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Abstract

Quantum secret sharing concerns secure and reliable distribution of classical or quantum

information by a dealer to a set of “players” such that authorized subsets of players

can access full information and unauthorized subsets are denied any information what-

soever. Exploiting quantum secret sharing concepts and techniques, I introduce a new

protocol of “entanglement sharing” wherein half of maximally entangled bipartite states

are encrypted into multipartite states in such a way that unauthorized players can only

establish shared separable (not entangled) states with the dealer. Only authorized sub-

sets of players obtain entangled states, which enable quantum information tasks such as

quantum teleportation. Entanglement sharing can reduce the size of shares to individual

players by half depending on the choice of encoding operation, as I show with the [[4, 2, 2]]

stabilizer code. In fact, the [[4, 2, 2]] stabilizer code induces an optimal and threshold

entanglement sharing scheme.

Furthermore, I propose a new secrecy condition of quantum ramp secret sharing based

on the bipartite setting of entanglement sharing. Ramp secret sharing relieves the band-

width requirement of a protocol by reducing the size of shares at a cost of information

leakage. Although quantum ramp secret sharing has been studied, to date it has been

a challenge to classify leaked information. In this thesis, I define classical and quantum

information with respect to the channels through which information is transmitted, and

determine whether the information leakage is classical or quantum.

Finally, I establish hybrid entanglement sharing by introducing classical shares in

non-perfect entanglement sharing schemes. Hybrid entanglement sharing exploits a tech-

nique of locking entanglement with classical information, and can be devised from any

quantum error correcting code.
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Chapter 1

Introduction

Entanglement sharing is a new cryptographic protocol that achieves secure entanglement-

based tasks in a network where some collaborating subgroups of players are authorized

to access maximal entanglement required for the tasks, and other subgroups must be

denied any entanglement. Entanglement sharing is designed based on quantum secret

sharing. I first motivate the study of entanglement sharing in Sec. 1.1, and review the

main studies on secret sharing in Sec. 1.2.

In Sec. 1.3, I review the main results on quantum ramp secret sharing. Ramp secret

sharing has been proposed to overcome the limitation that is naturally imposed on secret

sharing, but in the quantum case there are some open problems [34]. In this section, I

remark one of the most challenging problems of quantum ramp secret sharing. Finally,

I briefly address my contribution to entanglement sharing with the outline of this thesis

in Sec. 1.4.

1.1 Motivation

In the modern world, information is processed on digital computers in the form of strings

of bits: 0’s and 1’s. This type of information is called classical information. However,

another type of information—namely, quantum information—has been introduced to un-

derstand fascinating works in quantum computation and communication: factorization

of large integers in Shor’s quantum algorithms [1] and information-theoretically secure

communication of quantum key distribution (i.e., secure against adversaries who have
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unlimited computing power) [2] [3].

A qubit (quantum bit) is a basic concept of quantum information. The state of a qubit

is described as a superposition of 0 and 1 states. Consider an electron in a two-level sys-

tem of spin-up and spin-down states. The spin-up and spin-down states corresponds to

0 and 1 states, respectively, because they are distinguishable. According to a classical

assumption of realism, the electron must be in either the spin-up or spin-down state

without any ambiguity. However, the electron is actually able to be in a superposition

of two spin states. Therefore, the spin information of an electron is encoded in a qubit

but not in a classical bit. The qubit in a superposition of distinguishable states can be

collapsed into one of the states with probabilities through a measurement. Before the

measurement, however, it is not pre-determined which state the qubit will be collapsed

into.

One of the most interesting quantum phenomena is entanglement. Entanglement is

observed in composite systems consisting of two or more qubits (a string of qubits). If

a composite state of qubits cannot be described as the product of individual states of

qubits, it is said to be entangled. Interestingly, entangled qubits are intertwined across

time and space. When one of two entangled qubits is measured, the result instanta-

neously determines the state of the other qubit, no matter how far they are separated.

This violates Bell’s inequalities [4] [5] that are based on local realism. Local realism as-

sumes that the measurable properties of systems are independent of observation and no

information can travel faster than the speed of light.

Entanglement can be used as an essential resource in various quantum information

protocols [6] [7] [8] [9]. One of the best-known entanglement-based protocols is quantum

teleportation [6]. Quantum teleportation enables two parties who initially share entan-

glement to transmit an arbitrary state of a qubit by communicating two classical bits.

This is analogous to a fax machine. A fax machine scans a material and sends its copy to
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other machines. However, the process of quantum teleportation is totally different from

the fax machine. In fact, quantum states are much harder to transmit than bit values, as

they obey the laws of quantum mechanics. For example, measurements analogous to the

precess of scanning in a fax machine can destroy the original quantum state by collapsing

it to another state. Moreover, according to the no-cloning theorem, the original state

cannot be copied. In spite of these obstacles, entanglement makes it possible to transmit

an arbitrary quantum state in quantum teleportation.

Quantum teleportation can be applied to the fundamental components of quantum

computation. For example, it can be used to implement Clifford gates for universal quan-

tum computation [10], to enhance the success probability of quantum gates with linear

optics [11], or as a quantum scissors that truncates the redundant terms of a quantum

state [12] [13]. Also, it is extensively applied to entanglement swapping [14] and quantum

key agreement protocols [15], which are for remote and secure quantum communications,

respectively.

In this thesis, I investigate a secure way to distribute entangled states in networks

consisting of a single sender called a dealer and multiple receivers called players. Entan-

glement sharing is a new cryptographic protocol which allows a dealer to share maximally

entangled states with a set of players in a way that any authorized subset of players can

recover the states and perform entangled-based protocols successfully, but any unautho-

rized subset acquires no entanglement whatsoever.

Suppose that a company has offices, each of which is occupied by employees. The

offices are equipped by quantum computers, but each quantum computer cannot perform

universal gates because each one is designed to be missing essential Clifford gates (the

defeat can be accomplished by choosing the proper medium for quantum computers such

as linear optical quantum computing for which quantum phase gates are extremely diffi-

cult to implement). This problem can be overcome by employing a Gottesman-Chuang
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gate (i.e., Clifford gates using quantum teleportation [10]), which requires an extra source

of suitable entangled states. In this case, I can consider this supply of entanglement as

being achieved through an entanglement sharing protocol because the employees are not

trusted; thus, subsets of them must collaborate to make at least one of their computers

to achieve universality.

Entanglement sharing is useful not only for quantum computation using quantum

teleportation, but also for device-independent quantum key distribution [8] [9]. In most

cryptosystems, information is encrypted and transformed back into its original form by a

secret key. Quantum key distribution enables a receiver to generate identical secret keys

with a sender for secure communication through insecure channels. Device-independent

quantum key distribution is more powerful in practical realization of quantum key distri-

bution because its security does not depend on the physical details of quantum devices

that are used to generate a secret key. It is achieved when the sender and the receiver

possess a correlation that violates Bell inequalities [4] [5] [9]. In this sense, entanglement

sharing protocols can be applied to distribute secret keys between a dealer and an au-

thorized set of players with the shared entanglement, no matter what quantum devices

are available to generate the keys.

Entanglement sharing protocols exploit quantum secret sharing (QSS) concepts and

techniques in that maximally entangled states are encoded into shares by means of quan-

tum error correcting codes and then these shares are distributed among the multiple

players [16]. Thus, I will review the basic results of classical and quantum secret sharing

in the next section.
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1.2 Quantum Secret Sharing

Secret sharing is an information-theoretically secure protocol for managing secret infor-

mation over multiple parties or systems. It can be extensively applied to joint checking

account, electronic votes, online auctions and missile launching codes.

Consider military confidential files that are locked by a security password. A defense

minister wants to share the password with three aides for reliable access to the files, but

unfortunately one of the aides might be a betrayer. Thus, he wants to distribute the

password in such a way that any single aide has no information on the password but

any two of them can get the password together. In 1979, Shamir [17] and Blakley [18]

addressed this problem generally and devised the first (k, n) threshold secret sharing

scheme.

Secret sharing deals a secret to players in a way that some subsets of players can

collaborate to recover the secret fully, but all other subsets gain no information on the

secret even with unlimited computing power. The subsets of players that are able to re-

construct the secret are called authorized sets, and the subsets of players that are totally

denied the secret are called unauthorized sets. An access structure is the collection of all

authorized sets and an adversary structure is the collection of all unauthorized sets. A

(k, n) threshold scheme is defined as secret sharing with an access structure

A = {Γ ⊆ P | |Γ| ≥ k} (1.1)

and an adversary structure

U = {Γ ⊆ P | |Γ| ≤ k − 1}. (1.2)

where P = {P1, P2, · · · , Pn} is the entire set of n players. If secret sharing is described by

a certain threshold number k, its access structure will be called a general access structure.

Every access structure must be monotone [16] [19] [20]. An access structureA is called
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monotone if

(Γ ∈ A and Γ ⊆ Γ′)⇒ Γ′ ∈ A (1.3)

That is, if a subset Γ is authorized to recover the secret, all subsets containing Γ must

recover the secret as well.

Secret sharing schemes can be largely classified into three cases according to whether

a secret is a bit string or an arbitrary quantum state, or whether a secret is distributed

over private or public channels. A private channel is safe from eavesdropping, but a

public channel is vulnerable to it. All existing secret sharing schemes fall into one of

these cases [21]:

Case 1. sharing classical information with classical cryptography [17] [18]

Case 2. sharing classical information with quantum cryptography [22] [23]

Case 3. sharing quantum information with quantum cryptography [16]

In the first case, secret sharing schemes are designed to distribute bit strings over private

channels between a dealer and each player [17] [18]. Consider a classical secret encoded

in a bit string 010011. If a dealer simply splits it into two shares 010 and 011, each share

will contain some information about the secret. However, simple cryptography enables

him to hide all information from each share. For instance, the dealer can take a random

bit string of the same length as one share, and compute the other share by adding the se-

cret to the random bit string, e.g., 010011 (secret) + 111011 (random bit string) modulo

2 i.e., bitwise. Then, each share contains no information about the secret, but the secret

can be recovered by adding up two shares. Shamir’s threshold scheme is an example of

this case.

Case 2 introduces public channels into secret sharing schemes. When each share of

a secret is transmitted over a public channel, it can be easily attacked by eavesdrop-

pers. Thus, quantum cryptography is used to defeat the eavesdroppers [22] [23]. In a
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(2, 2) threshold scheme, maximally entangled three-dimensional states (i.e., Greenberger-

Horne-Zeilinger states) enable a dealer to determine whether an eavesdropper has been

active during a process [22]. This scheme is generalized to a (n, n) threshold scheme [24],

and experimentally realized [25].

In contrast to the first two cases, Case 3 considers quantum secrets encoded in arbi-

trary quantum states. Hereafter, Case 3 is referred as to quantum secret sharing, and the

others are classical secret sharing. Classical secret sharing schemes exist for any access

structure that is monotone [19]. However, this does not hold in quantum case, due to

the no-cloning theorem. According to the no-cloning theorem, an arbitrary quantum

state cannot be copied. This prohibits an access structure from having two disjoint sets

of players [16] [20]. If the access structure has two disjoint sets, each set can recover a

quantum secret independently, which implies that the secret can be copied. For the same

reason, no (k, n) quantum threshold scheme exists if n > 2k. Thus, every (k, n) quantum

threshold scheme must satisfy n/2 < k ≤ n [16].

It is possible to impose a more strict condition on some quantum secret sharing

schemes. In general, quantum secret sharing schemes can be divided into two kinds, a

pure-state quantum secret scheme and a mixed-state quantum secret scheme [16] [20].

A pure state is a quantum state that can be described as a normalized vector in some

vector space, and a mixed state is a probabilistic mixture of pure states. A pure-state

quantum secret sharing scheme encodes a pure state into pure states, and a mixed-state

quantum secret sharing scheme encodes a pure state into mixed states. In a pure-state

scheme, any authorized set is the complement of an unauthorized set and vice versa [20].

Thus, any (k, n) pure-state quantum threshold scheme satisfies n = 2k − 1 [16] [20].

So far, I have reviewed the basic results on secret sharing. Secret sharing was described

with an access structure and an adversary structure, and threshold secret sharing was

considered as a special case. Also, I showed that there are three cases of secret sharing.
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In particular, quantum secret sharing was restricted on the laws of quantum mechanics,

e.g., the no-cloning theorem. Quantum secret sharing schemes have been demonstrated

by an experiment [26] [27]. I will deal with more results on classical and quantum secret

sharing in Chapter 2.

Finally, I remark on the relationship between quantum secret sharing and quantum

error correction [16]. In quantum secret sharing schemes, an authorized set of players

recovers a quantum secret by correcting the shares of excluded players, and an unau-

thorized set cannot learn any information on the secret. These conditions of quantum

secret sharing are exactly regarded as those of quantum error correcting codes. Quantum

error correcting codes can correct some erroneous qubits and recover an original quan-

tum state. Also, correctible errors never leak any information about which codeword the

errors occur on [28]. This is equivalent to saying that the environment does not gain

any information about the original state. In [16], it was proven that any quantum secret

sharing scheme is constructed by exploiting the secrecy and recovery of quantum error

correcting codes. I obtained a cental idea for constructing entanglement sharing from

the relationship between quantum secret sharing and quantum error correcting codes.

I will discuss this relationship more in Chapter 2, and show how to use quantum error

correcting codes to share maximally entangled states between a dealer and collaborating

sets of players (i.e., how to construct entanglement sharing by exploiting a quantum error

correcting code) in Chapter 3.

In the next section, I review the basic results on quantum ramp secret sharing (QRSS).

Secret sharing satisfies perfect secrecy in that an adversary structure is perfectly denied

any access to a secret. However, it gives rise to a critical limitation on the size of shares

allocated to each player. In secret sharing, the size of shares must be at least the same

as the size of a secret (for the classical case, see [29] [30] [31] and for the quantum

case, see [16] [20]). For example, at least 1000 qubits are required to share the arbi-
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trary state of a single qubit with 1000 players. This limitation imposes a large potential

bandwidth for communication. In order to overcome it, ramp secret sharing has been

devised [32] [33] [34].

1.3 Quantum Ramp Secret Sharing

In secret sharing, every share must have the same size as a secret [20]. However, ramp se-

cret sharing can reduce the size of shares at a cost of some information leakage. In a ramp

secret sharing scheme, its adversary structure is divided into an intermediate structure

and a forbidden structure. The intermediate structure is the collection of unauthorized

sets that can obtain some information about a secret, and the forbidden structure is

the collection of unauthorized sets that are completely denied any information. For a

(k, L, n) threshold ramp scheme, an access structure A, an intermediate structure I and

an forbidden structure F are given by

1. A = {Γ ⊆ P | |Γ| ≥ k}

2. I = {Γ ⊆ P | k − L < |Γ| < k}

3. F = {Γ ⊆ P | |Γ| ≤ k − L}

where P is a set of n players [32] [33] [34].

In a (k, L, n) ramp scheme, the size of shares can be reduced by 1/L [34] [35]. Suppose

that a dealer wants to share a password with seven aides in a way that any five aides

can recover the password perfectly in collaboration. However, there are three unknown

betrayers among the aides. In this situation, how can he share the password? At first,

he might use a (5, 7) threshold secret sharing scheme. Then, every group of fewer than

five aides is completely denied any information about the password, but each share must
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be at least the same as the size of the password. However, if he uses a (5, 3, 7) threshold

ramp scheme, each share can be reduced to one-third the size of the password. Instead,

any four aides might learn some information about the password. In Chapter 2, I show

how to construct a (k, L, n) classical ramp secret sharing scheme, and discuss the size of

shares in detail for both secret sharing and ramp secret sharing.

To date, several studies on classical ramp schemes have been conducted [32] [33], but

very little work has been done in the quantum domain [34]. In 2005, a (k, L, n) quantum

ramp scheme was first introduced using a quantum polynomial code by Ogawa, Sasaki,

Iwamoto, and Yamamoto [34]. As in quantum secret sharing, the (k, L, n) quantum ramp

scheme must satisfy n ≤ 2k − L due to the no-cloning theorem [34]. Equality holds for

any (k, L, n) pure-state quantum ramp scheme.

One of the most important issues for quantum ramp secret sharing is determining a

security condition. The security of a scheme depends on the importance of the informa-

tion leaked to an intermediate set, but it is hard to characterize the leaked information.

In this thesis, I focus on the problem of determining whether the leaked information is

classical or quantum. If any quantum information about a secret is not leaked to an in-

termediate structure, the corresponding quantum ramp scheme can be said to be secure

against any quantum leakage. I will discuss the relevant results that appeared in [38] [39]

and propose a new way to solve this problem based on entanglement sharing.

1.4 Outlines of this Thesis

This thesis is organized as follows. In Chapter 2, the basic backgrounds about quantum

information theory and useful mathematical tools that are used throughout the rest of

this thesis are explained. Also, this chapter includes some interesting results on classical,
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quantum secret sharing and quantum error correcting codes. In particular, I discuss the

relationship between quantum secret sharing and quantum error correction.

The main aim of Chapter 3 is introducing entanglement sharing and its properties.

Entanglement sharing is a new cryptographic protocol allowing a dealer to share entan-

glement with multiple players in such a way that some collaborating groups of players

are authorized to obtain the initial entanglement, but the other groups are totally denied

any entanglement with the dealer. I guess entanglement sharing based on the existing

stabilizer codes and assess its secrecy. The assess is primarily analytical with lengthy

algebraic computation by hand or sometimes by means of MathematicaTM. Along the

way, I show two examples of entanglement sharing. Next, I prove the amount of initial

entanglement cannot be larger than double the size of shares, using the work of [37], and

I present the case of optimal entanglement sharing that has the minimum size of shares

with respect to the initial amount of entanglement.

Chapter 4 concerns characterization of leaked information in quantum ramp secret

sharing. As leaked information can damage the secrecy of schemes, it is important to

characterize the leaked information and define secrecy conditions for quantum ramp se-

cret sharing schemes. In this chapter, I review previous works concerning the leaked

information. Then, I propose a new approach to characterize information leakage. First,

I define classical and quantum information in the context of channels through which

information is transmitted. Then, I show that entanglement sharing can be applied to

characterize the leaked information in quantum ramp secret sharing. Finally, I propose a

new secrecy condition of quantum ramp secret sharing. This approach has an advantage

of being applicable to any quantum ramp secret sharing scheme.

In Chapter 5, I hybridize non-perfect entanglement sharing with a support of classi-

cal secret sharing. Hybrid entanglement sharing can effectively lock leaked entanglement

of non-perfect entanglement sharing using a classical key. In fact, it is difficult to con-
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struct entanglement sharing and verify its secrecy. However, hybrid entanglement sharing

makes its construction and verification easier alternatively; it can be constructed from

any quantum error correcting code and its secrecy depends on whether or not unautho-

rized sets obtain any information about the classical key.

The main results of this thesis are summarized in Chapter 6. Also, further work on

this topic is briefly discussed. Finally, the investigation of Shor’s code is completed in

Appendix A, and a property of the relative entropy of entanglement is derived in Ap-

pendix B, which is importantly used to prove the relationship between the size of shares

and entanglement in Chapter 3.
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Chapter 2

Preliminaries

The aim of this chapter is to provide the necessary backgrounds to understand this thesis.

I explain basic elements of quantum information theory in Sec. 2.1, and von Neumann

entropies that are quantum versions of Shannon entropies in Sec. 2.2. In Sec. 2.3,

I provide entanglement measures that will be importantly used to define entanglement

sharing. In particular, I deal with one of the entanglement measures, the relative entropy

of entanglement, and its basic properties. Also, quantum teleportation is explained in

Sec. 2.4.

Before explaining quantum cryptographic protocols, it is helpful to understand their

classical counterparts. In Sec. 2.5, I construct Shor’s threshold scheme and explain the

size of shares in classical secret sharing. Then, I present classical ramp secret sharing in

Sec. 2.6. In Sec. 2.10, the size of shares for quantum secret sharing is compared with that

for quantum ramp secret sharing. Next, the main results on quantum error correction is

reviewed in Sec. 2.8 and an important class of quantum error correcting codes, so-called

stabilizer codes, is explained in Sec. 2.9. A more detailed discussion on stabilizer codes

can be found in [28]. Finally, I discuss the relationship between quantum secret sharing

schemes and quantum error correcting code in Sec. 2.10.

2.1 Basics of Quantum Information Theory

This section provides an overview of quantum information theory. A bit is the basic

unit of classical information, which is an element of F2. Similarly, quantum information
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contained in two-level systems is described as a string of qubits (quantum bits). In this

section, I express the state of a qubit as a state vectore in Subsec. 2.1.1 and as a density

matrix in Subsec. 2.1.3. The density matrix is useful for describing a probabilistic dis-

tribution of quantum states. In Subsec. 2.1.2, I explain the manipulation of a quantum

state in terms of operators. Finally, I discuss a composite states of two or more qubits

in Subsec. 2.1.4. See [40] for a more detailed account of the following subjects.

2.1.1 State Vector Representation

The state of a qubit can be completely described as a unit vector in the two-dimensional

complex vector space C2. The unit vector is called a state vector.

A Dirac notation is commonly used to express the state vector. In the Dirac notation,

a state vector is denoted by |ψ〉 and its dual vector by |ψ〉† = 〈ψ|. The inner product

between two vectors |ψ〉 and |φ〉 is then written as 〈φ|ψ〉.

Consider two orthonormal basis vectors, |0〉 ≡
(

1

0

)
and |1〉 ≡

(
0

1

)
. The state of a

qubit is represented by

|ψ〉 = α|0〉+ β|1〉 =

(
α

β

)
where α, β ∈ C (2.1)

which satisfies the normalization condition given by

〈ψ|ψ〉 =
(
α∗ β∗

)(α
β

)
= |α|2 + |β|2 = 1. (2.2)

The complex vector |ψ〉 is said to be a superposition of the basis vectors.

The single qubit space spanned by {|0〉, |1〉} is called a two-dimensional Hilbert space

H . The two-dimensional Hilbert space geometrically corresponds to the projective space

with respect to the two-dimensional compex vector space C2 (i.e., the set of lines through

the origin of C2).

Extending to higher dimensions, a more general expression of the qubit can be referred
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to as a qudit (i.e., a quantum d-ary digit), which corresponds to a d-dimensional Hilbert

space. However, in this thesis, I focus on qubit cases because they can be generalized to

qudit cases.

2.1.2 Operators

The evolution of a quantum state in a closed system is described by a unitary transfor-

mation. Note that a matrix U is unitary if U †U = I where U † is the Hermitian conjugate

of U and I is the identity matrix. A unitary transformation conserves the inner product

of a state. When an initial state |ψ〉 is evolved to U |ψ〉, its inner product after evolution

is 〈ψ|ψ〉 = 〈ψ|U †U |ψ〉.

On the other hand, the evolution of a state caused by measurements is not unitary

because the system is not closed any more by interacting with measurement apparatuses.

Note that a projection operator or a projector P is Hermitian (i.e., P † = P ) and satisfies

P 2 = P . A projective measurement is defined as a set of projectors {Pi} that represent

a decomposition of the identity,

I =
∑
i

Pi. (2.3)

After the projective measurement, the outcome i is obtained with the probability pi =

〈φ|Pi|φ〉 and the state of a system |φ〉 is collapsed to Pi|φ〉/
√
pi. The projective mea-

surement is often described as an observable A =
∑

i λiPi where λi is an eigenvalue

corresponding to the eigenvector |ψi〉 for Pi = |ψi〉〈ψi|.

Now, consider a set of four important operations on a single qubit—Pauli operators

and the identity matrix I. The Pauli operators are defined by the following complex

matrices:

σ̂x ≡

(
0 1

1 0

)
= X σ̂y ≡

(
1 −i
i 1

)
= Y = iXZ σ̂z ≡

(
1 0

0 −1

)
= Z (2.4)
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The Pauli operators are Hermitian and unitary, and satisfy the following commutation

relation.

[σ̂j, σ̂k] = 2iεjklσ̂l (2.5)

where εjkl is the permutation symbol. Note that two operators A and B are said to

commute if [A,B] = AB −BA = 0 and anti-commute if {A,B} = AB +BA = 0.

The Pauli operators are sometimes used to describe errors on a qubit. The errors can

occur due to the imperfect manipulation or interaction with an environment, which make

the state of a qubit evolve to a different state. The Pauli operators X and Z are called

a bit flip error and a phase flip error, respectively, and the Pauli operator Y performs

both bit flip and phase flip errors.

2.1.3 Density Matrix

Until now, the state of a qubit was described by a definite state vector in a Hilbert space.

Such a state is referred to as a pure state. The state of a qubit is sometimes given by a

statistical ensemble of several state vectors:

{(|ψ1〉, p1), (|ψ2〉, p2), · · · , (|ψk〉, pk)} (2.6)

where {pi} is a probability distribution with pi ≥ 0 for every i and
∑

i
pi = 1. Such an

ensemble of the states is called a mixed state, i.e., a mixture of pure states.

A density matrix provides a convenient and compact way to describe the mixed state,

which is given by

ρ =
k∑
i=1

pi|ψi〉〈ψi| (2.7)

The density matrix is a Hermitian, positive operator of trace one; that is, tr(ρ) = 1

and its expectation value with respect to a state |φ〉 (i.e., 〈φ|ρ|φ〉) is a non-negative real

value. Obviously, a density matrix corresponding to a pure state |ψ〉 is ρ = |ψ〉〈ψ|. If an



17

operator U is applied to a density matrix ρ, ρ will be evolve to ρ′ = UρU †.

The Pauli operators and the identity matrix form basis for the 2 × 2 Hermitian

matrices. Therefore, any density matrix of a single qubit can be expressed as

ρ =
I + r · σ

2
(2.8)

where r is a three-component vector such that |r| ≤ 1 and σ is a vector of three Pauli

matrices [40]. The density matrix ρ is a pure state if |r| = 1.

2.1.4 A Composite System

This section considers a composite system of two or more qubits. Given n qubits, the

Hilbert space of a composite system is given by the tensor product (in some contexts, it

is also referred to as outer product)

H1 ⊗H2 ⊗ · · · ⊗Hn (2.9)

where Hi is a Hilbert space of the i-th qubit for 1 ≤ i ≤ n. If each qubit is independently

prepared in the state |ψi〉, the composite state is

|ψ1〉 ⊗ |ψ1〉 ⊗ · · · ⊗ |ψn〉 = |ψ1ψ2 · · ·ψn〉. (2.10)

This is analogous to a bit string (e.g., 01011110...). A composite state represented by the

tensor product of the individual states of qubits is called a separable state [41]. However,

not all the composite states can be written as such a separable form.

In general, a composite state in H1 ⊗H2 ⊗ · · · ⊗Hn is given by

|Ψ〉 =
∑

j1,j2,··· ,jn

cj1,j2,··· ,jn|j1〉 ⊗ |j2〉 ⊗ · · · ⊗ |jn〉 (2.11)

where {|ji〉} is basis vectors in Hi and cj1,j2,··· ,jn are coefficients. If qubits interact with

each other, Eq. 2.11 cannot be reduced to the separable form

|Ψ〉 6=
∑
j1

cj1|j1〉 ⊗
∑
j2

cj2|j2〉 ⊗ · · · ⊗
∑
jn

cjn|jn〉 (2.12)



18

In this case, the qubits are said to be entangled and their composite state is called an

entangled state. Particularly, when all coefficients cj1,j2,··· ,jn are equal, the state is called

a maximally entangled state. There is a useful set of four maximally entangled states

that are called Bell states or Einstein-Podolsky-Rosen pairs [42].

|β0〉 = |φ+〉 =
1√
2

(|00〉+ |11〉) (2.13)

|β1〉 = |φ−〉 =
1√
2

(|00〉 − |11〉) (2.14)

|β2〉 = |ψ+〉 =
1√
2

(|01〉+ |10〉) (2.15)

|β3〉 = |ψ−〉 =
1√
2

(|01〉 − |10〉) (2.16)

Note that the tensor product between the states can be dropped or superscribed (i.e.,

|0〉 ⊗ |0〉 = |00〉 = |0〉⊗2).

The mixed state of a composite system is an ensemble of composite states with a

probability distribution. Consider a bipartite system HA ⊗HB of qubit A and B. The

mixed state ρAB of the system is called a product state if it is simply written as a tensor

product of individual states,

ρAB = ρA ⊗ ρB (2.17)

where ρA and ρB are the density matrices of qubit A and B, respectively. In this case,

the state of qubit A is totally independent of the one of qubit B.

The mixed state is called a separable state if it can be written as a convex sum of

product states,

ρAB =
∑
i

piρ
A
i ⊗ ρBi (2.18)

where all pi ≥ 0 satifying
∑

i pi = 1, and ρAi and ρBi are the density matrices of qubit A

and B for all i [41]. The separable state can be prepared by LOCC (Local Operations

and Classical Communication, Fig. 2.1) [41].
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Figure 2.1: Paradigm of Local Operations and Classical Communication. Two separate
parties might perform any operation which is localized to their own system (LO) and
communicate information classically (CC). The parties are not allowed to exchange any
quantum particles coherently. This is referred to as LOCC. [43]

When even the mixed state cannot be written as the convex sum of product states

(i.e., is not separable), it is an entangled state. The entangled state (i.e., entanglement)

is used as a resource for quantum computing and communication tasks such as quantum

teleportation [6], superdense coding [7], and Ekert quantum key distribution [3].

The problem of determining whether a given state is entangled or separable is very

difficult (i.e., it is known to be NP-hard) [44]. One of useful conditions for separability

of density matrices is the positive partial transpose (PPT) criterion [45] [46]. The PPT

criterion states that if the density matrix of a bipartite system HA⊗HB is separable, all

eigenvalues of its partial transpose are not negative. It turns out that if a bipartite density

matrix violates the PPT criterion (i.e., its partial transpose has any negative eigenvalue),

it is entangled. The PPT criterion is just a necessary, but not a sufficient condition for

separability in a high-dimensional bipartite system (i.e., dim(HA ⊗HB) > 6), but for

smaller systems it provides both a necessary and sufficient condition.

The density matrix is useful not only for describing a mixed state but also for de-

scribing the individual states of qubits in a composite system. For example, when the

state of a bipartite system is given by ρAB on the Hilbert space H A ⊗H B, the state of

a qubit on H A can be represented by a reduced density matrix

ρA = trB(ρAB) (2.19)
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where trB is the partial trace over another qubit B, defined as

trB(|A1〉〈A2| ⊗ |B1〉〈B2|) = |A1〉〈A2|〈B1|B2〉. (2.20)

Finally, I explain a convenient mathematical technique—purification. Purification

starts from the fact that for any mixed state ρA on a finite Hilbert space HA, there exists

a pure state |RA〉 for a composite system HR⊗HA such that ρA = trR(|RA〉〈RA|) [40].

R is called a reference system for A.

Suppose that the state ρA has an orthonormal decomposition ρA =
∑

i pi|iA〉〈iA|

where the vectors {|iA〉} form an orthonormal basis of HA. To purify ρA, R is chosen

as a system that has the same Hilbert space as system A, with any orthonormal basis

{|iR〉}. Then, for a composite system of R and A the following pure state is introduced:

|RA〉 =
∑
i

√
pi|iR〉|iA〉 (2.21)

This is a purification of ρA. Indeed, the reduced density matrix of system A is

trR(|RA〉〈RA|) =
∑
i

∑
i′

√
pi
√
pi′〈iR|i′R〉|iA〉〈i′A|

=
∑
i

∑
i′

√
pi
√
pi′δii′ |iA〉〈i′A|

=
∑
i

pi|iA〉〈iA| = ρA

(2.22)

2.2 Von Neumann Entropy and Mutual Information

Until now, I have seen how to represent and manipulate the states of qubits using state

vectors, operators and density matrices. In this section, I quantify how much quantum

information (i.e., how many qubits) is contained in quantum systems in terms of entropy.

First, consider a random variable chosen from a probability distribution of classical
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values. The random variable has an entropy (i.e., randomness or uncertainty) before

measuring its value. Shannon entropy is a measure of the entropy in the unit of bit [47].

It can be interpreted as the number of bits needed to represent a variable. Shannon

states that the entropy of a random variable is quantified as a function of its probabil-

ity distribution. Given a probability distribution {px} = {p1, p2, · · · , pn} of a random

variable X, its Shannon entropy is

H(X) = H(p1, p2, · · · , pn) = −
∑
x

px log2 px (2.23)

If X has only one definite value, the entropy is H(X) = 0, but if it has perfectly random

over all n values, H(x) has the maximum value.

A characteristic property of the Shannon entropy is additivity. The term additivity

means that the total randomness of independent variables is calculated by adding all

entropies of the variables together. Thus, given two independent random variables X

and Y with probability distributions {px} and {py}, their joint entropy is

H(X, Y ) = H(X) +H(Y ) (2.24)

where H(X, Y ) = −
∑

x,y pxy log2 pxy and pxy = pxpy .

However, if the variables are not independent, their entropies will be somehow related

to each other. The conditional entropy H(X|Y ) represents the entropy of X conditional

on knowing Y . It is defined by

H(X|Y ) = H(X, Y )−H(Y ). (2.25)

If H(X|Y ) = 0, it means that one can determine X from Y . This entropy is very useful

for describing recoverability and secrecy conditions of classical secret sharing [29].

The quantum analogue of the Shannon entropy is called von Neumann entropy [48].

This is described as the function of a density matrix because the density matrix itself



22

captures the probabilistic feature of a quantum system. For a density matrix ρ, its von

Neumann entropy is

S(ρ) = −tr(ρ log2 ρ). (2.26)

Note that if ρ is a pure state, S(ρ) = 0, and if a composite system of A and B is in a

pure state, then S(A) = S(B) [40].

The von Neumann entropy is also additive for independent systems. Given two inde-

pendent systems A and B, the von Neumann entropy is

S(ρA ⊗ ρB) = S(ρA) + S(ρB) (2.27)

where ρA and ρB are the density matrices of two systems, respectively.

For a set of density matrices ρi with respective probabilities pi satisfying
∑

i pi = 1,

the Shannon entropy H and the von Neumann entropy S have the following relationship:

S(
∑
i

piρi) ≤
∑
i

piS(ρi) +H(pi) (2.28)

with the equality if and only if the density matrices ρi have support on mutually orthogo-

nal subspace of the Hilbert space (i.e., the density matrices ρi are perfectly distinguishable

from each other) [40].

By analogy with the Shannon entropy, the quantum joint entropy is

S(A,B) = −tr(ρAB log2 ρ
AB) (2.29)

where ρAB is the density matrix of a composite system of A and B, and the quantum

conditional entropy is

S(A|B) = S(A,B)− S(B). (2.30)

It is important to note that some properties of the Shannon entropy do not apply to its

quantum counterpart in spite of the similarities in the definitions [40]. For example, the

classical conditional entropy is always non-negative, whereas the quantum conditional
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entropy can be negative for an entangled state. Consequently, some analysis of classical

secret sharing does not hold in quantum secret sharing because they are often built on the

non-negativity of the classical conditional entropy [38]. Therefore, the quantum mutual

information is used to study quantum secret sharing, instead of the quantum conditional

entropy [38]. The quantum mutual information S(A : B) is defined by

S(A : B) = S(A) + S(B)− S(A,B) ≥ 0. (2.31)

It can be interpreted as the amount of information on A that is revealed by B. If ρAB is

a product state, S(A : B) = 0.

2.3 Entanglement Measures

As mentioned in Subsec. 2.1.4, entanglement is an important resource in quantum infor-

mation tasks. Thus, it is necessary to quantify the amount of entanglement required to

carry out the tasks. This can be achieved by entanglement measures: entanglement cost,

distillable entanglement, relative entropy of entanglement and et al. (various entangle-

ment measures and their properties are well explained in [43]). Entanglement measures E

have different definitions and characterizations, but they commonly satisfy the following

properties [43];

1. For a maximally entangled state of two qudits,

|ψ〉 =
1√
d

(|00〉+ |11〉+ · · ·+ |d− 1, d− 1〉)

any bipartite entanglement measure is E(|ψ〉〈ψ|) = log2 d.

2. E(ρ) = 0 if the state ρ is separable.

3. E does not increase under deterministic LOCC transformations.
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4. For the pure state |ψ〉 of a composite system, any entanglement measure reduces

to the entropy of its subsystem;

E(|ψ〉〈ψ|) = S(trB|ψ〉〈ψ|) (2.32)

where trB denotes partial trace over subsystem B.

Note that a unit of entanglement is an ebit. For example, a Bell state is one ebit.

Next, I introduce one of entanglement measures, a relative entropy of entanglement,

which quantifies entanglement in terms of the entropy. The relative entropy of entangle-

ment has an interesting property of non-lockability [37] [43].

2.3.1 Relative Entropy of Entanglement

In the study of entanglement, there is a question about how much entanglement of a

composite system can be changed when one qubit is discarded. The answer clearly

depends on what entanglement measure is used. An entanglement measure is said to

be lockable when the measured entanglement is reduced by an arbitrarily large amount

after one qubit is removed [43]. Most fundamental measures such as entanglement cost

and entanglement of formation have lockability, but the relative entropy of entanglement

is not lockable [37].

The relative entropy of entanglement is described as the quantum relative entropy.

Quantum relative entropy S(ρ||σ) represents how distinguishable a density matrix ρ is

from another density matrix σ, and is defined as

S(ρ||σ) = tr(ρ log2 ρ)− tr(ρ log2 σ). (2.33)

Note that the quantum relative entropy is non-negative, i.e., S(ρ||σ) ≥ 0 with equality

if and only if ρ = σ.
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Suppose that a bipartite system HA⊗HB is in the state ρAB, and let X be the set of

all possible separable states in this system. Then, the relative entropy of entanglement

ER measures the smallest quantum relative entropy from ρAB to a separable state taken

from the set X, which is defined as

ER(ρAB) = inf
σ∈X

S(ρAB||σ). (2.34)

In [37], it was proven that the relative entropy of entanglement is not lockable because

it drops at most by two when one qubit is traced out. For any composite state ρ, its

relative entropy of entanglement satisfies

ER(ρ)− ER(trA(ρ)) ≤ 2 (2.35)

where A denotes a one qubit system.

2.4 Quantum Teleportation

Quantum teleportation is one of the most important entanglement-based protocols [6].

Suppose that there are two parties, Alice and Bob, who want to communicate the state

of a qubit to each other. Alice and Bob initially share a pair of maximally entangled

qubits

|β0〉 =
1√
2

(|00〉+ |11〉) (2.36)

and Alice prepares a qubit in the arbitrary state |ψ〉 = α0|0〉+ α1|1〉 which she wants to

teleport to Bob. Now, their joint state is |ψ〉|β0〉. This state can be rewritten as

|ψ〉|β0〉 =
1

2
|β0〉|ψ〉+

1

2
|β1〉(X|ψ〉) +

1

2
|β2〉(Z|ψ〉) +

1

2
|β3〉(XZ|ψ〉). (2.37)

Then, Alice performs a joint measurement on her two qubits in the Bell basis. After

measurement, the joint state is collapsed into one of the four states,

|β0〉|ψ〉 |β1〉(X|ψ〉) |β2〉(Z|ψ〉) |β3〉(XZ|ψ〉) (2.38)
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with the equal probability 1
4
, and Alice obtains the measurement outcome of two classical

bits. If the state is collapsed to |β0〉|ψ〉, the outcome is 00, if it is |β1〉(X|ψ〉), the outcome

is 01, and so on. Finally, Alice communicates the outcome to Bob over a classical channel

and Bob performs a proper local operation on his qubit to transform his state into |ψ〉.

For example, if he receives 01, he would learn that his state is X|ψ〉. Therefore, he can

recover |ψ〉 by applying the X operator to his state.

Theoretically, entanglement enables one party to transmit quantum information to

another party, no matter how far they are separated. Quantum teleportation can be

extensively applied to implement primitive gates for universal quantum computation.

For example, a CNOT gate (i.e., a controlled-NOT quantum gate) is hard to implement

optically because it would need a strong optical non-linearity [40], but it can be replaced

by a Gottesman-Chuang gate [10] which exploits quantum teleportation.

2.5 Classical Secret Sharing

Secret sharing was first introduced by Shamir [17] and Blakley [18]. They proposed a

(k, n) classical threshold scheme wherein a classical secret is encoded in a set of n shares

in a way that any k or more shares are able to recover the secret completely but less than

k shares contain no information about the secret. Classical secret sharing schemes exist

for all positive values of k and n with k ≤ n, provided access structures are monotone [19].

Suppose that a dealer shares a classical secret (e.g., a password) with seven players,

one of whom is dishonest (i.e., the dishonest player might leak the secret to an enemy).

Hence, the dealer wants to encode the secret in such a way that at least two of the

players must collaborate to recover the secret and any player alone is completely denied

the secret.
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Let the secret be encoded in the slope of a line. The dealer picks seven random points

on the line as shares {x1, x2, . . . , x7} and equally distributes the shares among the players.

Then, any two players can know the slope together, but any single player cannot have

any knowledge about it from a single point on the line. This is an example of a (2, 7)

Shamir’s threshold scheme.

Shamir generalized this observation using polynomial interpolation [17]. A secret S

is encoded in a polynomial of degree k − 1 such that

f(x) = S + a1x+ a2x
2 + . . .+ ak−1x

k−1 (2.39)

where the coefficients a1 . . . ak−1 are randomly picked in a finite field Fq = Z/qZ for a

prime number q > S, n. Given k points (xi, yi) for i = 1 . . . k, the polynomial function

can be uniquely determined as follows

f(x) =
k∑
j=1

yj

k∏
i=1,i 6=j

xi − x
xi − xj

(2.40)

where the xi’s are all distinct for Fq. However, with any k−1 points, there still remains a

degree of freedom of f(x). It means that all possible values for the coefficient are equally

likely and thus secrecy holds as desired.

All (k, n) threshold schemes are secure and reliable [17] [18]. Even though n−k out of

n shares are destroyed, the original secret can be recovered perfectly with the remaining

shares. Furthermore, the secret can be securely protected from adversaries, even when

k − 1 of the remaining k shares are exposed.

Finally, I give the information theoretical description of classical secret sharing schemes

as was done in [29]. Suppose that a secret S is encoded in shares V = {V1, V2, · · · , Vn}.

For a classical secret sharing scheme with an access structureA, the following requirement

must be satisfied.

1. For ∀ Γ ∈ A, H(S | Γ) = 0.
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2. For ∀ Γ /∈ A, H(S | Γ) = H(S).

Note that each share must be at least as long as the secret,

|Vi| ≥ |S| (2.41)

for any 1 ≤ i ≤ n [29] [30] [31]. The size of the shares is one of the most important issues

in secret sharing. A small size of shares is desirable to reduce the communication com-

plexity [49]. In the next section, I describe classical ramp secret sharing which achieves

a small size of shares at a cost of perfect secrecy.

2.6 Classical Ramp Secret Sharing

Ramp secret sharing reduces the size of shares by leaking some information to unautho-

rized sets [32] [33] [34]. A set of players which obtains partial information about the

secret is called an intermediate set, and the collection of all intermediate sets is called an

intermediate structure.

A (k, L, n) ramp scheme was first devised as an extension of the Shamir’s threshold

scheme [32]. Let a secret S = (S0, S1, · · · , SL−1) where Si ∈ Fq for some prime number q.

A dealer picks k−L coefficients in Fq randomly, and creates the k− 1 degree polynomial

function,

f(x) = S0 + S1x+ · · ·+ SL−1x
L−1 + aLx

L + · · ·+ ak−1x
k−1. (2.42)

Then, n shares are given by f(i) modulo q for 1 ≤ i ≤ n. The function can be fully

determined with any k shares, but with any k − L or fewer shares, L elements of the

secret are totally random over Fq. However, a set of shares Γ can narrow down the range

of the secret if k − L < |Γ| < k. This means that some information about the secret is

leaked to the set.



29

As in classical secret sharing, a classical ramp scheme can be described by the condi-

tional entropy [31]. Let V = {V1, V2, · · · , Vn} be a set of shares. Given access, interme-

diate and forbidden structures A, I and F , repectively, a classical ramp secret sharing

scheme fulfills the following requirements.

1. For ∀ Γ ∈ A, H(S| Γ) = 0.

2. For ∀ Γ ∈ I, 0 < H(S| Γ) < H(S).

3. For ∀ Γ ∈ F , H(S| Γ) = H(S).

In this description, the amount of leaked information for an intermediate set Γ can

be measured by the conditional entropy H(S| Γ) and the leaked information must be

classical. Similarly, in quantum ramp secret sharing, leaked information can be quantified

by the quantum mutual information. However, it is hard to determine whether it is

quantum or classical or how much quantum information is leaked. The quantum case

will be discussed in Chapter 4.

Finally, I explain the size of shares in (k, L, n) ramp secret sharing schemes. For any

(k, L, n) ramp scheme, the following relationship holds.

log |Vi| ≥
1

L
log |S| (2.43)

for any 1 ≤ i ≤ n [35]. In the ramp scheme using a polynomial fucntion, the size of each

share is indeed |Vi| = q, whereas the size of the secret is |S| = qL.

2.7 The Size of Shares in QSS and QRSS Schemes

As in classical secret sharing, quantum secret sharing is also limited by the large size

of shares. Let a quantum secret be an arbitrary quantum state on HS. In general, a
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quantum secret sharing scheme encodes the quantum secret in a composite system of n

shares corresponding to H1 ⊗H2 ⊗ · · · ⊗Hn where Hi is the Hilbert space of the ith

share. For any quantum secret sharing scheme, it is proven that

log(dim(HS)) ≤ log(dim(Hi)) (2.44)

for any 1 ≤ i ≤ n [16] [20]. That is, the size of each share must be at least as large as

the size of a secret. For example, if the secret is two qubits (i.e., dim(HS) = 22), each

share should be at least two qubits (i.e., 22 ≤ dim(Hi)). To overcome this limitation,

quantum ramp secret sharing schemes have been studied.

For a (k, L, n) quantum ramp secret sharing scheme [34], it was shown that

1

L
log(dim(HS)) ≤ 1

n

∑
i

log(dim(Hi)). (2.45)

As L increases (i.e., the range of an intermediate structure expands), the size of shares

can be reduced by 1/L. For example, in a (6, 3, 9) quantum ramp secret sharing scheme,

the size of a secret is three qubits and each share can be one qubit at most.

2.8 Quantum error correcting Codes

In this section, I provide basic results of quantum error correction. The aim of error cor-

rection is protecting information against errors. Errors can occur on quantum systems

due to imperfect physical devices, undesired interaction with an environment or inter-

ruption from a third party (e.g., an eavesdropper). In error correction, information is

transformed into a codeword (i.e., the encoded form which can detect and correct errors).

The set of codewords is called a code.

In Subsec. 2.8.1, I show how a simple code can correct errors occurring on a single

bit. After that, I consider a sufficient and necessary condition for more general codes in
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Subsec. 3.11.

2.8.1 A simple code

The simplest error correcting code can be obtained by copying the value of an input bit

onto two ancillary bits (i.e., 0 7→ 000, 1 7→ 111). In this case, we can correct a single bit

flip error in a codeword (i.e., the resulting string of bits) by looking at the majority of

the bit values. However, in a quantum case, it is impossible to simply copy an arbitrary

state of qubits. According to the no-cloning theorem of quantum mechanics, there is no

unitary operation satisfying

U |ψ〉|0〉 = |ψ〉|ψ〉 (2.46)

where U is a generally unknown operator and |ψ〉 is an arbitrary state of qubits.

Quantum error correcting codes (QECCs) can be obtained by a unitary operation

that maps a quantum state into a subspace of a larger-dimensional Hilbert space. The

subspace is called a coding space, denoted by C. For example, a three-qubit code can be

implemented via a unitary operation which encodes an arbitrary state of a qubit with

two ancillary qubits in the codeword of three qubits as follows:

Uenc : (α|0〉+ β|1〉)|0〉|0〉 7→ α|000〉+ β|111〉. (2.47)

In this case, a coding space C spanned by this codeword is the two-dimensional subspace

of a larger 23-dimensional Hilbert space. Note that this encoding operation does not

violate the no-cloning theorem: α|000〉+ β|111〉 6= (α|0〉+ β|1〉)⊗3.

The three-qubit code can correct a bit flip error occurring on a single qubit. Suppose

that the first qubit has been flipped (i.e., switching between |0〉 and |1〉). In this case,

one can know on which qubit the error occurs by comparing the state of the first qubit

with other two qubits via measurements; in order not to disturb a superposition of the
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codeword, one measures the differences between two states, but does not measures the

states individually.

Qubits have not only the bit flip errors but also phase flip errors. The phase flip error

switches between (|0〉 + |1〉) and (|0〉 − |1〉). The three-qubit code can correct a phase

flip error by performing the encoding operation with respect to the different basis:

U ′enc : (α|0〉+ β|1〉)|0〉|0〉 7→ α|+ ++〉+ β| − −−〉. (2.48)

where |+〉 = 1√
2
(|0〉+ |1〉) and |−〉 = 1√

2
(|0〉 − |1〉). In this basis, the phase flip error has

the same effect as the bit flip error in the previous basis; thus, detection of the phase flip

error is achieved in the same manner as one of the bit flip error.

However, the three-qubit code cannot correct a bit flip error and a flip error at the

same time. To correct both bit flip and phase flip errors occurring on a single qubit, the

state of a qubit can be encoded as follows

|0〉 7→ |0̄〉 =
1

2
√

2
(|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉+ |111〉) (2.49)

|1〉 7→ |1̄〉 =
1

2
√

2
(|000〉 − |111〉)⊗ (|000〉 − |111〉)⊗ (|000〉 − |111〉) (2.50)

This is a Shor’s 9-qubit code [50] defined by a coding space that is a two-dimensional

subspace of a 29-dimensional Hilbert space.

2.8.2 Conditions for Quantum Error Correction

Now, let me consider conditions for successful error correction of a coding space C [51] [52].

At first, errors are correctable when they can be distinguished from each other. That is,

for arbitrary errors Ea and Eb occurring on two different basis codewords |ψi〉 and |ψj〉,

respectively, Ea|ψi〉 must be orthogonal to Eb|ψj〉:

〈ψi|E†aEb|ψj〉 = 0 (2.51)
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where i 6= j. Also, when a measurement is performed to detect errors on a codeword,

it must not reveal any information about the actual state of codeword; otherwise, the

measurement will collapse a superposition of codewords. Therefore, the result of the

measurement depends on the errors, but not on the codeword:

〈ψi|E†aEb|ψi〉 = Cab (2.52)

where |ψi〉 is a codeword in C and 〈ψi|E†aEb|ψi〉 is an expectation value (i.e., mean value)

of an observable E = E†aEb. Combining Eq. 2.51 and Eq. 2.52, we can have a necessary

and sufficient condition for the code to correct the errors {Ea}; the errors {Ea} occurring

on any states in the coding space C are correctable iff

〈ψi|E†aEb|ψj〉 = Cabδij (2.53)

where {|ψi〉} are basis codewords in C [28]. This condition will be connected with the

condition of quantum secret sharing in Sec. 2.10.

The minimum weight of errors that do not satisfy Eq. 2.53 is called the distance of a

code. A code with a distance d can correct d−1 erasure errors. Note that an erasure error

is a general error occurring on a known location. A quantum error correcting code encod-

ing k qubits in n qubits can be described as a [[n, k, d]] code where d is its distance. This

code has a coding space that is a 2k-dimensional subspace of a 2n-dimensional Hilbert

space.

2.9 Stabilizer Codes

In this section, I give an overview of stabilizer codes. One promising way to construct

a quantum error correcting code is choosing a coding space C that is stabilized by an

Abelian subgroup (i.e., all its elements commute with each other) of the Pauli group.
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g1 Z Z I I I I I I I
g2 Z I Z I I I I I I
g3 I I I Z Z I I I I
g4 I I I Z I Z I I I
g5 I I I I I I Z Z I
g6 I I I I I I Z I Z
g7 X X X X X X I I I
g8 I I I X X X X X X

Table 2.1: The stabilizer for Shor’s 9-qubit code

The Pauli group Gn is the set of all the tensor products of the Pauli operators and the

identity matrix with a possible overall factor of ±1 or ±i;

Gn = {iaσ1 ⊗ σ2 ⊗ · · · ⊗ σn | σj ∈ {I,X, Y, Z}} (2.54)

Quantum error correcting codes defined by such a coding space are called stabilizer

codes [28]. The stabilizer formalism provides a compact way to describe quantum error

correcting codes. Not all quantum error correcting codes are stabilizer codes, but most of

the well-known quantum codes are. For example, Shor’s 9-qubit code is in fact a [[9, 1, 3]]

stabilizer code.

A stabilizer S is the Abelian subgroup of the Pauli group Gn which does not contain

the element −I;

S = {gi | gi ∈ Gn s.t. gi 6= −I, [gi, gj] = 0 for ∀gi} (2.55)

Note that we usually specify generators 〈Si〉 of the stabilizer; all the elements of the

stabilizer can be described as products of these generators. The generators of Shor’s

9-qubit code are listed in Table 2.1.

Given a stabilizer S, we can define a coding space C as the set of states fixed by the

elements of the stabilizer;

C = {|ψ〉 | g|ψ〉 = |ψ〉 ∀g ∈ S, |ψ〉 ∈H } (2.56)
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That is, codewords spanning C are eigenvectors of the elements of the stabilizer with

eigenvalue +1.

A natural question to be followed is what kinds of errors can be detected in the coding

space C. If an error E on a codeword anti-commutes with an element g of the stabilizer

S, it will move the codeword to the (−1)-eigenvalue subspace of S; g(E|ψ〉) = −Eg|ψ〉 =

−(E|ψ〉). Thus, we can detect the error by measuring the eigenvalue of g. Also, if an

error itself is an element of the stabilizer S, it cannot change the codewords at all. It

follows that a stabilizer code with stabilizer S can correct the following errors,

E = {Ea | Eag = −gEa for some g ∈ S or Ea ∈ S}. (2.57)

That is, this code can detect all errors E that are either in S or anti-commutes with any

element of S [28]. The errors satisfy Eq. 2.53.

A [[n, k, d]] stabilizer code is bounded by the quantum singleton bound (also called

Knill-Laflamme bound). The quantum singleton bound states that n− k ≥ 2 (d− 1) for

any [[n, k, d]] stabilizer code [51]. According to this bound, n = 9 (i.e., a Shor’s 9-qubit

code) is not the minimum value for d = 3 and k = 1; in this case n = 5 is the minimum

value (i.e., a [[5, 1, 3]] stabilizer code).

2.10 Relationship between QSS and QECC

In this section, I show the remarkable relationship between quantum secret sharing and

quantum error correction. It is known that a [[2k − 1, 1, k]] stabilizer code is equivalent

to a (k, 2k − 1) quantum threshold scheme [16] [20]. For example, a [[5, 1, 3]] stabilizer

code exactly yields a (3, 5) threshold scheme. The [[5, 1, 3]] stabilizer code can correct

two erasure errors by encoding one qubit in five qubits. Thus, an initial state can be

constructed from any three qubits. On the other hand, any two qubits provide no infor-
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mation about the state, as learning some information from the qubits necessarily disturbs

a superposition of the initial state. It is possible to see this relationship more deeply.

Let an operation encode a quantum secret to a composite system of n shares, and

the composite system be spanned by {|ψi〉}. The operation is a pure-state quantum

secret sharing scheme iff for any |ψi〉, |ψj〉 ∈ {|ψi〉} and all operators E acting on the

complement of an authorized set,

〈ψi|E|ψj〉 = c(E)δij (2.58)

where c(E) is the function of E [16] [20].

For i 6= j, 〈ψi|E|ψj〉 = 0 means that an authorized set can correct any erasure error

occurring on the state of its complement, i.e., an unauthorized set. That is, the autho-

rized set can distinguish all different bases {|ψi〉} for any operator on its complement.

For i = j, the condition becomes 〈ψi|E|ψi〉 = c(E). It means that an unauthorized

set cannot learn any information about a quantum secret encoded in {|ψi〉} because the

expectation value 〈ψi|E|ψi〉 is independent of |ψi〉.

The necessary and sufficient condition of Eq. 2.58 is exactly included in the quantum

error correcting condition of Eq. 2.53. It follows that every quantum secret sharing

scheme is in fact a quantum error correcting code (strictly speaking, the encoding oper-

ation of quantum secret sharing is quantum error correction) [16] [20].

2.11 Summary

In this chapter, I have provided basics of quantum information theory, classical secret

sharing and quantum error correction. The elements of this chapter are summarized as

follows. A pure state of qubits is well described by a vector in a Hilbert space, but a

density matrix is more suitable to express the mixed state (i.e., the statistical ensemble
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of pure states). Then, the evolution and the measurement of a quantum system is de-

scribed by means of operators. In a composite system of multiple qubits, a composite

state might be entangled. The entangled state is used as an important resource in quan-

tum communication protocols such as quantum teleportation.

Von Neumann entropy measures how much uncertainty there is in a density matrix,

and mutual information of two quantum systems measures how much information the

systems have in common. Entanglement measures are useful tools for quantifying en-

tanglement in a density matrix. Particularly, the relative entropy of entanglement is one

of entanglement measures, which has the property of non-lockability; the removal of one

qubit reduces the amount of relative entropy of entanglement at most by two.

Classical secret sharing allows a dealer to distribute a classical secret among players

such that some specific sets of players can reconstruct the secret, but the other sets gain

no information about the secret. In classical secret sharing schemes, there is a critical

limitation on the size of shares. Thus, classical ramp secret sharing has been proposed.

For (k, L, n) ramp schemes, the size of each share can be reduced by 1/L. Instead, there

is some leaked information to unauthorized sets, but the leaked information can be quan-

tified by the conditional entropy.

A quantum error correcting code can correct some errors occurring on the state of

qubits, and is defined by a coding space. A coding space is sometimes determined by a

stabilizer. The stabilizer formalism provides a compact way to describe quantum error

correcting codes. Quantum error correction is closely related to quantum secret shar-

ing. In quantum secret sharing, an authorized set can correct any erasure error acting

on its complement. This is exactly what quantum error correcting codes do. In fact,

it is proven that any quantum secret sharing scheme is equivalent to a quantum error

correcting code. This relationship gives rise to a central idea to prove the existence of

entanglement sharing in Chapter 3.
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Chapter 3

Entanglement Sharing Schemes

In this chapter, I introduce an entanglement sharing scheme. An entanglement shar-

ing scheme allows a dealer to distribute entanglement among players in such a way

that authorized sets of players can have the original entanglement fully with the dealer,

but unauthorized sets are totally denied any entanglement. Entanglement is a neces-

sary resource required for quantum information tasks such as quantum teleportation [6],

superdense coding [7] and device-independent quantum key distribution [8] [9]. An en-

tanglement sharing scheme enables a dealer to perform such quantum tasks with only

authorized sets of players in a network consisting of multiple players. Each of player

cannot be trusted but their collaborating groups might be trusted. The definition of

entanglement sharing is given in Sec. 3.1.

Entanglement sharing can be designed by employing quantum error correcting codes.

In Sec. 3.2, I show how to use a quantum error correcting code for implementing an

entanglement sharing scheme, with an example of the Shor’s 9-qubit code. Then, I prove

that the size of shares is at least half the size of the initially shared entanglement in Sec.

3.3. When an entanglement sharing scheme has the minimum size of shares, it is said

to be optimal. In Sec. 3.4, I show that an optimal entanglement sharing scheme can be

constructed from a [[4, 2, 2]] stabilizer code.
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3.1 Definition of Entanglement Sharing

Entanglement sharing has many similarities with quantum secret sharing in the concept

of distributing a secret among multiple players. However, they are basically designed

with different systems. Let D denote a dealer and P = {P1, P2, · · · , Pn} a set of players.

Quantum secret sharing concerns a single-party system of a dealer or a set of players. In

quantum secret sharing, an arbitrary quantum state in a Hilbert space HD is encoded in

the Hilbert space of players HP (i.e., a tensor product of the Hilbert spaces of players).

In contrast, entanglement sharing is based on a bipartite system of a dealer and a set of

players, and encodes a maximally entangled state in HD ⊗HD into HD ⊗HP.

Let me explain the encoding procedure of entanglement sharing in details. A dealer

initially prepares a pair of qubits in a maximally entangled state. One of the pair is

held in his place, and the other is encoded into the n shares of players. Entanglement

sharing has recoverability and secrecy conditions. The recoverability condition is that

any authorized set of players can recover the initial maximally entangled state fully using

local operations (the local operations mean joint operations on the qubits of an authorized

set and single-qubit operations), and the secrecy condition is that any unauthorized set

cannot be entangled with the dealer whatsoever. Every subset of players must be either

an authorized set or an unauthorized set. The collection of all authorized sets is an access

structure A and the collection of all unauthorized sets is an adversary structure U . As

in quantum secret sharing, the access structure must be monotone. A schematic picture

of entanglement sharing schemes is shown in Fig. 3.1.

Note that if a subset of players is partially entangled with the dealer, the correspond-

ing scheme will be said to be non-perfect. I discuss non-perfect entanglement sharing

schemes in Chapter 5.
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Figure 3.1: Schematic picture of an entanglement sharing scheme. Arrows indicate pairs
of qubits. A rigid arrow refers to a pair of qubits in a maximally entangled state and a
dotted arrow is a pair in either a separable state or a product state. E is an encoding
circuit of the scheme, which encodes half of the pair and some ancillary qubits into n
shares of players. R and R′ are properly chosen recovery circuits for an authorized set A
and an unauthorized set U , respectively.

3.2 Entanglement Sharing with Quantum Error Correcting Codes

Recall that quantum secret sharing has a close relationship with quantum error correc-

tion. A quantum secret sharing scheme can be constructed from any quantum error

correcting code that satisfies the condition of Eq. 2.58. For example, as a [[2k − 1, 1, k]]

stabilizer code corrects any k−1 erasure errors, a secret is constructed from any k qubits

and no information about the secret is obtained from any k − 1 shares. This is equiv-

alent to a (k, 2k − 1) quantum threshold scheme [16]. As in quantum secret sharing,

entanglement sharing is also related to quantum error correction. Any authorized set of

shares in entanglement sharing can reconstruct an initial maximally entangled state by

correcting erasure errors on its complement. This means that the encoding operation of

any entanglement sharing scheme is in fact quantum error correction.

In this section, I guess entanglement sharing schemes based on the existing stabilizer

codes. I implement a scheme that encodes a maximally entangled state in the coding

space of a quantum error correcting code and assess whether or not the induced scheme

satisfies the recoverability and secrecy conditions of entanglement sharing. The recov-

erability condition is naturally fulfilled from the coding space. However, the secrecy
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condition might be violated if the coding space yields the unauthorized sets that obtain

partially entangled states (i.e., neither maximally entangled nor separable) with dealer.

At this point, it is helpful to investigate methods for determining the separability of a

reduced density matrix. Finally, I show that Shor’s 9-qubit code indeed induces an en-

tanglement sharing scheme.

First, consider a quantum error correcting code that encodes k in n qubits. A dealer

prepares a maximally entangled state,

|S〉 =
1√
2k

2k−1∑
j=0

|j〉D|j〉D (3.1)

in a bipartite system HD ⊗ HD where HD is a 2k-dimensional Hilbert space. One

component system is held in the dealer’s place, and another system is encoded in the

coding space C. Then, the mapping of |S〉 is given by

|S〉 7→ |Ψ〉 =
1√
2k

2k−1∑
j=0

|j〉D|Cj〉P (3.2)

where C = span{Cj}j=0···2k−1. Each qubit of the code is taken as a share (i.e., C =

HP1 ⊗HP2 ⊗ · · · ⊗HPn)

An access structure A is determined from the coding space C. A set K of shares

reconstructs |S〉 through a recovery operation of the code if C can correct erasure errors

on the complement of K. That is, K is an authorized set and the access structure consists

of all sets K.

On the other hand, the complement of K must have a non-entangled state (i.e., either

a separable state or a product state) with the dealer, due to monogamy of entanglement.

According to monogamy, if two systems are maximally entangled, they cannot be en-

tangled with any third system [53] [54]. For example, monogamy is expressed as the

following inequality,

E(ρXY ) + E(ρXZ) ≤ E(ρX(Y Z)) (3.3)
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for any composite system of X, Y and Z. This inequality holds for some entangle-

ment measures such as the one-way distillable entanglement and the squashed entangle-

ment [54]. Let X be the dealer, Y an authorized set and Z the complement of Y . As ρXY

can be transformed into ρX(Y Z) by LOCC and vice versa, ρXY has the same amount of

entanglement as ρX(Y Z). Therefore, the complement of any authorized set is an unautho-

rized set, i.e., E(ρXZ) = 0. It turns out that an access structure in entanglement sharing

cannot have two disjoint sets due to monogamy. This is analogous to quantum secret

sharing not allowing an access structure to have two disjoint sets due to the no-cloning

theorem.

Now, consider another class of sets {B}, which is neither an authorized set nor the

complement of any authorized set. Any set in this class is unauthorized to have any

entanglement with the dealer. For a set B in this class, the reduced density matrix is

given by

ρB = tr B̄
(
|Ψ〉〈Ψ|

)
(3.4)

where B̄ denotes the complement of B. As B is an unauthorized set, ρB must be a

non-entangled state with the dealer. However, it is a NP-hard problem to determine

whether or not a bipartite density matrix is entangled [44]; thus, it is not easy to verify

the secrecy of entanglement sharing.

One possible way to determine whether or not the set B has some entanglement

with the dealer is measuring the amount of entanglement between B and the dealer by

means of any entanglement measure. For a pure state |ψ〉 in a bipartite system of X and

Y , every entanglement measure simply reduces to the entropy of entanglement [43], as

follows.

E(|ψ〉〈ψ|) = S(trX |ψ〉〈ψ|) (3.5)

However, most entanglement measures for a mixed state are very difficult to compute,

except some special cases (various entanglement measures and their computable classes
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of states are well surveyed in [43]).

The PPT criterion can also be used in checking the absence of entanglement in a

reduced density matrix, as it has the advantage of being easily checked in many compu-

tation programs such as MathematicaTM. As I explained in Sec. 2.1.4, the PPT criterion

is a necessary but not sufficient condition for the separability of the reduced density ma-

trix in the bipartite system of a more than six dimension.

For some stabilizer codes such as Shor’s 9-qubit code (i.e., a [[9, 1, 3]] stabilizer code),

the separability of ρB is directly shown from its form. Now, I encode a maximally entan-

gled state using the Shor’s 9-qubit code.

Consider a Bell state,

|S〉 =
1√
2

(
|0〉D|0〉D + |1〉D|1〉D

)
. (3.6)

According to the encoding shown in Eq. 2.49, |S〉 is encoded such that

|S〉 7→ |Ψ〉 =
1√
2

(
|0〉D|G0〉123|G0〉456|G0〉789 + |1〉D|G1〉123|G1〉456|G1〉789

)
(3.7)

where |G0〉 = 1√
2
(|000〉+ |111〉) and |G1〉 = 1√

2
(|000〉− |111〉). This code consists of three

triplets, each of which corresponds to three qubits in the same G-state. Each qubit in

this code is allocated to a player. Let P = {1, 2, 3, · · · , 9} be a set of the labels of qubits

in the code, or equivalently, a set of players.

The stabilizer of the Shor’s 9-qubit code (see Table. 2.1) can correct erasure errors

on K ⊆ P if K is a set of

1. any one or two qubits

2. two qubits in one triplet and single qubit in other triplet (e.g., {1, 2, 4})

3. two qubits in one triplet and two qubits in other triplet (e.g., {1, 2, 4, 5})

For any K, every erasure error on K is either in the stabilizer or anti-commutes with

some element in the stabilizer. This means that the complement of K can correct the
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erasure errors and recover the original entanglement with the dealer, whereas K is not

entangled with the dealer due to monogamy. The complement of K might use the

following recovery process. Consider K = {6, 8, 9} of the second case. The complement

of K (i.e., {1, 2, 3, 4, 5, 7}) has the reduced density matrix

1

4
|φ〉〈φ|⊗

(
|000〉〈000|457+|111〉〈111|457

)
+

1

4
|φ̄〉〈φ̄|⊗

(
|110〉〈110|457+|001〉〈001|457

)
(3.8)

where |φ〉 and |φ̄〉 are 1√
2

(
|0〉D|G0〉123 ± |1〉D|G1〉123

)
, respectively. In this case, the

entire system can be collapsed into one of two states |φ〉 and |φ̄〉 through a projection

measurement on qubits of the last three players (i.e., {4, 5, 7}). The collapsed state

is transformed to the original maximally entangled state by performing a proper local

unitary operation.

For Shor’s 9-qubit code, every set in {B} has a separable state with the dealer. For

example, the reduced density matrix of B = {1, 2, 3, 4, 5, 6} can be written as

tr789

(
|Ψ〉〈Ψ|

)
=

1

2

1∑
i=0

|i〉〈i|D ⊗ |Gi〉〈Gi|123 ⊗ |Gi〉〈Gi|456. (3.9)

The form of the reduced density matrix directly shows that B is separable with the

dealer. In a similar way, it can be shown that the other sets in {B} also have separable

states with the dealer, as investigated in Appendix A. Therefore, an entanglement shar-

ing scheme with a general access structure is constructed from Shor’s 9-qubit code.

3.3 The Size of Shares in Entanglement Sharing

In this section, I prove that the size of shares in an entanglement sharing scheme must be

at least half the size of an initial entanglement. Let T be an unauthorized set such that

A = T ∪ r is authorized where r is a share of one qubit. This means that the state ρDA

has the same amount of entanglement as ρDP, but the amount of entanglement must go
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to zero by discarding the share r. In this case, the share r acts like a key that locks the

initial entanglement. According to [37], the amount of entanglement can decrease at most

by two upon discarding one qubit with respect to the relative entropy of entanglement.

This observation leads to the following theorem.

Theorem 3.3.1. For any entanglement measure E, every entanglement sharing scheme

satisfies

E(ρDP) ≤ 2q (3.10)

where ρDP is an initial maximally entangled state and q is the size of each share (i.e., the

number of qubits in a share).

Proof. Let Γ be an unauthorized set satisfying that Γ ∪ u = A where u /∈ Γ is one share

and A is an authorized set, and let ρDΓu be the reduced density matrix of the authorized

set A with a dealer. Assume that total dephasing (i.e., twirling) is performed on the

share u; that is, the unitary operators gui ∈ {I,X, Y, Z}⊗q are applied to u with equal

probabilities. Then, the following inequality for the relative entropy of entanglement ER

is obtained: ∑
i

piER(ρi)− ER(
∑
i

piρi) ≤ S(
∑
i

piρi)−
∑
i

piS(ρi) (3.11)

where ρi = (IDΓ ⊗ gui )ρDΓu(IDΓ ⊗ gui ) and pi = 1
4q

. The derivation of this inequality is

shown in Appendix B. Due to the total dephasing,

∑
i

piρi =
1

4q

∑
i

(IDΓ ⊗ gui )ρDΓu(IDΓ ⊗ gui ) = tru(ρ
DΓu)⊗ 1

2k
Iu. (3.12)

Now, the share u does not affect the amount of the entire entanglement because it is inde-

pendent of the other shares and the dealer. It follows that ER(
∑

i piρi) = ER(tru(ρ
DΓu)).

Also, as the relative entropy of entanglement is invariant under local unitary transfor-

mations, ∑
i

piER(ρi) =
∑
i

piER(ρDΓu) = ER(ρDΓu). (3.13)
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Thus, the inequality is rewritten as

ER(ρDΓu)− ER(tru(ρ
DΓu)) ≤ S(

∑
i

piρi)−
∑
i

piS(ρi) ≤ H(pi) = 2q (3.14)

with Eq.2.28.

As Γ is an unauthorized set, its reduced density matrix tru(ρ
DΓu) is not entangled

with the dealer; i.e., ER(tru(ρ
DΓu)) = 0. On the other hand, ρDΓu has the same amount of

entanglement as ρDP because ρDΓu can be transformed into ρDP by LOCC and vice versa.

Furthermore, any entanglement measure has the same value for a maximally entangled

state. Therefore, the following inequality is obtained:

E(ρDP) = ER(ρDP) = ER(ρDΓu) ≤ 2q. (3.15)

In the trivial case where the initial entanglement is one ebit (i.e., any maximally

entangled state unitarily equivalent to one Bell state), the size of the shares is just one

qubit because 0.5 qubit is not defined. However, for entanglement of more than one ebit,

the size of each share is bounded by half of the number of ebits according to Theorem

3.3.1. An entanglement sharing scheme is said to be optimal if the size of its shares is

half the size of the initial entanglement.

3.4 Optimal Entanglement Sharing

In this section, I present an optimal entanglement sharing scheme using the [[4, 2, 2]]

stabilizer code. The coding space Cop of the [[4, 2, 2]] stabilizer code can correct erasure

errors on a single qubit by encoding two qubits in four qubits. The codewords of the

[[4, 2, 2]] stabilizer code are

{|βi〉|βi〉}i=0,1,2,3 (3.16)
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where {|βi〉} are a set of Bell states.

Let D be a dealer and P = {1, 2, 3, 4} be a set of 4 players. For a bipartite system

HD ⊗HD, the dealer prepares a maximally entangled state

|S〉 =
1

2

3∑
i=0

|i〉D|i〉D (3.17)

where HD is a 4-dimensional Hilbert space. Note that |S〉 is local unitarily equivalent to

a tensor product of two Bell states |β〉 ⊗ |β〉 (more precisely, the density matrix of |S〉 is

local unitarily equivalent to |β〉〈β| ⊗ |β〉〈β|).

According to the [[4, 2, 2]] stabilizer code, half of |S〉 is encoded as follows:

|S〉 → |Ψ〉 =
1

2

3∑
i=0

|i〉D|βi〉12|βi〉34. (3.18)

where the index of |β〉xy refers to the x-th and y-th players. Note that each player

receives a single qubit. As Cop corrects erasure errors on a single qubit, any three players

can recover the original maximally entangled state |S〉. They might use the following

recovery process. For Γ = {2, 3, 4}, |Ψ〉 can be rewritten as

|Ψ〉 =
1

2
√

2

[
|0〉1
( 3∑
i=0

|i〉D|pi〉2|βi〉34

)
+ |1〉1

( 3∑
i=0

|i〉D|qi〉2|βi〉34

)]
(3.19)

where the |pi〉2’s and |qi〉2’s are either |0〉2 or |1〉2, satisfying 〈qi|pi〉 = 0 for all i. After

tracing out the first player, the reduced density matrix of the remaining players is

tr1

(
|Ψ〉〈Ψ|

)
=

1

2

(
|γ〉〈γ|+ |γ′〉〈γ′|

)
(3.20)

where |γ〉 =
∑3

i=0 |i〉D|pi〉2|βi〉34 and |γ′〉 =
∑3

i=0 |i〉D|qi〉2|βi〉34. As two possible subspaces

of Γ are orthogonal, the entire system can be collapsed to one of two states |γ〉 and |γ′〉,

through a projection measurement on Γ. Then, the three players of Γ can transform the

collapsed state to |S〉 by applying unitary operators on their qubits. A similar recovery

process can be applied to any three players. On the other hand, any single player cannot
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be entangled with the dealer according to monogamy. In fact, any single player has a

product state with the dealer, which is of the form(1

4

∑
i

|i〉〈i|D
)
⊗ 1

2
Ix (3.21)

where Ix is the identity matrix of a single player x.

Let us look at the cases of two players. It is clear from Eq. 3.18 that two players

of {1, 2} or {3, 4} have a separable state with the dealer. The following analysis shows

that all other sets of two players are also separable with the dealer. Note that the state

|βi〉12|βi〉34 can reorder the indices of qubits as

|βi〉12|βi〉34 =
∑
i

cij|βj〉kl|βj〉mn (3.22)

where {k, l,m, n} is a permutation of {1, 2, 3, 4}. Substituting this into Eq. 3.18, |Ψ〉

can be rewritten as

1

2

∑
i

|i〉D|βi〉12|βi〉34 =
1

2

∑
i

|i〉D
∑
j

cij|βj〉kl|βj〉mn. (3.23)

By tracing out two arbitrary players {k, l}, a separable state can be obtained as follows.

trkl

(
|Ψ〉〈Ψ|

)
=

1

4

∑
j

∑
j′

kl〈βj|βj′〉kl
(∑

i

∑
i′

cijci′j′ |i〉〈i′|D ⊗ |βj〉〈βj′ |mn
)

=
1

4

∑
j

(∑
i

∑
i′

cijci′j|i〉〈i′|D
)
⊗ |βj〉〈βj|mn

=
1

4

∑
j

|aj〉〈aj|D ⊗ |βj〉〈βj|mn

(3.24)

where |aj〉 =
∑

i cij|i〉D.

A stabilizer of the [[4, 2, 2]] stabilizer code is XXXX and ZZZZ [28]. The permuta-

tion invariance of the elements of its stabilizer leads to a threshold entanglement sharing

scheme such that any three or more players are authorized to recover the original entan-

glement, any two players have a separable state with the dealer and any single player

have a product state. A schematic picture of this scheme is shown in Fig. 3.2.
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Figure 3.2: Schematic picture for an optimal entanglement sharing scheme with a [[4, 2, 2]]
stabilizer code. Arrows indicate bipartite states of a dealer and a set of players. (a) A
pair of rigid arrows is two ebits (i.e., a four-qubit maximally entangled state). E is an
encoding operation that encodes half of two ebits in four shares using ancillary qubits.
(b) R is a recovery operation that reconstructs the initial two ebits from three shares. (c)
A pair of dashed arrows is a separable state with the dealer. R′ is any recovery operation
that outputs only separable states with the dealer from two shares. (d) A dotted arrow
is a product state with the dealer. R′′ is any recovery operation. It is impossible to have
nothing other than a product state from a single share.

3.5 Summary

In this chapter, I has introduced entanglement sharing as a new cryptographic scheme

to share maximally entangled states with multiple players, which are used as central re-

sources of quantum information protocols. In entanglement sharing, any authorized set

of players can be maximally entangled with a dealer (recoverability condition), but any

unauthorized set must be separable with the dealer (secrecy condition).

Entanglement sharing naturally has an access structure that is monotone, as in quan-

tum secret sharing. I have seen that the access structure cannot have two disjoint sets as

monogamy of entanglement prohibits the complement of any authorized set from having

entanglement with a dealer.

Quantum error correcting codes recover original quantum states by correcting erasure

errors. In this sense, entanglement sharing is related to quantum error correcting because
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any authorized set recovers the original maximally entangled state by correcting erasure

errors on its complement. Thus, I considered a way to share maximal entanglement us-

ing the existing stabilizer codes, and constructed an entanglement sharing scheme from

Shor’s 9-qubit code, which has a general access structure.

Then, I proved that the size of shares must be at least half the size of the initial

entanglement. Furthermore, I showed that a [[4, 2, 2]] stabilizer code induces an optimal

entanglement sharing scheme that has the minimum size of shares with respect to the

initial entanglement. The induced optimal entanglement sharing scheme has a threshold

structure due to the prefect symmetry in the stabilizer of the code.
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Chapter 4

A Secrecy Condition of QRSS

Quantum ramp secret sharing schemes reduce the size of shares by leaking some in-

formation to intermediate sets. As the leaked information directly affects the secrecy of

schemes, it is desirable to characterize information leakage and develop secrecy conditions

for quantum ramp secret sharing schemes. However, the characterization of information

leakage is a challenging problem. For stabilizer encoding, it is possible to characterize the

leaked information through the notion of an information group [39], but this approach

requires the details of the encoding operation to obtain the information group. In this

chapter, I propose a different approach to characterize the leaked information by exploit-

ing entanglement sharing.

In Sec. 4.1, I start by defining the intermediate sets based on quantum mutual infor-

mation. The quantum mutual information can determine whether or not a set of players

learns some information about the secret, but it is not suitable to characterize the infor-

mation. In general, quantum information is considered to include classical information.

However, defining classical and quantum information separately can help to characterize

information. Thus, I show how classical and quantum information was defined in [57]

and briefly explain the method of an information group based on this definition, as was

shown in [39].

In Sec. 4.2, I define classical and quantum information in the context of channels

used to transmit information. Then, I show how entanglement sharing can be used to

determine whether any quantum information is leaked or not. Finally, I introduce a new

secrecy condition of quantum ramp secret sharing schemes.
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4.1 Discussion on Leaked Information

Information theory has played a crucial role in defining and evaluating secret sharing

schemes [29] [31] [38] [34]. Classical secret sharing was defined by the conditional en-

tropy [29] and it simply extended to classical ramp secret sharing [31]. In the quantum

setting, the quantum mutual information has been used to describe quantum secret shar-

ing [38] [34]. As in classical secret sharing, the descriptions of quantum secret sharing

can be also extended to quantum ramp secret sharing. Before doing it, I first consider

the recoverability and secrecy conditions of quantum secret sharing as was done in [38].

Suppose that a quantum secret X is given by the density matrix ρX in a q-dimensional

Hilbert space HX . The density matrix ρX can be described by its orthonormal decom-

position,

ρX =
∑
i∈Fq

αi|i〉〈i| (4.1)

where αi ∈ [0, 1] for i ∈ Fq and {|i〉} are orthonormal basis vectors of HX . For instance,

when q = 2, the density matrix can be represented by ρX = α0|0〉〈0|+ α1|1〉〈1|.

Let R be the reference system for X. The composite system of R and X is in a pure

state |RX〉 ∈ HR ⊗HX , according to the purification (see Sec. 2.1.4). The state |RX〉

is reduced to ρX after tracing out R.

In a quantum secret sharing scheme, the secret X is distributed among a set of n

players, P = {1, 2, 3, . . . , n}. If a subset Γ ⊆ P satisfies

S(R : Γ) = 0 (secrecy condition), (4.2)

then it cannot obtain any information about ρX . This condition means that a composite

system of Γ and R is in a product state. As Γ is totally independent of R, it cannot

gain any information about a system that is correlated to R. In quantum ramp secret

sharing, such a subset is called a forbidden set.
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On the other hand, if a subset Γ satisfies

S(R : Γ) = S(R : X) (recoverability condition), (4.3)

it can recover ρX perfectly. Let E : HX → HΓ be a quantum operation such that

E(ρX) = ρΓ where HΓ is the Hilbert space of Γ and ρΓ is the reduced density matrix of

Γ. In [56], it was proven that E is perfectly reversible if and only if

S(X) = S(Γ)− S(R,Γ). (4.4)

This means that there exists a quantum operation R : HΓ →HX such that R(ρΓ) = ρX .

Eq. 4.4 is equivalent to the recoverability condition as shown by

S(R : Γ)− S(R : X) = S(R) + S(Γ)− S(R,Γ)−
(
S(R) + S(X)− S(R,X)

)
= S(Γ)− S(X)− S(R,Γ)

= 0

(4.5)

where S(R,X) = 0 as ρRX is a pure state.

Next, consider a subset of players, which satisfies neither the secrecy nor the recov-

erability condition. If 0 < S(R : Γ) < S(R : X), a subset Γ will learn some information

about ρX , but cannot recover it perfectly. In quantum ramp secret sharing, such a subset

is called an intermediate set [34]. Now, I can describe a quantum ramp secret sharing

scheme as follows.

A (k, L, n) pure-state quantum ramp secret sharing scheme distributes a quantum

secret ρX among n players satisfying the following conditions:

1. For |Γ| ≥ k, S(R : Γ) = S(R : X)

2. For k − L < |Γ| < k, 0 < S(R : Γ) < S(R : X)

3. For |Γ| ≤ k − L, S(R : Γ) = 0
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where R is a reference system for X. By this description, a [[4, 2, 2]] stabilizer code is in

fact a (3, 2, 4) quantum ramp scheme as follows.

Consider a secret in the four-dimensional Hilbert space HX , given by

ρX =
1

4

3∑
i=0

|i〉〈i|. (4.6)

The purification of ρX is

|RX〉 =
1

2

3∑
i=0

|i〉|i〉. (4.7)

and therefore S(R : X) = S(R) + S(X) − S(R,X) = 2S(X) = 4. Suppose that the

secret X is distributed among four players by the [[4, 2, 2]] stabilizer code. The encoding

operation of the [[4, 2, 2]] stabilizer code is

VX :
3∑
i=0

αi|i〉 7→
3∑
i=0

αi|βi〉|βi〉. (4.8)

where {|βi〉} are Bell states. After the encoding operation, the composite state of R and

P can be described by

|RP 〉 = (IR ⊗ VX)|RX〉 =
1

2

3∑
i=0

|i〉|βi〉|βi〉. (4.9)

Let P = {1, 2, 3, 4} be a set of four players. The [[4, 2, 2]] stabilizer code can correct

erasure errors on any single player. It turns out that any three players Γ3 are authorized.

In fact, the recoverability condition holds for any three players as shown by

S(R : Γ3) = 2 + 3− 1 = 4 = S(R : X). (4.10)

On the other hand, any single player is a forbidden set because it satisfies the secrecy

condition,

S(R : Γ1) = 2 + 1− 3 = 0. (4.11)

Any two players obtain some information about the secret. For any two players, we have

ρRΓ2 =
1

4

3∑
i=0

|i′〉〈i′| ⊗ |βi〉〈βi| (4.12)
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and

ρΓ2 =
1

4

3∑
i=0

|βi〉〈βi|. (4.13)

It follows that

S(R : Γ2) = S(R) + S(Γ2)− S(R,Γ2)

= 2 + 2− 2 = 2.

(4.14)

Therefore, any two players form an intermediate set as 0 < S(R : Γ2) < S(R : X).

So far, I have shown that the quantum mutual information is an important tool for

determining an intermediate structure in quantum ramp secret sharing. The quantum

mutual information can tell us whether or not some information on the secret is leaked

to a subset of players. Now, consider how to characterize the leaked information. The

characterization of leaked information is important because if the leaked information

includes any useful clue on the secret it might be possible to narrow down the range

of the secret significantly. I investigate whether or not the information leakage includes

any quantum information. The quantum mutual information is not suitable for this

problem, as it cannot distinguish quantum from classical information. It just measures

both classical and quantum information together. To solve this problem, first I need to

clearly define classical and quantum information in quantum ramp secret sharing. In [57],

it was shown that classical and quantum information can be defined by incompatible types

of information. Based on this definition, the leaked information can be characterized for

the stabilizer encoding through the notion of an information group [39]. Let me briefly

explain this method below.

In [57], it was shown that quantum information has different types corresponding

to decompositions of the identity on a Hilbert space. A decomposition of the identity

can be represented by a collection of mutually orthogonal projectors J = {Ji} where

I =
∑

j Jj and J†j = Jj = J2
j . For example, on a two-dimensional Hilbert space, there
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are two possible decompositions,

I = |0〉〈0|+ |1〉〈1| and I = |+〉〈+| + |−〉〈−| (4.15)

where |±〉 = 1√
2
(|0〉 ± |1〉). Then, {|0〉〈0|, |1〉〈1|} and {|+〉〈+|, |−〉〈−|} can be called the

Z type and the X type of information, respectively. This means that one can determine

whether a state is |0〉 or |1〉 (|+〉 or |−〉) by measuring Z (X).

Given a mapping E : L(H )→ L(H ′) where L(H ) is the space of operators on the

Hilbert space, the J type of information in H will be perfectly presented after the map-

ping if the output operators are all orthogonal with respect to {Jj}, i.e., E(Jj)E(Jk) = 0

for j 6= k. On the other hand, it will be absent after the mapping if E(Jj) is independent

of j. More precise details were presented in [57].

Gheorghiu, Looi and Griffiths defined an information group G that represents the

types of information in the coding space [39]. Some elements of this group might dis-

appear by tracing out the subset of carriers Γ (equivalently, players in a secret sharing

context), and the remaining elements form a subgroup of G. Then, this subgroup repre-

sents what types of information are present in the complement of Γ [39].

Classical information is defined as a single type of information or equivalently, all

compatible types of information [57]. Note that two types J and J ′ are compatible if all

Ji commute with all J ′j. In this sense, if the types of information contained in a subset

of carriers are all compatible, the information can be said to be classical. Otherwise, the

subset contains quantum information. For example, in the [[4, 2, 2]] stabilizer encoding,

the types of information that are present in any two carriers are all compatible, and hence

they contain only classical information [39].

The information group can characterize the information that appears in a subset of

carriers for the stabilizer encoding. However, precise knowledge of the encoding opera-

tion (e.g., stabilizers) is required to generate the information group. It turns out that
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this method is not valid given the encoding operation is a black box (i.e., in this case,

one must play only with inputs and outputs of the operation). In fact, it is not easy to

characterize leaked information directly from the density matrix that is obtained after

the operation. Thus, in the next section, I propose an indirect way to determine whether

leaked information is classical or quantum by embedding the encoding operation of a

quantum ramp secret sharing scheme in the bipartite setting of entanglement sharing.

4.2 A New Secrecy Condition of QRSS with Entanglement Sharing

Entanglement is the one way to realize a quantum channel. Quantum correlation that is

inherent in entanglement enables us to achieve quantum communication. For example,

in quantum teleportation, one party can transmit an arbitrary quantum state to another

party by sharing a maximally entangled state and communicating two classical bits [6].

The terminology “quantum correlation” is justified by the observation that entangled

states violate Bell’s inequalities derived from hidden parameters [4]. On the other hand,

separable states refer to classical correlation as they can be classically prepared by LOCC,

and satisfy the Bell’s inequalities [41]. A classical channel can be realized by separable

states.

In this section, I define classical and quantum information with respect to what

kind of channels information is transmitted through. Generally, we consider quantum

information to include classical information. However, if quantum information can be

transmitted through a classical channel, it will be effectively classical. Thus, I regard

the transmitted information as classical information. On the other hand, if quantum

information can be transmitted through a quantum channel but not through any classical

channel, I will consider it quantum. These definitions can be understood in the following
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context.

Imagine a circuit implementing quantum teleportation, which successfully operates

when a maximally entangled state is input. Alice inputs her quantum state to this

circuit, and then the circuit outputs to Bob a density matrix associated with the input

state. Given a maximally entangled state, the output density matrix is identical to the

input state. If a product state is inserted instead of the maximally entangled state,

this circuit will output the identity matrix and Bob cannot get any information about

Alice’s quantum state. The more interesting case is a separable state. If a separable

state replaces the maximally entangled state, this circuit cannot achieve teleportation

perfectly. For example, Alice inputs an arbitrary quantum state |φ〉S = α|0〉S + β|1〉S

with a separable state given by

ρSR =
1

2

(
|0〉〈0|S ⊗ |0〉〈0|R + |1〉〈1|S ⊗ |1〉〈1|R

)
. (4.16)

Then, the circuit outputs a density matrix,

ρR = |α|2|0〉〈0|+ |β|2|1〉〈1|. (4.17)

Now, Bob has some information about the amplitudes of |φ〉S, but learns nothing about

the relative phase of the amplitudes. According to my definitions, quantum information

cannot be transmitted at all but only classical information appears in the output density

matrix when any separable state is input into the quantum teleportation circuit. The

method to classify information in the context of quantum teleportation is useful to de-

termine the presence of quantum information in output states without ambiguity, as it

relies on the clear definitions of bipartite states.

Let me revisit the [[4, 2, 2]] stabilizer code. The [[4, 2, 2]] stabilizer code is not only

used to devise an optimal entanglement sharing scheme but also for a (3, 2, 4) quantum

ramp secret sharing scheme. Suppose that the optimal entanglement sharing scheme

using the [[4, 2, 2]] stabilizer code is applied to share a maximally entangled state in the
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quantum teleportation circuit. A dealer inputs his secret state into the circuit and en-

codes the maximally entangled state into four shares by the optimal entanglement sharing

scheme. Each share is given to a player. Then, any three players can receive the secret

fully through this circuit by recovering the original maximally entangled state from three

shares and any single player is totally denied any information about the secret with a

product state. On the other hand, any two players obtain only classical information after

the circuit, as they cannot recover any entanglement with the dealer in this scheme. This

observation corresponds to the result of [39], and it can extend to any quantum ramp

secret sharing scheme.

Consider a quantum ramp secret sharing scheme that has the encoding operation

C : |j〉D → |Cj〉P. In this scheme, the encoded state |Cj〉P is distributed among a set of

players P . At first, prepare a maximally entangled state,

|S〉 =
1√
|C|

∑
j

|j〉D|j〉D. (4.18)

Then, half of |S〉 is left to a dealer D and the other half is encoded by the encoding

operation C,

|Ψ〉 = (ID ⊗ C)|S〉|00 . . . 0〉 =
1√
|C|

∑
j

|j〉D|Cj〉P (4.19)

where |00 . . . 0〉 is an ancilla. Now, every intermediate set Γ ∈ P obtains the reduced

density matrix ρΓ after the operation. Next, check ρΓ for any entanglement between two

parties D and Γ. If ρΓ has some entanglement with the dealer, Γ can get some quantum

information from the dealer through a quantum teleportation circuit. This means that

the encoding operation C leaks some quantum information to Γ. Otherwise, Γ is totally

denied any quantum information. In this sense, I can propose a secrecy condition of

quantum ramp secret sharing as follows.



61

Definition 4.2.1. Given an encoding operation C : HD →HP mapping

(ID ⊗ C) : |S〉 =
1√
|C|

∑
j

|j〉D|j〉D → |Ψ〉 =
1√
|C|

∑
j

|j〉D|Cj〉P, (4.20)

a quantum ramp secret sharing scheme described by C is secure from the leakage of

quantum information if the reduced density matrix for every intermediate set Γ ∈ P ,

ρΓ = trΓ̄(|Ψ〉〈Ψ|), is separable with the system D.

Furthermore, one might use entanglement measures to quantify how much quantum

information is leaked, with respect to the amount of entanglement.

4.3 Summary

Quantum ramp secret sharing has the advantage of a small size of shares, but it nec-

essarily leaks some information about a secret to intermediate sets. Characterizing the

leaked information is one of the important issues in this field, as it is closely related to

the secrecy of schemes. In this chapter, I addressed the problem of whether the leaked

information is classical or quantum. First, I investigated the quantum mutual informa-

tion and the method of an information group. The quantum mutual information well

defines the intermediate sets, but it is not suitable to distinguish quantum from classical

information. For the stabilizer encoding, it is possible to precisely characterize informa-

tion from the subgroups of an information group, but this method requires some details

of the encoding operation to generate the information group.

I dealt with this problem using entanglement sharing. First, I defined classical and

quantum information separately with respect to classical and quantum channels. The

idea is that quantum communication cannot be achieved with only classical channels.

Then, I showed that the leakage of quantum information can be assessed by embedding a
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quantum ramp secret sharing scheme into the bipartite setting of entanglement sharing.

Finally, I proposed a new secrecy condition of quantum ramp secret sharing.
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Chapter 5

Hybrid Entanglement Sharing

In this chapter, I introduce hybrid entanglement sharing, which combines non-perfect

entanglement sharing with classical secret sharing. Non-perfect entanglement sharing

schemes leak some entanglement to unauthorized sets. However, it is possible to lock

the leaked entanglement using a classical key. Classical secret sharing can distribute the

key among a set of players in such a way that any unauthorized set is totally denied any

access to entanglement. A similar technique was applied to non-perfect quantum secret

sharing [58], and was generalized in [59].

In Sec. 5.1, I start by introducing non-perfect entanglement sharing schemes with

an example that exploits the [[6, 4, 2]] stabilizer code. Then, in Sec. 5.2, I introduce a

technique that encrypts entanglement using classical information. Finally, in Sec. 5.3 I

devise hybrid entanglement sharing schemes by introducing the technique in non-perfect

entanglement sharing schemes.

5.1 Non-perfect Entanglement Sharing Schemes

As in quantum secret sharing, quantum error correcting codes are good candidates for

the encoding operations in entanglement sharing as their coding spaces naturally yield

access structures. As I showed in Chapter 3, the Shor 9-qubit code and the [[4, 2, 2]]

stabilizer code are indeed used to devise entanglement sharing schemes. However, not all

quantum error correcting codes are suitable for entanglement sharing. Some quantum

error correcting codes might leak partial entanglement to unauthorized sets. The entan-
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glement leakage leads to non-perfect entanglement sharing schemes.

Non-perfect entanglement sharing mainly occurs when the underlying quantum error

correcting code has a coding space of large dimension. The dimension of the coding space

is directly related to the amount of initial entanglement. For example, a 2k-dimensional

coding space corresponds to k ebits of the initial entanglement, i.e., E(ρDP) = k. In

Sec. 3.3, I mentioned that a share r of one qubit acts as a key that locks at most the

initial entanglement of two ebits (i.e., k = 2). If more than two ebits are initially shared,

however, the important share cannot lock the entire amount of the initial entanglement.

Thus, an unauthorized set will get some entanglement after discarding the share r from

an authorized set.

Consider a non-perfect entanglement sharing scheme which is devised using the [[6, 4, 2]]

stabilizer code. A dealer encodes a maximally entangled state of four ebits by the [[6, 4, 2]]

code such that

1

4

16∑
i=1

|i〉|i〉 7→ 1

4

16∑
i=1

|i〉|βf(i)〉|βg(i)〉|βf(i)+g(i)〉 (5.1)

where f(i), g(i) = {0, 1, 2, 3} and {|βj〉} are Bell states. Note that each qubit in the code

is allocated to a player. Threshold scheme arises because the stabilizer elements of the

code are invariant under permutation, i.e., S = {XXXXXX,ZZZZZZ}.

Any five players can recover the original entanglement as this stabilizer code can cor-

rect erasure errors on a single qubit. However, the amount of initial entanglement is too

large to be reduced to zero by discarding one player from the five players. Even though

one player is excluded, some entanglement remains between any four players and the

dealer. The reduced density matrix of four players indeed violates the PPT criterion. In

the next section, I explain how to lock the remaining entanglement.
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5.2 Locking of Entanglement with Classical Information

In this section, I show how to lock entanglement using classical information. In fact, clas-

sical information has been used to encrypt a quantum secret [58] [59]. Let us consider

the following example. In quantum teleportation, Alice teleports an arbitrary quantum

state |ψ〉 to Bob by communicating two classical bits, given a previously shared entan-

glement. As Alice performs a joint measurement on |ψ〉 and half of the entanglement,

Bob’s state is collapsed into one of the four states |ψ〉, (X|ψ〉), (Z|ψ〉) or (XZ|ψ〉) with

equal probability. Each state corresponds to the measurement outcome of two classical

bits. Before communicating the classical bits, Bob’s qubit is left in a maximally mixed

state,

1

4
(|ψ〉〈ψ|+X|ψ〉〈ψ|X + Z|ψ〉〈ψ|Z +XZ|ψ〉〈ψ|ZX). (5.2)

However, with the knowledge of the two classical bits, he can determine into which state

his qubit has been collapsed, and recover |ψ〉. In this example, classical bits act like a

key that is used to encrypt and decrypt the quantum state. Similarly, entanglement can

be encrypted by a classical key.

Consider a maximally entangled state in a bipartite system of two 2k-dimensional

Hilbert spaces HA ⊗HB,

|S〉 =
1√
2k

2k−1∑
j=0

|aj〉|bj〉. (5.3)

Here, I introduce an unitary mapping U l : HA ⊗HB →HA ⊗HB such that

U l : |S〉 7→ |Sl〉 =
1√
2k

2k−1∑
j=0

αjl|aj〉|bj〉 (5.4)

where αjl = exp(2iπjl/2k) and l ∈ Z2k is randomly chosen. As in quantum teleportation,

the entanglement |Sl〉 is totally randomized without knowing the classical information l,
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as follows.

ρS =
2k−1∑
l=0

|Sl〉〈Sl|

=
1

2k

2k−1∑
j,j′=0

(2k−1∑
l=0

ei
2π(j−j′)l

2k

)
|aj〉〈aj′| ⊗ |bj〉〈bj′|

=
1

2k

2k−1∑
j,j′=0

δ(j − j′)|aj〉〈aj′| ⊗ |bj〉〈bj′|

=
1

2k

2k−1∑
j=0

|aj〉〈aj| ⊗ |bj〉〈bj|.

(5.5)

Now, the bipartite system can be written in terms of separable states. That is, the

classical information effectively encrypts the maximal entanglement. Also, the encrypted

entanglement can be always decrypted with knowledge of the classical information used

for encryption. In the next section, I use this technique to lock leaked entanglement in a

non-perfect entanglement sharing scheme.

5.3 Construction of Hybrid Entanglement Sharing Schemes

In hybrid entanglement sharing schemes, the essential idea to lock leaked entanglement

is to encrypt the initial entanglement by a classical key and distribute the key such

that any unauthorized set is totally denied the key. This can be achieved by classical

secret sharing. Hybrid schemes distribute the encrypted entanglement and a classical key

using entanglement sharing and classical secret sharing, respectively. That is, each player

receives both quantum and classical shares. Then, any authorized set can recover the

initial entanglement by knowing the classical key, but unauthorized sets cannot have any

access to the entanglement without knowing the classical key. If the entanglement sharing

scheme used to distribute the encrypted entanglement is non-perfect, the unauthorized

sets might have some entanglement without hybridizing. However, distribution of a
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classical key effectively locks the leaked entanglement in hybrid schemes. In this sense,

the hybrid schemes can be understood like “double doors”. Even though the inner door

is a little bit open, one cannot enter the room without passing the outer door. Now, I

implement a hybrid scheme from any given quantum error correcting code, as follows.

1. A dealer prepares a maximally entangled state

|S〉 =
1√
2k

2k−1∑
j=0

|j〉|j〉

in the bipartite system HD ⊗HD where HD is a 2k-dimensional Hilbert space.

2. The dealer is given a quantum error correcting code that encodes k in n qubits. Its

coding space C induces an access structure Q; e.g., for a [[n, k, d]] stabilizer code,

Q consists of any n− d+ 1 or more shares. Then, the dealer encodes half of |S〉 in

the coding space C by mapping

|S〉 =
1√
2k

2k−1∑
j=0

|j〉|j〉 7→ |Ψ〉 =
1√
2k

2k−1∑
j=0

|j〉|Cj〉

where C = span{Cj}j=0···2k−1.

3. The dealer selects a classical key l randomly in Z2k and performs U l on |Ψ〉. Then,

the dealer has

1√
2k

2k−1∑
j=0

ei
2πjl

2k |j〉|Cj〉.

Now, the dealer takes the last n qubits as quantum shares.

4. The dealer encodes the classical key l in n classical shares using a classical secret

sharing scheme with an access structure Q′ ⊆ Q.

5. Classical and quantum shares are separately distributed among n players. If a

subset of players is an element of Q′, they can recover both the classical key l

and the initial maximally entangled state |S〉. Otherwise, they cannot have any

entanglement with the dealer.



68

Hybrid entanglement sharing makes construction and verification of secrecy easier than

entanglement sharing. For entanglement sharing, it is comparatively hard to verify its

secrecy because it is very difficult to determine whether or not a given density matrix is

separable. Also, not all quantum error correcting code can be used to construct entangle-

ment sharing schemes. However, hybrid entanglement sharing can be constructed from

any quantum error correcting code by choosing suitable classical secret sharing schemes.

This can be achieved, for instance, by simply using polynomial functions [17] [18]. Fur-

thermore, its secrecy is easily determined according to whether or not every unauthorized

set is denied any information about the classical key.

5.4 Summary

In this chapter, I proposed a method for locking leaked information in non-perfect entan-

glement sharing schemes. Entanglement can be locked by classical information through

unitary operations. I showed that unauthorized sets of players can be effectively excluded

from getting access to entanglement by properly distributing the classical information

among players. The distribution of classical information can be achieved by classical

secret sharing. Then, I presented how to construct hybrid entanglement sharing schemes

from any quantum error correcting codes. This construction is summarized as follows.

First, a dealer encodes a maximally entangled state in a given coding space, and then

performs a unitary operation on the encoded entanglement with respect to a randomly

selected classical key. Without knowing the key, the resultant state is totally randomized

and becomes a separable state. The classical key is distributed among a set of players by

a properly selected classical secret sharing scheme, in such a way that only authorized

sets of players can get the key and recover the original entanglement, but other sets are
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totally denied any access to the entanglement.
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Chapter 6

Conclusions and Future Work

Quantum secret sharing is one of the most important cryptographic protocols, which is

closely related to quantum error correction. The main results of quantum secret sharing

naturally follow from the theory of quantum error correction. Moreover, quantum secret

sharing schemes can be constructed from quantum error correcting codes.

In this thesis, I introduced a new cryptographic protocol that shares a maximally

entangled state with a set of players in such a way that some sets of players are autho-

rized to recover the original entangled state fully, but the other sets are totally denied

any entanglement. This protocol is called “entanglement sharing”. As in quantum secret

sharing, quantum error correcting codes play a crucial role in entanglement sharing. I

constructed entanglement sharing based on the existing stabilizer code, and found two

examples of entanglement sharing using the Shor’s 9-qubit code and the [[4, 2, 2]] stabi-

lizer code, respectively. In each example, the secrecy was verified by directly computing

the reduced density matrix of each subset of players. I used permutation invariance in

stabilizers and monogamy of entanglement to reduce the number of computations. In

particular, I derived from monogamy that an access structure in entanglement sharing

cannot have two disjoint sets. Also, I proved by using the lockability of the relative en-

tropy of entanglement that the size of shares must be at least half the amount of initial

entanglement (Theorem 3.3.1). An entanglement sharing scheme is said to be optimal

if it has the minimum size of shares with respect to the initial amount of entanglement.

Then, I showed that the [[4, 2, 2]] stabilizer code induces an optimal entanglement sharing

scheme with a threshold access structure.

With the bipartite setting of entanglement sharing, I proposed a new secrecy con-
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dition of quantum ramp secret sharing. In quantum ramp secret sharing, one of the

important issues is characterizing the leaked information. Particularly, I focused on how

to determine whether the leaked information is classical or quantum. Intermediate sets

were clearly described by the quantum mutual information by extending the description

of quantum secret sharing in [38]. However, the quantum mutual information was not

suitable to determine what kind of information is leaked, as the mutual information can-

not distinguish between classical and quantum information but measures both at the

same time. For the stabilizer encoding, the leaked information can be characterized us-

ing the notion of an information group [39]. This method seemed to provide a precise

characterization of leaked information, but it required details of the underlying encoding

operation. From a practical point of view, it might be more desirable to examine leaked

information with only input and output states of the encoding operation because it is

not easy to fully characterize quantum operations in general.

I came up with a new approach that can be applied to any quantum ramp secret

sharing without requiring details of its encoding operation. I first defined quantum infor-

mation as the information that can be transmitted through a quantum channel, but not

through a classical channel. Quantum and classical channels can be realized by entangled

and separable states, respectively. Thus, I examined the bipartite states of intermediate

sets by embedding quantum ramp secret sharing into the bipartite setting of entangle-

ment sharing. This led to the secrecy condition that every intermediate set must not have

any entangled state with a dealer in order for a quantum ramp secret sharing scheme to

be secure from leakage of quantum information. Under this condition, I showed that the

[[4, 2, 2]] stabilizer code does not leak any quantum information and this corresponds to

the result of [39].

At this point, I remark that the proposed secrecy condition is in fact equivalent to the

secrecy condition of entanglement sharing, as shown in the case of the [[4, 2, 2]] stabilizer
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code. This means that every quantum error correcting code used for entanglement shar-

ing is a quantum ramp scheme which is secure against quantum leakage. Similarly, every

quantum error correcting code corresponding to quantum secret sharing is a strict case

of entanglement sharing, in which unauthorized sets have only product states. These

relationships are summarized in Fig. 6.1

Figure 6.1: Relationship among entanglement sharing, quantum secret sharing and quan-
tum ramp secret sharing schemes in terms of quantum error correcting codes. Some
existing stabilizer codes are given as examples.

Next, I hybridized entanglement sharing to make construction and verification of its

secrecy easier alternatively. In hybrid schemes, a maximally entangled state was locked

by classical information and the classical information was properly distributed using

classical secret sharing. Any unauthorized set was left in a separable state with a dealer

because it could not recover any information about the classical information. Hybrid

entanglement sharing can be constructed from any quantum error correcting code.

Finally, I give some suggestion for a future work. The structure of quantum error

correcting codes determines whether the induced entangled sharing scheme is perfect or

non-perfect, or whether it is a threshold scheme or a scheme with a general access struc-

ture. In this sense, future work can move the research toward the precise relationship
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between quantum error correcting codes and entanglement sharing schemes. We might

consider the relationship in stabilizer formalism because it can provide a more compact

picture to understand the structure of a code.
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Appendix A

Investigation of Shor’s code

In this appendix, I supplement Sec. 3.2 by investigating other sets in {B}. Recall the

mapping in Eq. 3.7 according to the Shor’s 9-qubit code.

|S〉 7→ |Ψ〉 =
1√
2

1∑
j=0

|j〉D|Gj〉123|Gj〉456|Gj〉789. (A.1)

As I show in Sec. 3.2, the reduced density matrix for {1, 2, 3, 4, 5, 6} has a separable form.

The reduced density matrices for {1, 2, 3, 7, 8, 9} and {4, 5, 6, 7, 8, 9} are also separable

with a dealer D due to a permutation on the triplets. I define two subsets of players to

be equivalent if the reduced density matrix of one subset can be obtained from the other

by the permutation on the triplets. In this sense, the complements of {1, 2, 3, 4, 5, 6},

{1, 2, 3, 7, 8, 9} and {4, 5, 6, 7, 8, 9} are equivalent to each other so I look at only the

complement of B = {1, 2, 3, 4, 5, 6}. In fact, the reduced density matrix for B̄ = {7, 8, 9}

(equivalently, for {1, 2, 3} and {4, 5, 6}) is a separable state with the dealer, as shown as

1

2

1∑
i=0

|i〉〈i|D ⊗ |Gi〉〈Gi|789. (A.2)

I regard these six sets as a class of {1, 2, 3}. Similarly, it is possible to define other classes

in {B}. Note that a class of B consists of the equivalent sets of B and the complement

of B. Every set in {B} is classified into one of the following classes:

1. {1, 2, 3}

2. {1, 4, 7}

3. {1, 2, 3, 4}

4. {1, 4, 7, 8}
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Let B̄ denote the complement of B. For a class of B, it is enough to check whether or

not the reduced density matrices of B and B̄ are separable with the dealer D.

Let us look at the class of {1, 4, 7}. For the complement of {1, 4, 7}, the reduced

density matrix of is a separable state, written as

1

2

(
|+〉〈+|D ⊗ ρ235689 + |−〉〈−|D ⊗ ρ′235689

)
(A.3)

where |±〉 = 1√
2
(|0〉D ± |1〉D),

ρ235689 =
1

4

(
|000000〉〈000000|+ |001111〉〈001111|+ |110011〉〈110011|+ |111100〉〈111100|

)
(A.4)

and

ρ′235689 =
1

4

(
|000011〉〈000011|+|001100〉〈001100|+|110000〉〈110000|+|111111〉〈111111|

)
.

(A.5)

Even when discarding three more qubits {2, 5, 8} from Eq. A.3, the resulting density

matrix (i.e., a reduced density matrix of {3, 6, 9}) still has a separable form. Note that

{1, 4, 7} is equivalent to {3, 6, 9}. Thus, all sets in this class are equivalently separable

with the dealer.

Next, consider the class of {1, 2, 3, 4}. The reduced density matrix for the complement

of {1, 2, 3, 4} is given by

1

2

( 1∑
i=0

|i〉〈i|D ⊗ |Gi〉〈Gi|789

)
⊗ 1

2

(
|00〉〈00|56 + |11〉〈11|56

)
. (A.6)

Here, {7, 8, 9} is separable with the dealer, no matter whether or not {5, 6} is involved;

{5, 6} is independent of other qubits. Thus, the separable form holds for the reduced

density matrix of {6, 7, 8, 9}. {6, 7, 8, 9} is equivalent to {1, 2, 3, 4}.

Finally, consider the class of {1, 4, 7, 8}. By tracing out {8} from Eq. A.3, it is eas-

ily shown that the reduced density matrix of {2, 3, 5, 6, 9} is a separable state with the

dealer. The density matrix is still a separable state even after discarding {5} again. As
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{1, 4, 7, 8} is equivalent to {2, 3, 6, 9}, the sets in this class are all separable with the

dealer.

From all these cases, I conclude that any set of players has either authorized or

unauthorized. The authorized sets can recover the maximally entangled state with the

dealer: any 7, 8 and 9 players; {1, 2, 3, 4, 5, 7} and its equivalent sets; {1, 2, 3, 4, 7} and its

equivalent sets. Some unauthorized sets have a separable state with the dealer: {1, 2, 3},

{1, 4, 7}, {1, 2, 3, 4}, {1, 2, 4, 7}, {1, 2, 3, 4, 5}, {1, 2, 4, 5, 7}, {1, 2, 3, 4, 5, 6}, {1, 2, 4, 5, 7, 8}

and all their equivalent sets. The other unauthorized sets have a product state: any one

or two players; {1, 2, 4} and its equivalent sets; {1, 2, 4, 5} and its equivalent sets. Thus,

entanglement sharing using a [[9, 1, 3]] stabilizer code has a general access structure.
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Appendix B

A property of the relative entropy of entanglement

In this Appendix, I derive the following property of the relative entropy of entanglement

used in Sec. 3.3 [55]:∑
i

piER(ρi)− ER(
∑
i

piρi) ≤ S(
∑
i

piρi)−
∑
i

piS(ρi). (B.1)

First, recall that the quantum relative entropy of ρ with respect to σ is

S(ρ||σ) = tr(ρ log2 ρ)− tr(ρ log2 σ). (B.2)

Suppose that ρ is a mixture of density matrices, expressed by ρ =
∑

i piρi. Then, the

quantum relative entropy can be rewritten as

S(ρ||σ) = tr(ρ log ρ)− tr(ρ log σ)

= tr
(∑

i

piρi log ρ
)
− tr

(∑
i

piρi log σ
)

=
∑
i

pitr(ρi log ρ)−
∑
i

pitr(ρi log σ)

=
(∑

i

pitr(ρi log ρi)−
∑
i

pitr(ρi log σ)
)
−
(∑

i

pitr(ρi log ρi)−
∑
i

pitr(ρi log ρ)
)

=
∑
i

piS(ρi||σ)−
∑
i

piS(ρi||ρ)

(B.3)

because tr(
∑

i piρi log[·]) =
∑

i tr(piρi log[·]) =
∑

i pitr(ρi log[·]) according to the proper-

ties of trace.

Now, consider a density matrix ρAB =
∑

i piρ
AB
i on the bipartite system HA ⊗ HB.

Then, we have ∑
i

piS(ρABi ||σAB) =
∑
i

piS(ρABi ||ρAB) + S(ρAB||σAB) (B.4)
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where σAB is a separable state on HA⊗HB. The relative entropy of entanglement ER is

defined as the smallest quantum relative entropy from a bipartite density matrix ρAB to

all possible separable states on the system (see Eq. 2.34). Let σAB be a closest separable

state to ρAB, satisfying ER(ρAB) = S(ρAB||σAB). Since ER(ρABi ) ≤ S(ρABi ||σAB), we can

have ∑
i

piER(ρABi )− ER(ρAB) ≤
∑
i

piS(ρABi ||ρAB) (B.5)

By the definition of von Neumann entropy (see Eq. 2.26), the right side of the above

inequality can be written as∑
i

piS(ρABi ||ρAB) =
∑
i

pitr(ρ
AB
i log ρABi )−

∑
i

pitr(ρ
AB
i log ρAB)

=
∑
i

pitr(ρ
AB
i log ρABi )− tr(ρAB log ρAB)

= S(ρAB)−
∑
i

piS(ρABi )

(B.6)

Taking Eq. B.6 in Eq. B.5, we can derive the property of Eq. B.1:

∑
i

piER(ρABi )− ER(ρAB) ≤ S(ρAB)−
∑
i

piS(ρABi ) (B.7)

where ρAB =
∑

i piρ
AB
i on the bipartite system HA ⊗HB.
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