of ρ contains at least one pure state

that is in a coherent superposition of two or more eigenstates with different values of m,

then C(ρ) will be an entangled state. This completes the proof.

The isometry C does not map all asymmetric states to entangled states. For example,

the state |φ〉 = |j, λ;m〉 is not G-invariant (assuming j does not label the identity irrep),

and yet it is mapped to the product state

|φ̃〉 = |j, λ;m〉 ⊗ |m〉.

However, as we now show, we can define another LOCC-simulating isometry, similar to

C, that maps |j, λ;m〉 to an entangled state.

4.1.2 A complete set of LOCC-simulating isometries

In Definition 29 we have used the basis {|j, λ;m〉} to define the isometry C. However,

there is nothing special about the choice of the irrep weights m. In fact, the set of states,

|j, λ;m〉g := U(g)|j, λ;m〉 (4.14)

forms an equally valid basis for the irreps, labelled by the new weights mg (the multi-

plicity index λ can always be relabelled if it is needed). On the other hand, by definition,
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the irrep basis states mix among themselves under the action of the group,

U(g)|j, λ;m〉 =
∑
m′

D
(j)
m,m′(g) |j, λ;m′〉, (4.15)

where D
(j)
m,m′(g) is the matrix representation of the jth irrep. Reversing Eq. (4.14), we

get,

|j, λ;m〉 =
∑
m′

D
(j)
m,m′(g

−1) |j, λ;m′〉g. (4.16)

Hence, if we had defined the isometry relative to the new weights, the state |j, λ;m〉

would be mapped to an entangled state. In fact, the isometry C is only one of a class of

isometries that can be defined for different choices of g ∈ G relative to the weights {mg}.

The map C is merely the isometry corresponding to the identity element of the group.

Definition 30. For every g ∈ G, we define the isometry Cg as,

Cg := (U(g)⊗ IB) ◦ C ◦ U †(g), (4.17)

where U(g) := U(g)(•)U †(g), and IB is the identity superoperator acting on HB.

The isometry Cg acts on basis states, |j, λ;m〉g, and maps them to

|j, λ;m〉g 7→ |j, λ;m〉g ⊗ |m〉.

Note that the image space of all the isometries {Cg} is the space W in (4.4). Clearly,

the proof of Proposition 23 can easily be modified to apply to all the set of isometries

{Cg}. Moreover, note that the state |φ〉 = |j, λ;m〉 is mapped to

|φ〉 7→Cg |φ̃〉 =
∑
m′

D
(j,λ)
m,m′(g

−1) |j, λ;m′〉g ⊗ |m′〉, (4.18)

which is, in general, an entangled state.

It is instructive at this stage to look at the specific group SU(2) to gain some intuition.

The same results also holds for the group of rotations SO(3), as it has the same Lie
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algebra, so we do not need to consider that case separately. The weights m of the

associated algebra su(2) are one dimensional and correspond to the eigenvalues of the

angular momentum operator, Jz, along the z-direction. Each irrep is labeled by the single

number j corresponding to the maximum z-eigenvalue of angular momentum, and the

total angular momentum, J2, equals j(j + 1). There is obviously nothing special about

the choice of the z-axis. The z-axis can be rotated to a new axis n̂, which corresponds

to applying the respective group representation on the quantum states. One way to

specify an element of the group is to determine the axis n̂ to which it takes the z-axis.

In other words, each isometry in the class of definition 30 is identified by the choice of a

new z-direction and can be denoted as Cn̂.

Thus, to take full advantage of the entanglement features of the embedding, one has

to take more than one isometry into consideration. As we shall now see, if ρ ∈ B (H )

is an asymmetric state then there exists g ∈ G such that Cg(ρ) is an entangled state. In

fact, for the SU(2) group we will see that only two directions are needed to characterize

all the asymmetry properties of a state. That is, if Cn̂(ρ) is separable for two independent

choices of n̂, then ρ is necessarily G-invariant.

Also for more general simply connected groups, there exists a finite number of isome-

tries {Cgi} (associated with a finite number of group elements {gi}) that capture all the

asymmetry properties of a state. That is, if a state is mapped to a separable state by all

the isometries in the finite set {Cgi}, then the state must be symmetric. This allows in

principle to check whether a state is G-invariant or not, by considering its bipartite image

states only for a finite number of isometry elements. Otherwise, all the infinite isometries,

each associated with a member of the group, must have been considered before such an

assessment could be made.

Before proving the above claim rigorously, let us illustrate the idea of the proof with

the simple and more familiar example of the group SU(2). Suppose that C(ρ) is separable
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for some state ρ. Then, according to Proposition 24 the state ρ has no coherence in m,

the eigenvalue of the Jz operator. It means, in turn, that the state ρ commutes with Jz.

By the same argument if Cx̂(ρ) is separable then the state ρ commutes with Jx. Therefore,

if both C(ρ) and Cx̂(ρ) are separable then ρ commutes with both Jz and Jx. But since

[Jz, Jx] = ıJy, ρ also commutes with Jy and so it must commute with all the elements of

the group, which means that ρ is an SU(2)-invariant state. This line of argument can be

generalized to other groups, as we now demonstrate.

Suppose G is a simply connected group parametrized by r parameters. Let g be the

Lie algebra of G of rank `, and let h be its `-dimensional Cartan subalgebra. Denote the

operator representation of the infinitesimal generators of the group as Xa : H → H ,

for a = 1, · · · , r. Similarly, denote the representation of the Cartan operators spanning h

as Hi : H →H , where i = 1, · · · , `.

Now, let S ⊂ G be the subgroup of G whose members permute the infinitesimal

generators of the group among themselves. By this we mean, for every s ∈ S,

U(s)Xa U(s)† = Xa′(s), a, a
′ ∈ {1, . . . , r} . (4.19)

As both g and h are finite, the subgroup S contains only a finite number of elements.

We are now ready to prove the general case.

Proposition 25. Let ρ ∈ B (H ). The state ρ is G-invariant if and only if for all s

belonging to the finite subgroup S ⊂ G, the state Cs(ρ) is separable.

Proof. If ρ is G-invariant, then Cg(ρ) is separable for all g ∈ G, and thus for all s ∈ S,

since {Cg} is a set of LOCC-simulating maps.

We therefore assume that Cs(ρ) is separable for all s ∈ S. The requirement that Cs(ρ)

is separable implies that ρ, when expressed in the basis |j, λ;m〉s, has no coherence inm.

Consider the projection,

Π(s)
m :=

∑
j,λ

|j, λ;m〉s〈j, λ;m|.
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The condition for separability is equivalent to the requirement that [ρ,Π
(s)
m ] = 0 for allm

(see Proposition 24).

The set of operators, H
(s)
i := U(s)Hi U(s)†, are all diagonal in the new basis,

H
(s)
i |j, λ;m〉s = mi |j, λ;m〉s,

and form a representation for new Cartan operators. It follows that H
(s)
i =

∑
mmiΠ

(s)
m .

Thus, if Cs(ρ) is separable, ρ must satisfy

[ ρ,H
(s)
i ] = 0, i = 1, . . . , `.

But this is true for all s ∈ S (including the identity e, where Hi = H
(e)
i ). Every Xa can

be constructed from the commutators of H
(s)
i , once all the H

(s)
i for all s ∈ S are included.

It follows that the state ρ commutes with all the generators Xa, and consequently, with

all the elements of the group as well. In other words, the state is G-invariant.

Next, we see how entanglement of the embedded state changes under G-covariant

transformations of the original state. This, in turn, enables us to relate the asymmetry

features of the original state to the ensuing entanglement.

4.2 Constructing Asymmetry Monotones From Entanglement Monotones

Roughly speaking, Propositions 23 and 25 imply that the evolution of asymmetry can

be simulated by the evolution of entanglement. In particular, we can define asymmetry

monotones for the states acting on H in terms of the entanglement monotones of the

states acting on W to which they are mapped.

Definition 31. For every bipartite entanglement monotone E, we define a family of

asymmetry monotones, a monotone for each g ∈ G, as,

AgE : B(H )→ R+ : ρ 7→ E (Cg(ρ)) . (4.20)
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The following proposition ensures that AgE is indeed an asymmetry monotone, assum-

ing that E is an entanglement monotone.

Proposition 26. Consider an entanglement monotone E. If ρ 7→Ecov σ is possible, then

for every g ∈ G,

E (Cg(ρ)) ≥ E (Cg(σ)) . (4.21)

Remark. A similar inequality holds in the case of non-deterministic G-covariant CP-maps

for the average of E, assuming E is an ensemble monotone (see Section 2.4).

Proof. The result follows directly from the definition 30 and the extension of proposi-

tion 23 to all isometries Cg.

As not all asymmetric states are taken to entangled states, the asymmetry mono-

tone AgE is not faithful, even if E is itself a faithful entanglement monotone. However,

proposition 25 allows us to define a faithful asymmetry monotone from the monotones AgE.

Proposition 27. The function

Asup
E := sup

g∈G
AgE, (4.22)

where supg∈G stands for the supremum taken over all g in G, is a faithful asymmetry

monotone, provided E is a faithful entanglement monotone.

Replacing the supremum above by the maximum over the finite number of elements

in S ⊂ G over the finite number of elements in S ⊂ G (see Proposition 25) will also lead

to a faithful asymmetry monotone. The supremum of the finite number of elements in

S ⊂ G (see Proposition 25) is the same as their maximum. For example, if G = SU(2),

the function

max
n̂∈{ẑ, x̂}

An̂
E

is an asymmetry monotone.
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4.2.1 Unitary Transformation

If the CP-map is reversible, i.e. a unitary operation, then the condition of the mono-

tonicity for the monotones (4.20) must be true in both directions, which in turn implies

that the monotone functions must remain constant.

Proposition 28. Consider an entanglement monotone E. If ρ
Ecov↔ σ is a reversible G-

covariant transformation, then for every g ∈ G, AgE is a conserved quantity; i.e.

E (Cg(ρ)) = E (Cg(σ)) . (4.23)

Thus, for closed systems governed by a symmetric Hamiltonian, every entanglement

monotone E leads to new conserved quantities, {AgE}g∈G. For a Hamiltonian that is

symmetric with respect to the group G, the expectation values of the generators of G

are also conserved quantities. However, unlike AgE, for open systems these expectation

values are not behaving monotonically.
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Chapter 5

Applications and examples

In the present chapter, we introduce specific monotones and case studies as examples

in order to demonstrate how the results we developed in Chapter 4 can be applied to

various problems in the resource theory of asymmetry.

5.1 The pure-state standard form

First, we show how pure states can be transformed to a standard form that contains all

the information relevant for determining the asymmetry of the state and no redundancies.

In particular, as G-covariant transformations are not restricted on how they act on the

multiplicity spaces, no measure of the strength of the resource can depend on the changes

that affect the multiplicity indices. The standard form of the state has no explicit non-

trivial dependence on the multiplicity indices. We have already already seen the standard

form of pure states in the case of the group U(1). The standard forms of pure states

for the groups U(1) and SU(2) were determined in [37]. Here, we present the form for a

general semi-simple compact Lie group.

Recall that the system’s Hilbert space can be expressed as the direct sum H =⊕
j Hj , with j labelling the irreps of G (2.37). Recall as well that the eigenstates

|j, λ;m〉 form a basis for Hj , where m denotes the `-dimensional weight vectors, j

is the highest weight as well as the index labelling the irrep itself, and λ labels the

multiplicity. We now define Hj,m as the subspace spanned by the basis states for fixed j

and m, i.e. Hj,m := span {|j, λ;m〉}λ. Operations on multiplicity spaces are unaffected

by the G-SSR, and, as a result, any pure state can be transformed via G-covariant unitary
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transformations to a standard form. Consider the pure state

|ψ〉 =
∑
j,m

cj,m |ψj,m〉, (5.1)

where |ψj,m〉 ∈ Hj,m are normalized states, and let pj,m := |cj,m|2. We apply the

Gram-Schmidt process to extend |ψj,m〉 to a full orthonormal basis {|ψj,m〉}∪{|φj,λ;m〉}λ

spanning the subspace Hj,m. The unitary transformation

U :=
∑
j

(
c∗jm
|cjm|

|j, 0;m〉〈ψj,m|+
∑
λ 6=0

|j, λ;m〉〈φj,λ;m|

)
, (5.2)

is G-covariant, in fact it is G-invariant, and takes the state |ψ〉 to the standard form

|ψ0〉 =
∑
j,m

√
pj,m |j;m〉, (5.3)

where |j;m〉 is our shorthand notation for the fixed choice of the multiplicity index,

namely the state |j, 0;m〉.

Of course, as we mentioned in Section 4.1.1, the choice of weights is not unique. So

the standard form is always defined relative to a choice of the weights, and we have in fact

a class of standard forms, each associated with a member of the group. From Eq. (4.16)

it follows that

|ψ0〉g =
∑
j,m

√
pj,m;g |j;m〉g. (5.4)

As before, the state in Eq. (5.3) is in the standard form associated with the identity

element e, in which case we omit the identity label.

Definition 32. The weight spectrum of a state |ψ〉 associated with a group element g ∈ G

is the set

spec(g)
m (ψ) :=

{
m

∣∣∣∣∣|ψ〉 =
∑
j,m

√
pj,m;g |j;m〉g, pj,m;g > 0

}
, (5.5)

ie. the set of the weight labels m that label the kets in the standard form of |ψ〉.

We are now ready to present our examples and discuss some applications of the results

of Chapter 4 in various case studies.
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5.2 Entanglement-based asymmetry monotones

We now review in more detail some examples of asymmetry monotones that are con-

structed from entanglement monotones through the class of LOCC simulating isometries.

Many totally new asymmetry monotone can be constructed from entanglement mono-

tones using the isometry C. Here we introduce a few such monotones for the first time.

One uses the negativity of entanglement, and the other uses the logarithmic negativ-

ity [70,97].

5.2.1 The negativity of entanglement as a measure of asymmetry

Negativity of entanglement is an important measure of entanglement with many appli-

cations. As our first example of an entanglement-based monotone, we use negativity of

entanglement to construct a new asymmetry monotone:

Definition 33. The negativity of asymmetry is defined as,

AN(ρ) :=
‖ C(ρ)Γ ‖1 −1

2
, (5.6)

and the logarithmic negativity of asymmetry is

ALN(ρ) := log ‖ C(ρ)Γ ‖1, (5.7)

where Γ denotes partial transpose and ‖ • ‖1 is the 1-norm

‖ ρ ‖1= Tr
√
ρ†ρ. (5.8)

Both negativity and logarithmic negativity are particular useful monotones as they

are very easily computable for all states, pure or mixed. Note however that the negativity

and the logarithmic negativity do not reduce to entropy functions for pure states.

For pure states, the negativity of asymmetry can be expressed in a very simple closed

form. As we saw in Section 5.1, every pure state can be brought to the standard form
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by G-covariant transformations. Consider the pure state, |ψ〉 =
∑
j,m

√
pj,m |j;m〉, in

the standard form of Eq. 5.3. The norm of the partial transpose is

‖ C (|ψ〉〈ψ|)Γ ‖1=

(∑
j,m

√
pjm

)2

. (5.9)

It follows that the logarithmic negativity of asymmetry is equal to

ALN (|ψ〉〈ψ|) = 2 log

(∑
j,m

√
pjm

)
. (5.10)

After simplifying the equations, the negativity of asymmetry can be expressed as

AN (|ψ〉〈ψ|) =
∑

j 6=j′,m6=m′

√
pjm pj′m′ . (5.11)

An important feature of a monotone like the negativity is that it applies, by definition,

only to bipartite states. There is no sense in performing a partial transpose on the state of

a single system. Similarly, the mutual information is essentially in terms of correlations of

two or more systems. Interestingly, however, applied to the image states of the isometry,

such monotones capture information about some aspect of the original unipartite state.

Yet, it is hard to see how the same information would be accessible in any other way

beside mapping the original states to bipartite image states.

5.3 Measures based on distance

Monotones based on how far states are from the set of non-resources are known as

distance measures [92]. The geometric intuition here can apply to various resources,

not just entanglement. If the resource is entanglement, then the more entangled a state

is, the further away it is from the set of separable states. The ‘distance’ between any

two states ρ and σ is measured by a function D(ρ, σ) with distance-like properties (e.g.

D(ρ, σ) ≥ 0 with equality if and only if σ = ρ). The function D, however, need not be

literally a metric. All is needed is that D preserve the partial order, and that D(ρ, ρ) = 0
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for all ρ. The function D need not satisfy the triangle inequality, for instance, and it

need not even be symmetric. The distance-based monotone is defined as the minimum

distance to the target set Q:

ED(ρ) := inf
σ∈Q

D(ρ, σ). (5.12)

In the case of entanglement, the target set is the set SEP of separable states. Unlike

the monotones in the previous section, distance-based asymmetry monotones can also

be defined directly by choosing the target set Q to be the set of G-invariant states. A

different set of asymmetry monotones can, however, be defined indirectly in terms of

distance-based entanglement monotones. How the two sets of monotones compare is

an important question. Here we introduce one important example of a distance-based

monotone.

If the function D(ρ, σ) = Tr [ρ log ρ− ρ log σ] is the relative entropy (2.72), then ED

above is called the relative entropy of entanglement (REE) (2.71). The REE has many

nice properties and it plays a crucial role in the theory of entanglement [48,71].

Just as in the previous subsection, we can use Eq. (4.20) to define an asymmetry

monotone that is based on the REE. We call this monotone the relative entropy of

asymmetry (REA). However, unlike the monotones in the previous subsection, distance-

based monotones of asymmetry can also be defined directly by choosing the target set Q

to be the set of G-invariant states. In this case, if D is taken to be the relative entropy

then the resulting monotone is the G-asymmetry [35, 88]. How the G-asymmetry is

related the REA is an important question which we discuss here only partially. A more

detailed study of the comparison is left for future work.
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5.3.1 The Relative Entropy of Asymmetry

As discussed above, an important and widely studied entanglement distance monotone

is the REE

ER(ρ) = min
σ∈SEP

S (ρ ‖ σ) , (5.13)

where the relative entropy S (ρ ‖ σ) (2.72) is the distance function and where the infimum

can be replaced with a minimum. The relative entropy is not symmetric and does not

preserve the triangle inequality. Following Section 4.2, we can define a class of asymmetry

monotones

AgR(ρ) := ER (Cg(ρ)) , ∀g ∈ G, (5.14)

and we can define the relative entropy of asymmetry (REA) to be the faithful monotone

obtained from the class of asymmetry monotones.

Definition 34. The relative entropy of asymmetry (REA) is the monotone,

Amax
R (ρ) := max

s∈S
AsR(ρ), (5.15)

where the finite subgroup S ⊂ G was defined by the property in Eq. (4.19).

From the discussion in Section 4.2 it follows that Amax
R is faithful, i.e. Amax

R (ρ) = 0 if

and only if ρ is G-invariant.

5.3.2 Comparison with G-asymmetry

As we discussed before, choosing the set INV of G-invariant states as the target set Q

for the states acting on H leads to a measure known as the G-asymmetry [88] or,

alternatively, the relative entropy of frameness [35]

AG := min
σ∈INV

S (ρ ‖ σ) = S (G(ρ))− S(ρ). (5.16)
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Here, G(ρ) is the twirling operation discussed in Eq. (2.36) of Section 2.2.

In order to compare G-asymmetry with REA, let us first consider a slightly different

function, also based on the relative entropy of entanglement but with a different target

set relative to which the distance is minimized. Each isometry Cs, for s ∈ S, leads in

Figure 5.1: A schematic depiction of the space of bipartite states. SEPs is the intersection

of the set of separable states, SEP, with the image of the Cs-isometry denoted here

as Cs[H ]. The image of the set of G-invariant states under Cs, denoted as Cs[INV], is a

strict subset of SEPs.

general to a strict distinct subset of SEP that act on H ⊗ HB. We denote the set

by SEPs. That is, SEPs is the intersection of SEP with the image of Cs (see Figure 5.1).

We also denote the image of the set of G-invariant states under Cs as Cs[INV]. Note that

if G is not Abelian, then Cs[INV] is a strict subset of SEPs
1. For example, as we saw

earlier, SEPs also contains product states |φ̃〉 = |j, λ;m〉s ⊗ |m〉 that are the images of

the states |j, λ;m〉s. Yet, the eigenstates |j, λ;m〉s are not G-invariant when j 6= 0. We

1If G is Abelian, then all separable states in SEPs are images of invariant states and thus Cs[INV] =
SEPs (see Appendix B).
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now define the function As∗R as

As∗R (ρ) := min
σ∈Cs[INV]

S (Cs(ρ) ‖ σ) . (5.17)

As∗R can, in general, be greater than Amax
R but it can never be smaller.

Proposition 29. For every s ∈ S, As∗R are greater than or equal to the REA:

Amax
R (ρ) ≤ As∗R (ρ), ∀ρ ∈ B(H ). (5.18)

Proof. For any given s ∈ S, Cs[INV] ⊂ SEPs ⊆ SEP. It follows thatAsR ≤ As∗R , sinceAsR is

obtained by minimizing the relative entropy over the larger set SEP that includes Cs[INV].

As this is true for all s ∈ S, As∗R is greater than or equal to the maximum Amax
R too.

The isomorphism between the two sets INV and Cs[INV] implies that the mini-

mum taken over Cs[INV] in the definition of As∗R (ρ) coincides with the minimum of G-

asymmetry AG in Eq. (5.16). By this we mean that the separable state that minimizes

the relative entropy in Eq. (5.17) is the image, under the isometry Cs, of the invariant

state that minimize the relative entropy in Eq. (5.16).

To see this, consider the spectral decomposition of states ρ and σ acting on H ,

namely, ρ =
∑

i pi|ψi〉〈ψi| and σ =
∑

i qi|φi〉〈φi|. Recall that Cs, being an isometry,

preserves the inner product between pure states2. It follows that the spectral decompo-

sition of the image states are Cs(ρ) =
∑

i pi|ψ̃i〉〈ψ̃i| and Cs(σ) =
∑

i qi|φ̃i〉〈φ̃i|, where |ψ̃〉,

and |φ̃〉 are themselves the images of |ψ〉 and |φ〉, i.e., |ψ〉 7→Cs |ψ̃〉, |φ〉 7→Cs |φ̃〉. Hence,

for every two states ρ and σ, the two relative entropies S(ρ ‖ σ) and S (Cs(ρ) ‖ Cs(σ))

must be equal. Two corollaries follow:

Corollary 30. For every s ∈ S, the functions As∗R and AG are identical, As∗R = AG.

2In fact, as is apparent from definition 29, the isometry Cs merely ‘repeats’ the weight label m for
each eigenket |j, λ;m〉s by attaching to it the ket |m〉, i.e. |j, λ;m〉s 7→ |j, λ;m〉s ⊗ |m〉.
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Corollary 31. The G-asymmetry is greater than or equal to the REA.

Amax
R (ρ) ≤ AG(ρ), ∀ρ ∈ B(H ). (5.19)

The relationship between G-asymmetry and the REA goes deeper than what we

have discussed so far, and our discussion here must be viewed only as an introductory

treatment of the subject. We leave the more complete discussion to future works.

5.4 Case study: Entanglement-based asymmetry monotones versus information-

based asymmetry measures

In this section, we compare the asymmetry monotones based on entanglement as we have

defined in this thesis with the information-based asymmetry monotones already studied

in the context of asymmetry resources. By information-based asymmetry monotones

here we mean monotones that are defined as the difference of an information measure

between a state and the state’s uniform twirling.

AI(ρ) = I (G(ρ))− I(ρ), (5.20)

where I(ρ) is a function measuring in some ways the information content of a state. The

most important example of such a measure is the von-Neumann entropy function. An

important example of such measures is of course the G-asymmetry.

Consider the following two standard pure states:

|ψ1〉 =
√
p1 |1/2; 1/2〉+

√
p2 |1/2;−1/2〉+

√
p3 |1; 1〉+

√
p4 |1; 0〉 (5.21)

|ψ2〉 =
√
p1 + p2 |1/2; 1/2〉+

√
p3 + p4 |1; 1〉. (5.22)

The two states have the same outcome after the twirling operation,

ρ0 = (p1 + p2) ρH1/2
+ (p3 + p4) ρH1 , (5.23)
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where ρHj
denotes the normalized projection to the subspace Hj (2.37). However, their

images under the C isometry have different Schmidt coefficients, namely

{p1, p2, p3, p4} and {p1 + p2, p3 + p4} respectively.

Hence, information-based asymmetry monotones such as the entropy function defined

by uniform twirling cannot detect the difference between the asymmetry of two such pure

states. The entropy of both initial pure states is zero, and the entropy of the twirled

states are the same, simply because the twirled states themselves are the same. However,

asymmetry monotones based on bipartite entanglement monotones need not give the

same asymmetry value to the two states as their Schmidt coefficients are different. Thus,

the entanglement-based monotones can specify when one such state is more asymmetric

than the other, and, for example, can be transformed to the other one by covariant

transformations without violating the asymmetry.

As an example, let p1 = 1/4, p2 = 1/4, p3 = 1/6 and p4 = 1/3. The G-asymmetry

(or the relative entropy of frameness) of either one of the two states is

AG (|ψ1〉〈ψ1|) = AG (|ψ2〉〈ψ2|)

= S (ρ0)− 0 = 0.5 log2 4 + 0.5 log2 6 ' 2.29, (5.24)

where ρ0 is the state in (5.23). The negativity of asymmetry (5.11), on the other hand,

is very different for the two states:

AN (|ψ1〉〈ψ1|) ' 1.47,

AN (|ψ2〉〈ψ2|) = 0.50, (5.25)

implying, among other things, that |ψ2〉 cannot evolve to |ψ1〉 under SU(2)-covariant

transformations.
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5.5 Case study: Vidal monotones and inequivalent pure-state asymmetry

resources

An important class of bipartite entanglement monotones for pure states are the mono-

tones known as Vidal monotones [95] (see theorems 11 and 12 in Section 2.3.5.). We

already defined the equivalent of Vidal monotones for the case of U(1)-asymmetry. We

now define Vidal’s asymmetry monotones for a general semi-simple compact Lie group G.

For the rest of this section, we assume that all pure states belong to a finite-dimensional

subspace Hd ⊆H of dimension d.

Definition 35. Let |ψ〉 7→Cg |ψ̃〉g. The functions

Agk(|ψ〉) := Ek(|ψ̃〉g), k = 1, · · · , d, (5.26)

are the set of Vidal asymmetry monotones of |ψ〉, where Ek are the Vidal entanglement

monotones of definition 16 in Section 2.3.5.

For a bipartite pure state |ψ〉 =
∑
j,m

√
pjm;g |j;m〉g in the standard form of (5.3),

the Vidal monotones are equal to

Agk (|ψ〉) =
d∑
i=k

p↓i;g, (5.27)

where p↓i;g ∈ p↓g (|ψ〉), and p↓g (|ψ〉) := (p↓1;g, · · · , p↓d;g) is the d-tuple comprised of the

amplitudes {pj,m;g} of the state |ψ〉 ordered in decreasing order p↓1;g ≥ · · · ≥ p↓d;g.

Consider the states |ψ1〉 = |j;m〉g1 and |ψ2〉 = |j;m〉g2 . The two states are known to

be inequivalent resources, in the sense that transforming one to the other is impossible

given the symmetry restrictions, even with probability less than one [37,61]. For example,

in the case of the group SU(2), each state corresponds to the system in question singling

out a different spatial orientation. Rotating from one orientation to the other requires a

reference frame for orientation that would break the rotational symmetry [37].
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We now show that the same conclusion can be reached from the majorization condition

of pure-bipartite-state transformations under LOCC (see Section 2.3.5), or equivalently

by applying what we have called the Vidal asymmetry monotones in this section.

First, we consider the image states under the isometry Cg1 . The state |ψ1〉 is mapped

to the product state

Cg1 (|j;m〉g1) = |j;m〉g1 ⊗ |m〉. (5.28)

Following Eq. (4.16), we have

|j, λ;m〉g2 =
∑
m′

D
(j)
m,m′(g2g

−1
1 ) |j, λ;m′〉g1 , (5.29)

so that the state |ψ2〉 is mapped to

Cg1 (|j;m〉g2) =
∑
m′

D
(j)
m,m′(g2g

−1
1 ) |j, λ;m′〉g1 ⊗ |m′〉. (5.30)

Clearly, the state in (5.28), being a product state, cannot be transformed under LOCC

to the state in (5.30) with any probability. But since Cg1 is a LOCC-simulating isometry

by Definition 28 of Section 4.1, the original state |ψ1〉 cannot be transformed to |ψ2〉

by G-covariant CP-maps either, even not with a non-zero probability.

On the other hand, using the mapping Cg2 instead we get to the opposite situation,

where,

Cg2 (|j;m〉g1) =
∑
m′

D
(j)
m,m′(g1g

−1
2 ) |j, λ;m′〉g2 ⊗ |m′〉, (5.31)

and

Cg2 (|j;m〉g2) = |j;m〉g2 ⊗ |m〉. (5.32)

By the same arguments, Cg2 (|j;m〉g2) cannot be transformed to Cg2 (|j;m〉g1), and con-

sequently, |ψ2〉 cannot be transformed to |ψ1〉 with any non-zero probability either.
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Of course, this situation is a special case were the amplitudes of Cg1 (|j;m〉g1) do not

majorize those of Cg1 (|j;m〉g2) and Cg2 (|j;m〉g2) do not majorize those of Cg2 (|j;m〉g1).

Thus, we have 
0 = Ag11 (|ψ1〉) < Ag11 (|ψ2〉)

0 = Ag21 (|ψ2〉) < Ag21 (|ψ1〉) .
(5.33)

More generally, Vidal monotones can be employed to determine whether a given pure-

state to pure-state transformation is forbidden under the symmetry.

5.6 Case study: Bounds on G-covariant state discrimination

In this section, we consider the task of state discrimination by G-covariant transforma-

tions. We take advantage of the results of the papers by Hayashi et al. [39,40]. By state

discrimination we mean the task of performing a measurement on a system to find out

which one of a set of states the system is in. Discriminating states has significant applica-

tions in cryptographic protocols [12], channel capacities [41,99], and distributed quantum

information processing [21]. Given the restriction to G-covariant measurements, it is nat-

ural to expect that asymmetric states are more difficult to distinguish than G-invariant

ones, as part of their characteristics is not discernible by covariant measurements.

We assume we have a system whose Hilbert space is finite-dimensional. Let D be

the dimension of the Hilbert space. Also we assume we are given a set of states S =

{ρ1, · · · , ρs} that the system is guaranteed to be in. We say that the state ρi from the

set can be discriminated from the rest of the states in S with certainty, if there exists a

POVM whose outcome correctly identifies the label i with probability one whenever the

system is in fact in state ρi.

Here, we investigate situations where a POVM {Mi} exists that satisfies the following
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conditions:

∑
i

Mi = I, (5.34)

0 ≤Mi ≤ I, (5.35)

Tr (Mi ρi) = 1, i = 1, · · · , s, (5.36)

Mi ∈ INV. (5.37)

The last condition 5.37 ensures that the POVM elements are G-invariant. We can restate

the problem in terms of the images of the mapping Cg for some g ∈ G. In that case,

the problem becomes that of discriminating with certainty the states in the set S̃ =

{Cg(ρ1), · · · , Cg(ρs)} by performing a POVM of the form of Eq. (4.6) in Section 4.1.1. As

every Cg is a LOCC-simulating isometry, the POVM performed on the image states of

the isometry is comprised of LOCC measurements.

Hayashi et al. have studied the problem of state discrimination where the POVM are

LOCC [39,40]. In other words, they consider
{
M̃i

}
that satisfies the following alternative

conditions instead:

∑
i

M̃i = I, (5.38)

0 ≤ M̃i ≤ I, (5.39)

Tr
(
M̃i ρi

)
= 1, i = 1, · · · , s, (5.40)

M̃i ∈ SEP. (5.41)

(Condition 5.41 is a necessary condition for POVM elements that are LOCC [84].). They

were able to give upper bounds on the size of the set S̃ in terms of the averages of well

known distance-based measures of entanglement:

N ≤ D/rE (Cg(ρi)) ≤ D/2ER(Cg(ρi))+S(ρi) ≤ D/2G(Cg(ρi)), (5.42)
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where we denote the average of a set of quantities {xi} by x̄i := 1/N
∑

i xi, N is the total

number of states in the set S, and where G(ρ) is the geometric entanglement (2.70), ER(ρ)

is the relative entropy of entanglement (2.71), S(ρ) is the von Neumann entropy and rE(ρ)

is the global robustness of entanglement (2.73) (also note that S(ρi) = S (Cg(ρi)) because

of the simple form of the mapping Cg.). This is the main result of Hayashi al. reported

in [39].

We can presently rewrite the inequalities in (5.42) in terms of functions of the initial

states ρi instead of the image states Cg(ρi). Thus we get the bounds

N ≤ D/rsA(ρi) ≤ D/2A
s
R(ρi)+S(ρi) ≤ D/2G

s
A(ρi), (5.43)

equivalent to the bounds derived by Hayashi et al., but now for the case of state dis-

crimination by G-invariant measurements. We already defined the relative entropy of

asymmetry (REA) as AsR(ρ) = ER(Cs(ρ)) in (5.14). Based on our method of construct-

ing asymmetry monotones through the isometry Cs, we define the other two entanglement

monotones in a similar way:

Definition 36. The global robustness of asymmetry is defined in terms of the global

robustness of entanglement, rE, as rsA(ρ) : H → R+ : ρ 7→ rE(Cs(ρ)).

Definition 37. The geometric asymmetry is defined in terms of the geometric entangle-

ment G as Gs
A(ρ) : H → R+ : ρ 7→ G(Cs(ρ)).

Note that the geometric entanglement is a monotone only when applied to pure states.

Similarly, as the isometry Cs maps only pure states to bipartite pure states, the geometric

asymmetry is likewise a pure-state asymmetry monotone. Thus, in cases where all the

states ρi in S are pure states, the above bounds are all in terms of asymmetry monotones.

As we saw, this result is the direct analogue of the case of LOCC-state discrimination

studied in [39,40].



117

Chapter 6

Other entanglement-based selection rules and conservation laws

In this section, we consider a different kind of isometry that is used often in symmetry

and reference-frames related work [8]. For example, the optimal input states in quan-

tum estimation strategy for the action of a symmetry group are shown to be coherent

superpositions of maximally entangled states, where the entanglement is between the

irrep-carrying subspaces and the multiplicity subspaces [19].

The isometry that maps to a tensor-product structure between irrep-carrying and

multiplicity spaces is quite natural to consider, but as we will see, in general, it is not

a LOCC-simulating isometry. Nevertheless, we will show that it still leads to new and

independent necessary conditions for the manipulation of asymmetric states.

We start by considering the Hilbert space decomposition of Eq. (2.37). Irreps carrying

subspaces Hj,λ for fixed j are equivalent. Their direct sum

Hj :=
⊕
λ

Hj,λ (6.1)

is isomorphic to Hj
∼= Mj⊗Nj , where Mj carries the irrep labelled by j, and Nj is the

so called multiplicity space carrying the trivial representation of the group [8]. It follows

that H ∼= WL, where

WL :=
⊕
j

Mj ⊗Nj . (6.2)

In [8] the isomorphism of H and WL was assumed implicitly, but now we explicitly

introduce the isometry connecting them.

Definition 38. Let {|j,m〉}m and {|j, λ〉}λ be basis states spanning the spaces Mj
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and Nj, respectively. We define L : B (H )→ B (WL) as the isometry that maps

|j, λ;m〉 7→L |j,m〉 ⊗ |j, λ〉. (6.3)

Note that WL ⊂M ⊗N , where M :=
⊕

j Mj and N :=
⊕

j Nj . Therefore, states

in the image of L (i.e. states in WL) can be viewed as bipartite states. Moreover, if ρ is

a G-invariant state, then from Eq. (3.8) it follows that

L(ρ) =
∑
j,λ

pj,λ

(∑
m

|j,m〉〈j,m|

)
⊗ |j, λ〉〈j, λ|, (6.4)

which is a separable state (see also [8]). Similarly, any coherent superposition of states

with different values of j

|φ〉 =
∑
j,m,λ

cj,λ,m|j, λ;m〉, (6.5)

is mapped to the entangled state

|φ̃〉 =
∑
j,m,λ

cj,λ,m |j,m〉 ⊗ |j, λ〉. (6.6)

Thus, L satisfies conditions (2) and (3) in Definition 28 of a LOCC-simulating isome-

try. However, L is not a LOCC-simulating isometry since it does not in general satisfy

condition (1) of Definition 28, as we show now for the group G = SU(2).

6.1 L is not a LOCC-simulating isometry

We now show that the entanglement of the bipartite states in the image of the isometry L

can in fact be increased by covariant transformations. Consider the 1/2-spin state Ψ =

|ψ〉〈ψ|, where |ψ〉 = |1/2; 1/2〉 in the standard form. Note that L(Ψ) is a product state.

Using Eq. (2.46), we show that the map E1/2 takes Ψ to a state whose image is entangled.

We only deal with fixed α in (2.46), so we can remove it from our notation as well.

We consider the operator sum representation of the irreducible SU(2)-covariant map E1/2



119

consisting of two Kraus operators K1/2,1/2, and K1/2,−1/2. Because of the freedom in the

choice of SU(2)-covariant Kraus operators, we can choose them such that they act on |ψ〉

up to a normalization factor as

K1/2,1/2|ψ〉 ∝ |1; 1〉 L−→ |1; 1〉 ⊗ |1〉,

K1/2,−1/2|ψ〉 ∝ |1; 0〉+ |0; 0〉 L−→ |1; 0〉 ⊗ |1〉+ |0; 0〉 ⊗ |0〉. (6.7)

The state L
(
E1/2(Ψ)

)
is an equal mixture of the two states in the r. h. s. of Eq. (6.7)

and is thus an entangled state. It follows that the transformation

L(Ψ) 7→ L
(
E1/2(Ψ)

)
(6.8)

cannot be accomplished by LOCC.

6.2 Necessary conditions for the manipulation of asymmetric states

Our motivation for introducing the isometries between the original and the Kronecker

product Hilbert spaces is to learn about G-covariant transformations. In particular, we

study how the entanglement of the image states changes. In order to better understand

how the entanglement changes under the isometry L, we now focus on the form of the

maps that act on the image states and that mimic G-covariant transformations. The

Wigner-Eckart theorem implies that, up to a projection to the subspace WL ⊂M ⊗N

of Eq. (6.2), those maps are separable maps, i.e. of the form

Ẽsep(•) =
∑
x

Ṽx ⊗ K̃x(•)Ṽ †x ⊗ K̃†x. (6.9)

To see this, let ΠWL denote the projection to the WL-space. Every G-covariant trans-

formation can be constructed from a set of irreducible tensor operators KJ ,M ,α. So we

need only consider how KJ ,M ,α are mimicked in the WL-space. If ρ is mapped to σ

by KJ ,M ,α (σ is in general subnormalized), then L(ρ) is mapped to L(σ) by the operator

K̃J ,M ,α := ṼJ ,M ⊗ K̃J ,α, (6.10)
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followed by ΠWL . The matrix elements of ṼJ ,M and K̃J ,α are, following the Wigner-

Eckart theorem, equal to the CG coefficient and the reduced matrix respectively,

〈j2,m2| ṼJM |j1,m1〉 =

 j1 J

m1 M

∣∣∣∣∣∣∣
j2

m2

 , (6.11)

〈j2, λ2| K̃J ,α |j1, λ1〉 = 〈j2, λ2 ‖ KJ ,α ‖ j1, λ1〉. (6.12)

Again, here we consider only simply-reducible groups. For the generalization of the

results of this section to all semi-simple compact Lie groups see Appendix A.

To see why the projection ΠWL must follow the tensor product of Eq. (6.10) consider

two states ρ and σ such that ρ 7→E σ, where E is a G-covariant transformation. The

support of the states L(ρ) and L(σ) is spanned by the states of the form |j,m〉 ⊗ |j,λ〉,

where the irrep label j is always the same in both kets in the tensor product. Suppose

that KJ ,M ,λ is one of the Kraus operators of E , which means that K̃J ,M ,α (6.10) is

one of the Kraus operators of the corresponding map Ẽsep (6.9). Suppose also that the

Clebsch-Gordan coefficients in (6.11) is non-zero for both triplets (j,J , j1) and (j,J , j2),

where j1 6= j2. In other words, J ‘couples’ j to both j1 and j2. It now follows that

the state K̃J ,M ,α L(ρ) K̃†J ,M ,α has support containing states of the form |j1,m〉 ⊗ |j2,λ〉

and |j2,m〉⊗|j1,λ〉, ie. tensor-product of two states with different irrep labels. However

such states are outside the image space of the mapping L and therefore, the state

σ̃′ := Ẽsep (L(ρ)) (6.13)

is not equal to the image state L(σ):

σ̃′ 6= L(σ). (6.14)

In order to retrieve L(σ) we must project the state σ̃′ back to the image space WL.

The entanglement of the image states can be increased only because of the projec-
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tion ΠWL in Eq. (6.10). We can express the projection as ΠWL =
∑
j Πj , where

Πj =ΠMj
⊗ ΠNj

:=
∑
m

|j,m〉〈j,m| ⊗
∑
λ

|j, λ〉〈j, λ|. (6.15)

Responsible for creating or increasing the entanglement are the cross terms Πj and Πj′

acting on both sides of L(ρ) as it is mapped to

L(ρ) 7→ ΠWLK̃J ,M ,αL(ρ) K̃†J ,M ,αΠWL . (6.16)

In order to get rid of the cross terms, we proceed as follows: Suppose for a given G-

covariant CP-transformation E , mapping ρ to the state σ, the corresponding map on the

bipartite state is

L(σ) = Ẽ [L(ρ)] = ΠWL

(
Ẽsep [L(ρ)]

)
ΠWL , (6.17)

where Ẽsep has an operator sum representation in terms of Kraus operators defined in

Eq. (6.10). If instead we consider the convex sum of transformations,

L(ρ) 7→ σ̄ :=
∑
j

ΠjL(σ)Πj

=
∑
j

Πj Ẽ [L(ρ)] Πj

=
∑
j

Πj

(
Ẽsep [L(ρ)]

)
Πj , (6.18)

then the overall map remains a separable one. Note that the Πj are themselves sepa-

rable. In fact, the transformation in (6.18) can be implemented by LOCC. The reason

is this: the superoperator Ẽsep is comprised of operators ṼJ ,M ⊗ K̃J ,α. The projec-

tions ΠMj
ṼJ ,M are unitary operators acting on the irrep-subspace Mj , as their matrix

elements are simply the CG-coefficients corresponding to a change of basis in Mj . Thus,

the whole transformation can be implemented by a series of local measurements by Alice,
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corresponding to operators ΠNj
K̃J ,α, followed by the unitaries ΠMj

ṼJ ,M performed by

Bob.

It follows that the average entanglement of the state σ̃ cannot exceed the entanglement

of the initial state L(ρ). We state the result in the following proposition.

Proposition 32. Let E be an ensemble entanglement monotone. We further assume

that E is faithful and convex. The G-covariant transformation ρ 7→ σ is possible only if

the following condition holds:

E (L(ρ)) ≥ E(σ̄), (6.19)

where σ̄ is defined in Eq. (6.18).

Proof. The proposition is an immediate consequence of the fact that (6.18) is LOCC.

Can we restate the condition of Eq. (6.19) in terms of new asymmetry monotones?

Let us define the average initial state as,

ρ̄ :=
∑
j

ΠjL(ρ) Πj . (6.20)

Clearly, the entanglement E(L(ρ)) ≥ E (ρ̄). But does E (ρ̄) exceed E (σ̄) as well? If

this were true, then we could still define an ensemble asymmetry monotone as Aave
E (ρ) :=

E (ρ̄). However, that is not the case. Consider the group G = SU(2), and let ρ = |φ〉〈φ|,

where,

|φ〉 :=
1√
2
|3/2; 1/2〉+

1√
2
|1/2; 1/2〉.

The image state, L(ρ) = |φ̃〉〈φ̃|, where

|φ̃〉 :=
1√
2
|3/2; 1/2〉 ⊗ |3/2〉+

1√
2
|1/2; 1/2〉 ⊗ |1/2〉

is an entangled state.
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Also consider the irreducible SU(2)-covariant CP-map E1/2. The state ρ̄ is a separable

state, whereas the state σ̄ of Eq. (6.18) is entangled. In other words,

E(σ̄) 6≤ E(ρ̄) = 0.

Note that, in accordance with Proposition 32, it is still true that 0 < E (σ̄) ≤ E (L(ρ)) .

In summary, proposition 32 provides a necessary condition that all G-covariant trans-

formations must satisfy. Let us call such a necessary condition a general selection rule.

What we have shown is that the general selection rule in proposition 32 is not express-

ible in terms of asymmetry monotones of the initial and final states, even though it

is expressible in terms of the entanglement of their image states. This is an example

of how asymmetry monotones are not the only relevant quantities in the study of the

consequences of symmetries.

6.3 Conserved quantities

If we further restrict ourselves to reversible G-covariant transformations, still more in-

teresting results can be deduced from the L-isometry. Unitary operations have only one

Kraus operator. If G is non-Abelian, G-covariant unitaries exist only among G-covariant

transformations labeled by the identity representation, J = 0, denoted by E0,α = K0,0,α (We

consider the case of Abelian groups in Appendix B.).

The unitary K0,0,α maps each subspace Hj in (6.1) to itself, and the corresponding

bipartite operator K̃0,0,α has the form

K̃0,0,α =

(∑
j

ΠMj

)
⊗ K̃0,α. (6.21)

The above form is a direct consequence of the CG-coefficients in Eq. (6.11) for the case

where J = M = 0.
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Substituting for E1/2 in Eq. (6.17) shows that in this case the overall projection ΠWL

into the subspace WL can be dropped, because K̃0,0,α maps WL to itself. Equivalently, ΠWLΠj =

Πj , so that,

ΠWLK̃0,0,α = K̃0,0,α.

The operator K̃0,0,α is of course a local unitary. It thus follows that for every reversible G-

covariant transformation E , the entanglement of the image state in Eq. (6.17) remains

constant. In other words, we have identified a conserved quantity.

Proposition 33. For reversible G-covariant transformations, E0,α, the function,

L(ρ) := E (L(ρ)) , (6.22)

is a conserved quantity.

As a simple example, we consider the group SU(2), and a system of three half-integer

spin systems. From the addition of angular momenta we know that the Hilbert space of

the three systems can be decomposed as

H = H1/2 ⊕H1/2 ⊕H3/2, (6.23)

where H1/2 and H3/2 are Hilbert spaces of systems of half-integer and three-half integer

spins, respectively. The space H1/2 comes with multiplicity two and H3/2 comes with

multiplicity one. Consider for example the pure state

|ψ〉 =
√
p1|1/2, 1; 1/2〉+

√
p2|1/2, 2; 1/2〉+

√
p3|1/2, 2;−1/2〉+

√
p4|3/2, 1; 1/2〉. (6.24)

Let us denote the state in vector notation in the basis {|j, λ;m〉} for j = 1/2;λ =

1, 2;m = ±1/2 and j = 3/2;λ = 1;m = ±3/2,±1/2, respectively, as

|ψ〉 ↔ [
√
p1,
√
p2, 0,

√
p3, 0,

√
p4, 0, 0]> . (6.25)
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Now suppose |ψ〉 transforms under, for example, the SU(2)-invariant unitary

U =

 1 0

0 1

⊗
 cos θ1 −eıφ1 sin θ1

e−ıφ1 sin θ1 cos θ1

⊕


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


⊗
(
eıφ2
)

(6.26)

to the state

|φ〉 =
√
p1(cos θ1 + e−ıφ1 sin θ1)|1/2, 1; 1/2〉+

√
p2(cos θ1 − eıφ1 sin θ1)|1/2, 2; 1/2〉+

√
p3(cos θ1 − eıφ1 sin θ1)|1/2, 2;−1/2〉+

√
p4e

ıφ2|3/2, 1; 1/2〉. (6.27)

The corresponding image states under the mapping L are

|ψ̃〉 =
√
p1|1/2, 1/2〉|1/2, 1〉+

√
p2|1/2, 1/2〉|1/2, 2〉+

√
p3|1/2,−1/2〉|1/2, 2〉+

√
p4|3/2, 1/2〉|3/2, 1〉, (6.28)

and

|φ̃〉 =
√
p1(cos θ1 + e−ıφ1 sin θ1)|1/2, 1/2〉|1/2, 1〉+

√
p2(cos θ1 − eıφ1 sin θ1)|1/2, 1/2〉|1/2, 2〉+

√
p3(cos θ1 − eıφ1 sin θ1)|1/2,−1/2〉|1/2, 2〉+

√
p4e

ıφ2|3/2, 1/2〉|3/2, 1〉, (6.29)

respectively, and the local unitary Ũ whose matrix form in the corresponding basis

states {|j,m〉 ⊗ |j, λ〉} is

Ũ =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



⊗


cos θ1 −eıφ1 sin θ1 0

e−ıφ1 sin θ1 cos θ1 0

0 0 eıφ2

 (6.30)
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maps |ψ̃〉 to |φ̃〉. Moreover the Schmidt coefficients of both states are {p1 + p2, p3, p4},

which means that all bipartite-entanglement measures for the two states |ψ̃〉 and |φ̃〉

are equal, as the bipartite entanglement of a pure state is a function of its Schmidt

numbers only. For example, the entropy of entanglement of both states is equal to

the Shannon entropy H ({p1 + p2, p3, p4}), where the Shannon entropy of a probability

distribution {pi} is equal to H ({pi}) =
∑

i pi log2 pi.

Thus, we derive new conservation laws for closed systems. The new conservation laws

are not of the form of the expectation value of a generator of a Hamiltonian symmetry,

but are instead in terms of entanglement monotones. In the case of open systems and

irreversible transformations, the conservation law is replaced with a general selection

rule, again in terms of entanglement monotones.
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Chapter 7

Concluding Remarks

7.1 Summary of results

We showed that G-covariant transformations for a semi-simple compact Lie group can

be simulated by LOCC transformations on bipartite states. Our method involves first

mapping the Hilbert space of the system to a subset of a larger Hilbert space comprised

of a tensor product of two Hilbert spaces. The respective class of isometries maps G-

invariant states to separable states, and at least some non-G-invariant resource states

to entangled states. Furthermore, the image, under the isometry, of two states that

are mapped one to the other by a G-covariant transformation are related by a LOCC

transformation. We termed such an isometry a LOCC-simulating isometry. Thus, the

entanglement of the image states does not increase as the states transform under G-

covariant transformations. The entanglement can thus be used to quantify the asymmetry

of the original states.

Every entanglement monotone can be adapted to define an asymmetry monotone

through the isometry. Moreover, the monotonicity condition provides new selection rules

that can help specify whether a G-covariant transformation between any given two states

exists. In the special case of reversible G-covariant transformations, the monotones re-

main constant and thus introduce new conserved quantities, in addition to well known

conserved quantities that follow from the quantum analogues of Noether’s theorem. In

other words, we have shown that every entanglement monotone leads to a conservation

law under reversible transformations of closed systems. Moreover, some entanglement

monotones like the negativity are easily calculable for all states.
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In addition, we introduced a different isometry that, although not a LOCC-simulating

isometry, still captures some aspects of the asymmetry that are related to bipartite

entanglement. New selection rules that are not given in terms of asymmetry monotones

can, nevertheless, be expressed in terms of the entanglement of the image states.

7.2 Discussion

The present thesis contains two major innovations. First, the notion of using local op-

erations to simulate symmetric dynamics. Second, the idea of applying the well known

and well-studied resource theory of entanglement to a totally different resource theory.

We discuss the significance of these innovations in this section, as well as the impact they

have on the field of symmetry and, more generally, on quantum information theory.

Symmetric time evolutions described by covariant transformations are based on group

structures, invariant subspaces and representation theory. It is not evident, at first, that

such structures have any connections to local operations and tensor products of two or

more systems. However, the link exists, and once found, is actually very simple. The

exact form that G-covariant transformations take can be very complicated, depending on

the specific, idiosyncratic features of each particular group, or the particular features of

the representation of the group that is carried by the states of the system. Yet, the effect

of an irreducible covariant operator on a ket labeled by the weight m of the algebra, |m〉

(ignoring the other labels), is a simple translation by some fixed amount M , |m〉 →

|m +M〉. Its significance lies in the fact that all semi-simple Lie groups act this way.

It is what they all have in common.

Thus, the local operators that simulate the G-covariant transformations exploit a

common feature of semi-simple compact Lie groups, namely, how the weights are trans-

formed. All the idiosyncratic features of specific groups are left out in our approach.
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In this lies the strength of the method, as it applies equally to all semi-simple compact

Lie groups and links them all to a sub-class of local operations. In turn, this enables

entanglement theory, as the resource theory arising from the restriction to LOCC, to

be applied to the study of covariant transformations irrespective of the symmetry group

involved.

The significance of the connection lies in the strength and richness of entanglement

theory. Entanglement has been the focus of intense study and plays a central role in

quantum information theory. This fact is reflected in the abundance of well investigated

entanglement measures and monotones, each of which can now be used to extract in-

formation about the asymmetry of quantum states. An important consequence is the

realization that, for closed systems, entanglement serves as a conserved quantity or a

constant of motion.

Although we approach entanglement as a resource theory of the interconversion of

states under the restriction of operations to LOCC, entanglement is ultimately a type of

correlation between two systems. It becomes a resource when the systems are separated

from each other so that operations have to be, by necessity, local. The asymmetry

as a resource is primarily due to lack of information. This is specially evident when

viewed in the context of lack of shared reference frames. The restriction to covariant

transformations comes about because information about the alignment of the reference

frame is not known. If the knowledge is somehow attained, the restriction is lifted. Not

so in the case of entanglement and local operators. Separation between two systems is

a physical restriction independent of our state of knowledge. It is interesting that the

results of the present thesis implies that the information-dependent resource theory of

asymmetry can be encoded in the correlations of two physically separated systems.

Of course, the process of gaining the alignment information can be modelled physically

too. Recall first that once the reference frame is included as a dynamical physical system
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to which one can assign a state, then the joint state of the system plus the reference

frame must necessarily be represented as a twirled and therefore symmetric state (for a

more detailed discussion see Section 1.4). Lack of information about the reference frame

alignment corresponds to tracing out the reference frame system that results in invariant

reduced density operators and an effective superselection rule. Gaining information about

the reference frame, on the other hand, corresponds to coupling to the reference frame

and performing a measurement on it to determine its state. As the target system and the

reference frame are described by a joint (invariant) state, this process can be equivalently

modelled by a joint measurement on the system plus the reference frame state that

picks out a state of the reference frame and the state of the system corresponding to it

from among the ensemble of states that appear in the twirling operation. As a result,

the twirled state is replaced and updated to the state after the measurement, and the

superselection rule restriction is lifted [8].

Naturally, the specific features of the covariant maps that are ignored and left out

could still contain important information about the dynamic symmetry and can effect

how the states alter through time. Most of that information is lost in the mapping to

local operations by a single isometry, i.e. the Cg for a single g ∈ G. However, a state can

be mapped by two or more different isometries to two or more different bipartite states.

For example, as we saw in Definition 30 of Section 4.1.2, a state can be mapped to a

product state by one choice of Cg, and the same state can be mapped to an entangled

state by a different choice of Cg. The entanglement features of the different image states

is in general dependent on the specific structure of the group. So, when all, or a sufficient

number, of isometries are considered together, more specific details of the group structure

and the dynamic consequences of those details would reflect in the ensuing entanglement

of the image states. Different groups will lead to different conditions and restrictions.

More broadly, our results apply to quantum information theory in general. In the
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absence of shared frames of reference, G-covariant operations are the only feasible trans-

formations. As quantum networks grow larger and the demands for distributed quantum

computation becomes more ubiquitous, one can foresee situations where quantum net-

works are so large and their nodes so distant that different nodes in the network do not

share alignment between their local reference frames. An example is a network involving

satellites in orbit, constantly moving and changing their spatial alignments with respect

to each other and to stationary stations on earth. In all such scenarios, the consequences

of the resulting superselection rule on quantum information tasks must be taken into

account. Asymmetry monotones help determine how states transform under G-covariant

maps, and, therefore, also what information tasks one can perform in the absence of

shared references in such networks.

Another situation in quantum information theory where resource theories of asym-

metry can be applied are in noisy channels where the noise has a certain symmetry.

Mathematically, the noise is represented by the action of a unitary operator, sampled

randomly from a set of unitary operations that form a group. However, the model as-

sumes that the same unitary operator acts on all the qubits in the system that pass

through the channel. Physically, this condition corresponds to a common source of noise,

like a phase shift or a common change of polarization induced on all the photons passing

through an optical fiber due to the imperfections in the inner structure of the fiber.

Finally, the restriction to G-covariant operations has applications in quantum cryp-

tography, quantum data hiding and secret sharing as well. Two or more parties who

share private reference frames can lift the restriction, whereas other parties, including

potential eavesdroppers, who do not have access to this resource, still remain bound by

the superselection rule. Asymmetry monotones quantify the strength of such resources

and therefore can help identify optimal protocols for tasks that involve private frames, or

can be used to set bounds on what can be achieved. The short case study in Section 5.6
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is just a simple example of such an application.

7.3 Open Questions and future Work

There are various directions one can go from here. First, we saw in Section 4.1.2 that due

to the freedom in the choice of isometry Cg for different values of g ∈ G, different image

states result, with different entanglement properties depending on the specific features

of the symmetry group. On the other hand, in our method, we arrive at conditions

for the transition between two states by investigating the conditions on how entangled

states transform under LOCC. What can entanglement considerations tell us about the

specifics of the G-covariant transformations that come from the detailed structure of G?

For example, if we confine our attention to transition of pure states to pure states, then

as mentioned in Section 2.3.5, the majorization of the Schmidt coefficients of the final

state by the coefficients of the initial state is the necessary and sufficient condition for

the transition to go through. If we apply the majorization condition to the images of the

initial and final states for different isometries Cg, would we retrieve the exact form of the

corresponding G-covariant transformation?

It would also be interesting to compare and contrast the consequences of the method

introduced here with an information theoretic approach based on the study of the general-

ized G-asymmetry monotones, where the twirling operation is performed with respect to

an arbitrary probability distribution defined over the group [59]. In a sense, our approach

and the approach based on the G-asymmetry are complementary. If the results of the

general G-asymmetry monotones can be derived from the entanglement-based approach

here, one important advantage of our method would be that only a finite number of

isometries are sufficient to access the information about asymmetry that can be captured

by entanglement.
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A second line of study concerns the case of finite groups. It is already known that

a version of the Wigner-Eckart theorem exists for finite groups, albeit of a much more

complicated form [55]. If the form of the Wigner-Eckart theorem for finite groups can be

utilized to construct similar LOCC-simulating isometries, then entanglement theory can

be directly applied to finite groups as well.

Third, we did not study the case of many-copy transformations and asymptotic lim-

its. Many questions of interest can be asked in this respect, including additivity of the

measure and possible applications to the problem of distillation of asymmetry resources.

We can also look at the links between entanglement and asymmetry highlighted in

our work from the opposite direction: What do asymmetry measures and concepts tell us

about entanglement of states? Asymmetry monotones, like the G-asymmetry or number

variance, remain monotone functions of bipartite states under a restricted subsets of

LOCC transformations, namely LOCC operations that are of the form of the isometry

maps we introduced. For example, as we saw in Section 5.3.2, both the REA and G-

asymmetry are distance measures, in terms of the relative entropy function, and change

monotonically under those LOCC operations that have a Kraus decomposition of the

form specified in Eq. (4.6). Yet they are not, in general, the same measure for a given

state. Where does the difference come from? Similarly, we can ask what role do separable

states that are not images of invariant states play in the theory of entanglement. Can

they be understood as a separate kind of resource? It might even be the case that

asymmetries of finite groups can be mapped to multipartite entangled states and not

just bipartite ones. In that case, what we already know about the asymmetry of finite

groups can shed light on, and perhaps help resolve, many open problems that still exist

in multipartite entanglement theory.

Finally, a fifth direction for future research suggested by our result is to look for similar

conditions in other resource theories. For example, the restriction to Gaussian operations



134

results in a new resource theory where non-Gaussian states are resources [29]. Another

example is thermodynamics. Already, connections between thermodynamics, viewed as a

resource theory, and entanglement have been demonstrated [44,46,47]. Thermodynamics

has been recognized as an energy preserving resource theory where transformations are

restricted to operations that do not increase the total energy [46]. If the restricted set

of operations in any of those resource theories can be simulated in a similar fashion by

local operations, then it would be possible to employ entanglement theory to the study

the resource theory.
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Appendix A

The generalized Wigner-Eckart theorem

The main results of the thesis can be extended to the general case where the tensor

product of the group’s Lie algebra is not simply reducible. An algebra H is not simply

reducible when the algebra has outer multiplicities, i.e. multiplicities arising due to the

coupling of the irreps. We now consider the general form of the Wigner-Eckart theorem,

〈j ′, λ′;m′|KJ ,M ,α|j, λ;m〉 =
∑
µ

 j J

m M

∣∣∣∣∣∣∣
j ′, µ

m′

 〈j ′, λ′ ‖ KJ ,α ‖ j, λ〉µ, (A.1)

where µ is the outer multiplicity index for the irrep [j ′] due to the coupling,

[j]⊗ [J ] 7→ [j ′].

Here, we have used the symbol [j] to denote the representation labeled by j, and similarly

for other representations. The terms

 j J

m M

∣∣∣∣∣∣∣
j ′, µ

m′

 are the general Clebsch-Gordan

coefficients, depending in general on the outer multiplicity µ in addition to the irrep and

weight labels.

If the transformation KJ ,M ,α is unitary, still J and M must be the labels of the

identity representation, J = M = 0. Coupling to the identity representation never

results in outer multiplicities. Thus, the results for G-covariant unitaries in the paper is

valid for the general case.

A.0.1 The Set of Isometries {Cg}

All the Clebsch-Gordan coefficients are identically zero unless, as before, the weights

labelling the bra and the ket, and the tensor operator satisfy the relation

m+M = m′.
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It follows that as far as the weights are concerned, the same translation operator as

in Eq. (4.7) applies to all the terms in the r. h. s. of (A.1), and thus the same set of

isometries C and Cg in the definitions 29 and 30 of Section 4.1 respectively, still satisfy

all the conditions of a LOCC-simulating isometry in 28.

A.0.2 The Isometry L

The situation is more complicated as far as the isometry L is concerned. The existence of

outer multiplicities implies that we must define new Hilbert spaces to embed the Hilbert

space, i.e. Hilbert spaces that include the outer multiplicities in the label of their basis

states. Let

M = span {|j, µ;m〉}j,µ,m ,

be the space spanned by the basis states |j, µ;m〉. Here, j and m are, as before, the

irrep label and the weight label respectively. We have included an additional label µ,

ranging over µ = 0, . . . ,∞, that we will later relate to the outer multiplicities, as we shall

shortly see. Similarly, let

N = span {|j, µ;λ〉}j,µ,λ ,

where λ is the label for the (initial) irrep multiplicities. Also, let Mj = span {|j, 0;m〉}m,

and Nj = span {|j, 0;λ〉}λ. Finally, let

WL :=
⊕
j

Mj ⊗Nj .

As before, we can define the isometry L by specifying how it acts on the basis states.

Definition 39. L : B (H )→ B (WL) is the isometry that maps,

|j, λ;m〉 7→L |j, 0;m〉 ⊗ |j, 0;λ〉. (A.2)

Clearly, WL ⊂M ⊗N , and thus the states in the image of L (i.e. states in WL) are

bipartite states. Let KJ ,M ,α be an irreducible G-covariant operator. The operator acting
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on M ⊗ N that mimics KJ ,M ,α can again be expressed as a separable state followed

by a projection onto the image subspace WL. Assume ρ is mapped to (a in general

subnormalized) σ by KJ ,M ,α. L(ρ) is then mapped to L(σ) by the operator

K̃J ,M ,α := ṼJ ,M ⊗ K̃J ,α, (A.3)

followed by ΠWL . The general form of the Wigner-Eckart theorem (A.1) implies

〈j2, µ2;m2| ṼJM |j1, µ1;m1〉 =

 j1 J

m1 M

∣∣∣∣∣∣∣
j2, µ2

m2

 ,

〈j2, µ2;λ2| K̃J ,α |j1, µ1;λ1〉 = 〈j2, λ2 ‖ KJ ,α ‖ j1, λ1〉µ2 . (A.4)

Note that the r. h. s. does not depend on the value of µ1 in either equation. The

projection ΠWL is ΠWL =
∑
j,µ Πj,µ, where

Πj,µ :=ΠMj
⊗ ΠNj

:=
∑
m

|j, 0;m〉〈j, µ;m| ⊗
∑
λ

|j, 0;λ〉〈j, µ;λ|. (A.5)

for a given G-covariant CP-map E acting on ρ, the corresponding map on the bipartite

state is

Ẽ [L(ρ)] = ΠWL

(
Ẽsep [L(ρ)]

)
ΠWL , (A.6)

where Ẽsep has an operator sum representation in terms of Kraus operators defined

in Eq. (6.10). The map Ẽ [L(ρ)] is still not a LOCC-simulating CP-map. The cross

terms Πj , µ and Πj′,µ′ acting on both sides of L(ρ) render the overall CP-map a non-

separable one. However, here too, we can destroy the cross terms by applying a set of

projections Πj,µ separately on both sides and then taking the average of the maps as

follows,

L(ρ) 7→ σ̄ =
∑
j,µ

Πj,µ Ẽ [L(ρ)] Πj,µ

=
∑
j,µ

Πj,µ

(
Ẽsep [L(ρ)]

)
Πj,µ. (A.7)
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The overall map is separable now.

Not all symmetry groups in physics are simply-reducible. An important example is the

group SU(3) that plays a major role in high energy and particle physics. Here, we have

demonstrated that our method of applying entanglement theory and using entanglement

monotones and measures is general enough to cover such groups as well. We now have

generalized the results of Chapter 4 beyond simply-reducible groups and to all semi-simple

compact Lie groups.
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Appendix B

Abelian Lie groups

The irreducible representations of Abelian groups are 1-dimensional. The irrep label

is the highest weight. The 1-dimensional irreps have only one weight. Thus, the irrep

label and the weight label are the same. We use the label n for the irreps of an Abelian

group, and to conform to the notation of the rest of the thesis, we label the basis states

as |n, λ;n〉. We presently show that the results of the thesis are greatly simplified in the

case of Abelian groups. In particular, we show that the isometries Cg are all equivalent

to each other, and are furthermore equivalent to the isometry L.

Definition 40. C : B (H )→ B (WL) is the isometry that maps

|n, λ;n〉 7→C |n, λ;n〉 ⊗ |n〉. (B.1)

Definition 41. L : B (H )→ B (WL) is the isometry that maps

|n, λ;n〉 7→L |n;n〉 ⊗ |n;λ〉. (B.2)

First, note that the action of a group element on the basis kets is to merely add a

phase,

U(g)|n, n, λ〉 = eıθg,n|n, n, λ〉.

Thus, the definition 30 of Cg implies

Cg = C, ∀g ∈ G. (B.3)

The form of irreducible G-covariant transformations is also simplified to

〈n′, λ′;n′|KN,N,α|n, λ;n〉 = δn′,n+N〈n′, λ′ ‖ KN,α ‖ n, λ〉, (B.4)
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or equivalently

KN,N,α =
∑
n

c
(N,α)
n,λ,λ′ |n+N, λ′;n+N〉〈n, λ;n|, (B.5)

where c
(N,α)
n,λ,λ′ = 〈n′, λ′ ‖ KN,α ‖ n, λ〉.

Assume ρ is mapped to (a generally subnormalized) σ by KJ,M,α. The isometry C(ρ)

is then mapped to C(σ) by the operator

K̃CN,N,α = KN,N,α ⊗
∑
n

|n+N〉〈n|. (B.6)

On the other hand, L(ρ) is then mapped to L(σ) by the operator

K̃LN,N,α =∑
n

|n+N ;n+N〉〈n;n| ⊗
∑
n

c
(N,α)
n,λ,λ′ |n+N ;λ′〉〈n;λ|. (B.7)

The operators K̃CN,N,α can be implemented by a LOCC-transformation, as the C is

a LOCC-simulating isometry. Now, interestingly, the simulating operator of the second

isometry, K̃LN,N,α is implementable by LOCC-transformations as well. So in the case

of the Abelian groups, the isometry L is also a LOCC-simulating isometry. In fact, the

forms of K̃CN,N,α and K̃LN,N,α are similar, both comprised of the tensor product of a copy of

the original G-covariant operator KN,N,α and a translation operator. Thus, the isometry

|n, λ;n〉 ⊗ |n〉 7→ |n;n〉 ⊗ |n;λ〉

maps LOCC-transformations to equivalent LOCC transformations. In this sense, the two

isometries C and L are equivalent.

The image state under either isometry is an entangled state if and only if the initial

state has no coherence in n, i.e. if the state is a coherent superposition of states with

different values of n. On the other hand, states acting on the original Hilbert space H

with no coherence in n are the G-invariant states, and the twirling operation destroys

the coherence in n.
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Proposition 34. If G is an Abelian group, then the image state C(ρ) (or equivalently L(ρ))

is a separable state if and only if the initial state ρ ∈ B(H ) is G-invariant.

Finally, as a corollary we note that the average state σ̄ of Eq. (6.18) is a separable

state and has no entanglement.
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