
UNIVERSITY OF CALGARY

Cavity-Induced Synthetic Gauge Potentials

by

Farokh Mivehvar

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF PHYSICS AND ASTRONOMY

CALGARY, ALBERTA

January, 2016

c© Farokh Mivehvar 2016



UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Gradu-

ate Studies for acceptance, a thesis entitled “Cavity-Induced Synthetic Gauge Potentials”

submitted by Farokh Mivehvar in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY.

Supervisor
Dr. David L. Feder

Department of Physics and
Astronomy

University of Calgary

Dr. Christoph Simon
Department of Physics and

Astronomy
University of Calgary

Dr. Paul Barclay
Department of Physics and

Astronomy
University of Calgary

Dr. Dennis Salahub
Department of Chemistry

University of Calgary

Dr. Duncan O’Dell
Department of Physics and

Astronomy
McMaster University

Date



Abstract

Abelian and non-Abelian gauge potentials and quantum gauge theories play central roles

in our understanding of Nature. Abelian and non-Abelian gauge potentials are also of

great significance in condensed matter physics. In fact, minimal coupling of electrons to

an Abelian or non-Abelian gauge potential is the essential ingredient for the realization of

topological states of matter. Due to the high controllability of ultracold atoms, they are

commonly exploited to test fundamental theories of physics, simulate intractable systems,

and to realize novel exotic many-body states. Nonetheless, the charge neutrality of atoms

places severe constraints on ultracold atomic systems, since neutral particles do not couple to

gauge potentials the way charged particles do (via minimal coupling of their center-of-mass

momenta to gauge potentials). Topological states of matter, therefore, cannot be directly

realized in quantum gases. Likewise, gauge theories cannot be directly tested in ultracold

atomic systems. That said, coupling a multi-component quantum gas to laser light can lead

to the emergence of artificial Abelian and non-Abelian gauge potentials minimally coupled

to the center-of-mass momenta of ultracold neutral atoms, paving the way for realizing

topological states of matter and testing gauge theories in quantum gases.

In all previous approaches for inducing gauge potentials in quantum gases, the radiation

field is treated classically and the back-action of the atoms on it is ignored, resulting in

static gauge potentials. Nevertheless, when the radiation field is confined within a high-

finesse cavity the atom-photon interaction is significantly amplified and the back-action of

the atoms on the radiation field is no longer negligible, leading to complex coupled dynamics

of the matter and radiation fields in which both entities are affected by one another and

must be treated on the same footing.

I have developed a two-photon Raman scheme in the strong atom-photon coupling regime,

based on two counter-propagating modes of a ring cavity, to induce both synthetic magnetic
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field and spin-orbit coupling for a single neutral atom inside the cavity. The spin-orbit

interaction is only weakly dependent on the occupation of the cavity modes, whereas the

strength of the magnetic field is proportional to the square of the total number of photons

in the cavity and can be made arbitrarily large, which is desirable for realizing the quantum

Hall phase. I have then extended this single-atom cavity quantum-electrodynamics scheme

to many bosons in the weak atom-photon coupling regime. In addition to inducing spin-orbit

coupling for the individual atoms, the cavity fields also mediate infinite-ranged interactions

between atoms, whose strengths and signs can readily be tuned experimentally. The in-

terplay between these cavity-mediated interactions and the intrinsic two-body interactions

determines the many-body ground state and its elementary excitations, with novel conse-

quences such as the stabilization of an attractive Bose-Einstein condensate which otherwise

is unstable.
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Chapter 1

Introduction

1.1 Ultracold Atoms and Bose-Einstein Condensation

The experimental realization in 1995 of Bose-Einstein condensation (BEC) in ultracold

bosonic atoms marked the beginning of an era of precise and controllable testing of fun-

damental theories of physics and led to the realization of novel, exotic many-body states

with no analog elsewhere. Parallel to this development in bosonic atoms, fermionic atoms

have also been cooled down to temperatures on the order of the Fermi temperature. These

developments in ultracold atomic gases have made Feynman’s revolutionary notion — of sim-

ulating an intractable system with another system — a reality, with ultracold atomic gases

being the tractable environment [1]. They can readily be manipulated to emulate other

physical systems on demand, ranging from strongly interacting condensed matter systems

to relativistic particles and gauge theories.

The history of BEC dates back to the 1920s. It started with the groundbreaking work

of Satyendra Nath Bose who re-derived the quantum statistical distribution of photons in

the black-body radiation, independent of classical electrodynamics and by solely assuming

that the elementary cell of radiation phase space has the volume h3 (with h being the Planck

constant). He then obtained the number of possible distributions of photons over elementary

cells [2] (the English translation of the paper can be found for instance in Ref. [3]). Having

difficulty publishing his results, Bose sent his manuscript to Albert Einstein. After reading

it, Einstein immediately recognized its significance. Then he translated it into German and

had it published in Bose’s name in 1924 with the following comment to the editor: “In

my opinion, Bose’s derivation of the Planck formula signifies an important advance. The

method used here also yields the quantum theory of an ideal gas, as I shall show in details
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elsewhere” [3]. By extending Bose’s notion into massive particles, Einstein in1924 to 1925

obtained the quantum statistical distribution of a non-interacting gas, now known as “Bose-

Einstein statistics” [4, 5] (the English translation of the papers can be found in Ref. [6]).

Bose-Einstein statistics describe the thermal distribution of bosons in discretized energy

levels. Einstein immediately realized that according to this distribution a large fraction of

particles (i.e., bosons) will occupy the lowest energy state at very low temperature: “A

separation is effected; one part condenses, the rest remains a saturated ideal gas,” in his

own words. This phenomenon is now referred to as “Bose-Einstein condensation.” The BEC

phase transition happens when the de Broglie wavelength λdB =
√

2π~2/mkBT (with ~ =

h/2π, m the mass of the particle, kB the Boltzmann constant, and T the temperature) of the

particles becomes comparable with the average inter-particle distance n−1/3 (with n being the

average particle density); or more precisely when nλ3
dB ' 2.61 for a homogeneous Bose gas in

three dimensions [7]. At this critical transition temperature Tc, the wave packets of individual

particles overlap with one another and form a macroscopic condensate wavefunction.

For over a decade the prediction of BEC was overlooked, even by Einstein himself. This

was changed in the late 1930s by the work of Fritz London, who attributed the superfluidity

of the liquid helium-4 (4He) to BEC [8]. Although Bose-Einstein statistics along with the

prediction of BEC at low temperatures had been originally developed for non-interacting

bosons, London’s theory suggested that BEC could also occur in the strongly interacting

bosons, such as liquid 4He. Following London’s work, the theory of interacting bosons was

developed during the 1940s to 1960s, commencing with the pioneering work of Bogoliubov

on formulating quantum field theory of weakly interacting bosons in 1947 [9]. The basic

notion due to Bogoliubov was to separate the bosonic field operator ψ̂ into two parts: a

macroscopically occupied condensate wavefunction ψ = 〈ψ̂〉 and a quantum fluctuation δψ̂.

The condensate wavefunction ψ can be envisaged as the BEC order parameter: it vanishes

above the critical temperature Tc while it is non-zero below the critical temperature. In the
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early 1960s Gross and Pitaevskii independently derived a Schrödinger-like nonlinear equa-

tion, now referred to as the Gross-Pitaevskii (GP) equation, for the condensate wavefunction

ψ [10, 11, 12]. The GP approach is basically a mean-field approximation, which omits the

quantum fluctuations δψ̂.

Following these developments, the interest in BEC subsided in the 1970s. Nonetheless

with the advance of cooling techniques in the 1980s, such as laser cooling of atoms [13, 14, 15],

the hope for the observation of BEC in ultracold bosonic atoms was revived in the mid 1980s

and the early 1990s with pioneering works of Thomas Greytak and Dan Kleppner [16]. Laser

cooling relies on spontaneous emission of a photon in a random direction by the excited atom

and needs a closed optical cycle. Finally in 1995 in two groundbreaking experiments at the

University of Colorado and Massachusetts Institute of Technology, BEC was realized for the

first time over 70 years after its prediction [17, 18]. Eric Cornell, Carl Wieman, and Wolfgang

Ketterle were jointly awarded the Nobel Prize in Physics in 2001 for their efforts.

Following the discovery of BEC, there was an explosion of interest in studying BEC,

both theoretically and experimentally [19, 20]. Quickly after the first realization of BEC in

rubidium (87Rb) and sodium (23Na) atoms, BEC was also observed in lithium (7Li) and other

alkali atoms [21]. The experimental hallmark of BEC was the appearance of a sharp peak in

the velocity distribution of the atoms below the critical temperature Tc; see Fig. 1.1 [22]. The

typical number of atoms in experiments today ranges from a few thousand to several million,

with the BEC diameter on the order of tens or hundreds of µm depending on confining trap

potentials. These yield densities in the range of ∼ 1020 to 1021 m−3 (cf. the density of air

∼ 1025 m−3). The critical BEC transition temperature Tc ranges between ∼ 100 nK and 1

µK for typical experiments [23].

At such low densities as n ∼ 1020− 1021 m−3, three-body collisions are highly suppressed

and are rare, allowing the system to stay in a gaseous state [19]. Furthermore, at such low

energies as T ∼ 100 − 1000 nK, the two-body interactions can be described by a single

3



Figure 1.1: Velocity distribution of the Rb atoms just above the critical temperature Tc
(left), just below Tc (center), and well below Tc after further cooling (right). Reproduced
from Ref. [22] under the courtesy of the Creative Common (Public Domain) license.

parameter as, the s-wave scattering length, independent of details of the two-body poten-

tial [19]. In other words, it is a good approximation to replace two-body interactions with

V (r − r′) = (4π~as/m)δ(r − r′), where δ(r − r′) is the Dirac delta function and as solely

determines the strength (and sign) of the two-body interactions. In typical experiments in

BEC, the ratio of the s-wave scattering length as to the average particle spacing a ∼ n−1/3

is much smaller than one, that is, n1/3as � 1, implying that even two-body interactions are

weak in these systems. This makes atomic Bose condensates attractive systems to study

theoretically, since the well-known mean-field theory of Gross and Pitaevskii as well as the

Bogoliubov theory are well-suited for this weakly interacting regime. In fact, the depletion

of the condensate (i.e., the non-condensate fraction) due to two-body interactions is propor-

tional to
√
na3

s from the Bogoliubov theory. That is, separating the bosonic field operator

into a macroscopically occupied condensate wavefunction and a small quantum fluctuation

part is valid in the regime where
√
na3

s � 1 [24].

Although two-body interactions are very weak in dilute Bose condensates, they play a

significant role in these systems due to very low temperatures. Not only do they affect the
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static properties of condensates, such as the density distribution, they also have fundamental

consequences for the dynamics of condensates. The condensate is enlarged due to the inter-

actions and becomes macroscopic, allowing one to study it directly via optical techniques.

Therefore, observed densities of interacting Bose condensates at the center of traps are gen-

erally one to two orders of magnitude smaller than those predicted for ideal Bose condensates

in identical traps. However, the most far-reaching consequences of the interactions are in

the dynamics of condensates, with the most prominent example being the appearance of

phonon-like (i.e., linear sound-like) dispersion at long wavelengths in elementary excitations

of interacting uniform condensates.

Low-energy elementary (or sometimes called collective) excitations — also known as

quasi-particles — play an essential role in many-body systems [25], specifically in Bose

fluids as will be described below. In the context of BEC, they can be envisaged as small-

amplitude fluctuations of the condensate wavefunction ψ (i.e., the BEC order parameter)

around its equilibrium, which then propagate in the system [26]. Such elementary excitations

have a clear interpretation in a non-interacting homogenous Bose condensate: an elementary

excitation is the addition of a boson into a non-zero momentum p 6= 0 (i.e., an excited) state.

(Recall that bosons are condensed into the lowest energy state which is the zero momentum

p = 0 state in the absence of any spin-orbit coupling.) Then the excitation has the energy

dispersion ε(p) = p2/2m, which is quadratic (i.e., free-particle like) and implies that the

excitation propagates in the system as a free particle with no collective effect. The two-

body interactions completely change this simple picture of elementary excitations. Roughly

speaking, elementary excitations in the interacting case can be conceived to be composed

of a particle and hole. Bogoliubov illustrated that the energy dispersion of such excitations

at long wavelengths has the linear form ε(p) = csp, with cs being the speed of sound in the

Bose fluid. In other words, the elementary excitations at long wavelengths in an interacting

homogenous Bose condensate are phonon-like with a collective nature, analogous to phonon
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excitations of a solid crystal.

As mentioned above, superfluidity was first tied to the existence of BEC in a system

by London in 1938. It was then generalized by Laszlo Tisza later in the same year to a

two-component fluid, comprised of a normal and a superfluid component with corresponding

densities ρn and ρs, respectively, which intimately depend on temperature [27, 28]. Tisza

identified the superfluid component with Bose-condensed atoms and the normal component

with non-condensed atoms. The superfluid component can then flow without dissipation,

while there is a finite viscosity associated with the normal component. These hypotheses

could qualitatively explain most observed effects in superfluid 4He at that time, such as

the phase transition temperature Tλ = 2.18 K (which is not very far from the predicted

BEC transition temperature Tc = 3.13 K of 4He atoms), super-leak and torsional oscillation

experiments, where the superfluid component passes through a capillary without viscosity

and the normal component is dragged by disk-shaped oscillators, respectively [29]. The

postulated connection between superfluity and BEC can be understood by expressing the

condensate wavefunction as ψ =
√
neiθ, which leads to the condensate velocity field v =

~(ψ∗∇ψ − ψ∇ψ∗)/2mi|ψ|2 = (~/m)∇θ. The fact that the condensate velocity is given by

the gradient of the condensate phase θ has many far-reaching consequences for the motion of

the condensate. First, it follows that the condensate is irrotational ∇×v = 0, provided that

θ is not singular. Second, it implies that the circulation around a closed contour is quantized
∮

v · dr = (h/m)l (with l being an integer), meaning that vortices in the condensate are

quantized provided there are any. These two properties are also well-known indications of

superfluidity.

It should be nevertheless underlined that there is a subtle difference between superfluidity

and BEC. That is, not all BECs are superfluid and a system may exhibit superfluid behaviour

in the absence of BEC. An example of the former is the ideal Bose condensate and an example

of the latter is a lower-dimensional system. Furthermore, at very low temperatures close to
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absolute zero, where liquid 4He is almost completely superfluid (i.e., ρ = ρn + ρs ' ρs), the

condensate density ρc = |ψ|2 is depleted due to strong inter-atomic interactions and it is only

about 10% of the total density ρ [7]. Therefore, the superfluid density ρs is generally different

than the condensate density ρc, implying that Tisza’s description was not completely correct.

Lev Landau re-introduced the two-fluid model based on his phenomenological phonon-

roton description of the superfluidity in 1941 [30] and modified it later in 1947 [31]. Landau

postulated that at zero temperature, the fluid is completely superfluid, that is, ρ = ρs. As the

temperature increases, photon and roton quasi-particles are excited from the background su-

perfluid, forming the normal component ρn, where now ρ = ρs+ρn. Phonons are low-energy

linear excitations, while rotons are higher-energy elementary excitations with an energy gap

∆; see Fig. 1.2. The contribution of rotons becomes more appreciable as the temperature

rises (above ∼ 0.8 K). Landau’s theory has successfully explained many properties of the

superfluid 4He, including the temperature dependence of second sound (i.e., entropy waves

driven by a temperature gradient, in contrast to density waves driven by a pressure gradient

and characterized by first ordinary sound). This indicates that elementary excitations (espe-

cially phonons) play a fundamental role in superfluidity, the ingredient missing in London’s

and Tisza’s descriptions.

The aforementioned counter-intuitive example that an ideal Bose condensate is not su-

perfluid follows also directly from the Landau criterion for superfluidity. Consider an object

moving through a quantum fluid (such as a Bose gas), which then experiences friction through

the creation of elementary excitations in the fluid. Conservation of energy and momentum

throughout this process leads to the Landau critical velocity vc = min(ε(p)/p), the mini-

mum velocity at which the object can create low-energy excitations in the quantum fluid [32].

Recalling that the elementary-excitation spectrum of an ideal Bose condensate is just free-

particle-like ε(p) = p2/2m, the Landau critical velocity for the ideal Bose condensate is then

just zero, vc = 0. It means that the object experiences friction and drag as soon as it starts
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Figure 1.2: Elementary-excitation spectrum of superfluid 4He, as proposed by Landau. The
low-lying excitations are linear and phonon-like. There is an energy gap ∆ for higher-energy
excitations, known as rotons.

moving (i.e., v 6= 0), even with an exceedingly small velocity v → 0. This is in complete

contrast to an interacting Bose condensate, where the Landau critical velocity is equal to

the velocity of sound: vc = min(csp/p) = cs.

Alkali atoms in their ground state have a single electron in an s orbital, implying that

their total electronic angular momentum J = L + S (with L and S being the angular

momentum and spin of the electron) is J = S = 1/2. Although their nuclear spin I depends

on the atomic and isotopic species, the total angular momentum F = J + I of the atom

can only take two values F = I ± 1/2 for a nonzero nuclear spin I and a single value

F = J = S = 1/2 for I = 0. In the context of BEC, F is identified as the atomic spin

and is used, along with its projection mF = −F, · · · , F , to label atomic state manifolds

{|F,mF 〉}. In the original achievement of BEC, atoms were trapped only in one specific

spin state |F,mF 〉, indicating that the spin projection was frozen. Then the field operator

ψ̂ and the corresponding wavefunction (or the order parameter) ψ of the condensate are

single-component “scalar” fields, independent of the spin state.

With the subsequent development of purely optical traps, it then became feasible to si-

multaneously trap atoms in more than one spin state and study the spin dynamics [33, 34].
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Atoms can undergo spin exchange collisions, in which two atoms are scatted into spin states

different from their initial ones (with the constraint of the conservation of the angular mo-

mentum), and consequently the population of atoms in each spin state is not conserved.

Atoms can then condense in multiple spin states with variable densities due to spin exchange

collisions, forming “spinor” Bose condensates [35, 36]. Spinor condensates are generically

unstable in magnetic traps due to spin flipping processes. This is because only atoms in

one specific spin state can be confined in a given magnetic trap and spin flipping processes

lead to a severe loss of atoms from the trap. That said, there are exceptions such as 87Rb

where the spin exchange interactions are suppressed and the density of each spin compo-

nent is therefore conserved, referred to as “multi-component” (or “mixture”) BEC. In early

experiments, 87Rb atoms were simultaneously trapped in spin states |F = 2,mF = 2〉 and

|F = 1,mF = −1〉 in a magnetic trap [37]. It should be emphasized that mixture Bose con-

densates can also be achieved by trapping and cooling different isotopes of the same species,

or different atomic species. In such mixtures collisions cannot change one isotope (or atom)

into another, guaranteeing the fixed density of each component.

Loading and confining ultracold atoms in periodic optical lattices was a crucial step in

ultracold atomic experiments, opening the possibility for directly simulating solid-state and

condensed-matter physics in a controllable manner in atomic systems [38, 39, 40, 41]. Optical

lattices with various geometries can be readily generated in a laboratory by interfering laser

beams. The simplest configuration is two counter-propagating identical laser beams which

results in a one-dimensional standing wave pattern, simulating a somewhat artificial one-

dimensional crystal. More complicated laser configurations can be utilized to mimic desired

realistic crystals. Lasers are tuned such that they are off-resonant from any atomic transition.

The atoms then only experience a position-dependent shift on their ground state energy due

to virtual transitions (known as the ac Stark shift) and are attracted to minima or maxima

of the potential, depending on the sign of the detuning between laser and atomic frequencies.
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Interacting ultracold atoms in optical lattices are reminiscent of interacting electrons in

a crystalline solid, which is described by the celebrated Hubbard model [42]. The model

describing interacting ultracold bosons in optical lattices is somewhat different than the

original Hubbard model for electrons (i.e., fermions) due to bosonic statistics, and is referred

to as the Bose-Hubbard model. Unlike fermions in the Hubbard model, in the Bose-Hubbard

model more than one boson in the same internal state can occupy the same orbital of a lattice

site thanks to Bose-Einstein statistics. Therefore, it is feasible to have a single-component

Bose-Hubbard model, in complete contrast to the (Fermi-)Hubbard model. It is well-known

that a variety of quantum phases and quantum phase transitions can be realized in the

Hubbard and Bose-Hubbard models and its extended versions, the most notable being the

quantum phase transition between the superfluid and the Mott insulator. In the very weak

interacting regime the ground state of both Hubbard and Bose-Hubbard model is super-

fluid, while it undergoes the Mott-insulator phase transition in the strongly interacting limit

at integer fillings. The superfluid–Mott-insulator phase transition was realized in ultracold

bosonic atoms in 2002, pushing the frontier of ultracold atoms further into the strongly in-

teracting regime [43]. In the strongly interacting regime, the two-component Bose-Hubbard

model (and of course the Hubbard model) can be mapped into a spin-1/2 model. The two-

component Bose-Hubbard model can be realized with a two-component ultracold bosonic

gas in an optical lattice, allowing one to engineer various spin-1/2 models and investigate

their magnetic orders in ultracold atoms [44, 45]. In addition to these significant examples,

many other fundamental questions can also be addressed by studying ultracold atoms in ap-

propriate optical lattice geometries and parameter regimes. They include lower-dimensional

systems, higher spin models, interplay between disorder (i.e., Anderson localization) and

interactions, etc. [39].
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1.2 Synthetic Gauge Fields

Although ultracold atoms can be readily manipulated to simulate other systems, a wide class

of condensed matter states such as quantum Hall states and topological insulator states

cannot be directly realized in ultracold atoms, since they are charge neutral and do not

couple to gauge fields (such as the electromagnetic fields) the way charged particles (such as

electrons) do. A recent focus of interest in the ultracold-atom community is to induce Abelian

and non-Abelian gauge potentials in these charge-neutral systems. This interest stems from

developments in topological states of matter in condensed matter physics [46, 47, 48]. The

first known topological state of matter is the quantum Hall state, discovered by Klaus von

Klitzing in 1980, who was awarded the Nobel Prize in Physics in 1985 for this discovery [49].

The quantum Hall effect is the quantum analogue of the classical Hall effect, where a two-

dimensional (non-interacting) electronic system is subject to a strong magnetic field at low

temperatures. Coupling of the electron to the magnetic field is accounted for by replacing the

momentum p with the canonical momentum p−qA in the single particle Hamiltonian, where

q = −e is the charge of the electron and A(r) is the Abelian vector potential associated with

the magnetic field B = ∇×A. In contrast to the classical Hall effect, the Hall conductance

is quantized in the quantum Hall effect, σH = (e2/h)ν, where ν is an integer [50]. The

quantum Hall state exhibits another remarkable feature: although the bulk of the system

is an insulator, there exist conducting edge states which their number is equal to ν. In

other words, each edge state carries precisely a quantum of the conductance e2/h. The edge

states are conducting states, exponentially localized on the edges of the system. They are

topologically protected and hence are robust against perturbations.

Recently a new class of topological states possessing intrinsic “spin-orbit” (SO) couplings

was proposed, which do not need a strong external magnetic field and/or low tempera-

tures [51, 52, 53]; and they were subsequently observed [54]. This new state of matter has

been coined the (Z2) topological insulator, or the quantum spin Hall insulator in two dimen-
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sions. In solid state physics, the SO interaction is referred to as the coupling of an electron’s

center-of-mass momentum to its spin degrees of freedom. Examples of linear SO coupling

in two-dimensional electronic systems include Rashba ∝ σ̌xpy − σ̌ypx [55] and Dresselhaus

∝ −σ̌xpy− σ̌ypx [56] SO couplings, where σ̌ = (σ̌x, σ̌y, σ̌z) are the Pauli matrices1. In general,

a linear SO coupling can be recast as a non-Abelian vector gauge potential ǍAA (r, σ̌) whose

components do not commute with each other [Ǎi, Ǎj] 6= 0. In topological insulators the SO

coupling plays the role of the external magnetic field in the quantum Hall effect; and specif-

ically the quantum spin Hall insulator in its simplest form can be imagined as two copies of

the quantum Hall states with two opposite spin projections threaded with opposite magnetic

fields, hence the name quantum spin Hall effect. Analogous to the quantum Hall state, there

exist topologically protected conducting edge (surface) states in the edge (surface) of two-

(three-) dimensional topological insulators. Note that in the quantum Hall state the spin is

frozen and edge states are spin polarized due to the large magnetic field, whereas in the quan-

tum spin Hall state edge states come in 2ν pairs, with ν edge states for each spin projection.

The emergence of conducting edge states in bulk-insulator materials is a characteristic of all

topological states. It has been predicted that elementary excitations of fractional quantum

Hall liquids and topological superfluids are anyons with fractional statistics, obeying neither

Fermi-Dirac nor Bose-Einstein statistics. It has been proposed to implement fault-tolerant

topological quantum computations in these (non-Abelian) anyons [58].

Motivated by these developments in condensed matter physics, over the past decade

numerous theoretical schemes have been put forward to induce Abelian and non-Abelian

synthetic gauge potentials in ultracold neutral atomic gases mostly via atom-light inter-

actions [59, 57, 60]. Most of these schemes rely on the Berry phase (also known as the

geometric phase) to simulate the gauge potentials. Consider a Hamiltonian H(X), which

depends on a parameter X (not necessarily position), with local eigenvectors {|m(X)〉} and

1 Throughout this thesis, I will use the “check” notation to distinguish matrix operators Ǒ acting on the
internal-state space (when there is an ambiguity), following Ref. [57].
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corresponding eigen-energies {εm(X)}. Sir Michael Berry noticed that a local eigenvector

|n(X)〉 of the Hamiltonian H(X) moving adiabatically in the parameter space X (such that

there is no transition into other states {|n′(X)〉}, as required by the adiabaticity) may ac-

quire a non trivial geometric phase eiγn when its path encloses a closed circuit2 [61]. This

phase is different than the usual dynamical phase e−iεn(X)t/~ and does not depend on elapsed

time, but only on the geometry of the circuit [62]. Analogous to the Aharonov-Bohm phase

which is related to a vector potential A(r), the Berry phase can be associated with an

emergent geometric vector gauge potential An(X) = i 〈n(X)|∇X |n(X)〉, also known as the

Berry connection [63]. The dynamics of internal states of an atom dressed by the laser light

depend parametrically on the center-of-mass position R of the atom (via atom-light inter-

action terms). By properly engineering an R-dependent atom-field interaction Hamiltonian

(i.e., properly choosing the number of internal states and lasers, their mutual couplings, and

laser configurations), the atom can then acquire a non-trivial geometric phase and hence an

Abelian or a non-Abelian synthetic gauge potential minimally coupled to the center-of-mass

momentum of the atom [64]. Not only does this open up the possibility of inducing solid-

state-like gauge potentials in quantum gases, it also provides the opportunity of engineering

exotic gauge potentials for bosons and fermions beyond those encountered in conventional

solid-state materials.

In a series of pioneering experiments at the National Institute for Standards and Tech-

nology, Ian Spielman’s group engineered a synthetic magnetic field [65], electric field [66],

and SO coupling [67] for neutral atoms using a two-photon Raman scheme. By making the

two-photon Raman scheme position dependent in the transverse direction, the same group

subsequently realized the spin Hall effect in a Bose condensate of 87Rb atoms [68]. In the

two-photon Raman scheme employed to induce the SO-coupling, two internal ground states

of an atom are coupled to an excited state in the Λ scheme via two counter-propagating laser

beams. Both transitions to the excited state are far off-resonant while the two-photon tran-

2 See Appendix A for a short review of the Adiabatic Theorem and Berry phase.
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sition between the two ground states is almost resonant, resulting in the virtual population

of the excited state that allows the adiabatic elimination of its dynamics. After doing so,

the atom is formally equivalent to a pseudospin-1/2 particle (boson or fermion depending

on the atomic species), where its center-of-mass motion experiences a pseudospin-dependent

synthetic gauge potential ±~kR (with kR = k1 ' k2 being the wavenumber of the two Ra-

man lasers) due to the momentum transfer from the radiation fields. This can be recast as

a non-Abelian synthetic gauge potential q∗Ǎx = ~kRσ̌z, with q∗ being a synthetic charge,

minimally coupled to the center-of-mass momentum Px of the atom. This non-Abelian syn-

thetic gauge potential can be envisaged to stem from an equal contribution of the Rashba

and Dresselhaus SO couplings: HR + HD ∝ −σ̌yPx, which is ∝ −σ̌zPx after a pseudospin

rotation. The synthetic gauge potential q∗Ǎx = ~kRσ̌z (or equivalently the equal Rashba-

Dresselhaus SO coupling HRD = −2~kRσ̌zPx) changes the single-particle energy dispersion

P2/2M of a free atom in an interesting way. The single-particle energy dispersion is modified

as [(Px− ~kRσ̌z)2 +P 2
y +P 2

z ]/2M , implying that the energy dispersion has now two minima

located at P0 = (±~kR, 0, 0). This is in total contrast to the single-particle energy dispersion

of a free atom, which has a single minimum at P0 = 0.

The properties of multi-component Bose condensates in the presence of artificial Abelian

and non-Abelian gauge potentials have been the subject of intensive research in the past few

years [69]. Inducing synthetic magnetic fields in ultracold atoms has opened the possibility

for the realization of the Hofstadter band structure, which would require enormous magnetic

fields in conventional crystals. Almost 40 years ago, Douglas Hofstadter predicted that

the band structure of a non-interacting electron gas pierced with a strong magnetic field

exhibits a fractal structure, known as the Hofstadter butterfly [70]. This prediction has

remained elusive since magnetic fields on the order of a billion gauss is required. Therefore,

the race for inducing strong synthetic magnetic fields in quantum gases began. In a few

recents experiments, Immanuel Bloch’s and Wolfgang Ketterle’s groups have induced strong
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synthetic magnetic fields for ultracold atoms in optical lattices via laser-assisted tunnelling,

paving the way for the observation of the Hofstadter butterfly [71, 72, 73].

The single-particle energy dispersion of an equal Rashba-Dresselhaus SO-coupled pseudospin-

1/2 atom is a momentum-space double well (as discussed above) in appropriate parameter

regimes, which is two-fold degenerate in the symmetric (i.e., two-photon resonant Raman)

case. In a Bose condensate the two-body interactions lift this degeneracy and the ground

state is either a stripe state, where the continuous translational symmetry is spontaneously

broken, or a plane-wave state, depending on the strength and sign of the two-body intra-

and inter-species interactions [74, 75, 76, 77]. In the plane-wave state, all atoms condense

into one of the two single-particle energy minima (i.e., all atoms condense into one plane-

wave state), while the stripe state is a superposition state of the two minima (i.e., atoms

condense simultaneously into two plane-wave states) and the total condensate density ex-

hibits faint fringes [78]. When an SO-coupled quantum Bose gas is confined in an optical

lattice, the ground state of the system is expected to exhibit a variety of magnetic orders in

the Mott-insulator regime, such as spin spiral, vortex and antivortex crystals, and skyrmion

crystal phases, in addition to the ferromagnetic and antiferromagnetic orders [79, 80, 81].

The superfluid to Mott-insulator phase transition of quantum Bose gases in the presence of

a SO coupling has also been investigated [79, 82].

1.3 Cavity Quantum Electrodynamics

The quantum nature of radiation was first discovered by Max Planck in 1900. He obtained

the correct energy distribution of black-body radiation over the whole frequency range by

assuming that the energy of a harmonic oscillator is quantized: εn = n~ω, where n is an

integer and ω is the frequency of the oscillator [83]. This discovery was the begining of

(old) quantum mechanics. In 1905, Albert Einstein provided further evidence regarding the

quantized nature of light. He explained the photoelectric effect by assuming that the energy
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of light is discrete and light solely exchanges energy with matter in discrete packets [84]. The

name “photon” was coined by Gilbert Lewis in 1926 for these discrete energy packets [85].

Planck and Einstein were both awarded the Nobel Prize in Physics in 1918 and 1921, re-

spectively, for their discoveries. It was then Paul Dirac who second quantized light field

formally in 1927 and combined wave and particle aspects of light into the same picture [86].

The second-quantized nature of the radiation field is essential in accounting for some fun-

damental phenomena, such as spontaneous emission due to vacuum fluctuations [87]. The

quantum vacuum |0〉 is the state with lowest energy and has exotic features. Although all

field expectation values 〈0| X̂ |0〉 vanish in the quantum vacuum state, the field fluctuations

〈0| X̂2 |0〉 are non-zero and give rise to observable effects such as the Casimir effect.

Closed or semi-closed hollow bodies with almost perfect reflective boundaries play an

important role in quantum optics — the quantum theory of radiation — as well as classical

optics. They are utilized to store radiation fields and are commonly referred to as optical

or microwave resonators or cavities, depending on frequency of the confined radiation field.

A completely closed cavity with a small hole in it can be envisaged as a blackbody, since

it absorbs almost completely an incident radian on the hole without re-emitting it. There

exist a wide variety of cavities, including planar-mirror and spherical-mirror Fabry-Perot

(also known as linear or standing-wave) resonators, ring-mirror resonator, rectangular cavity,

fiber-ring cavity, micro-disk, photonic-crystal micro-cavities, etc. [88]. For instance, a linear

(ring) cavity is formed with two (usually three) highly reflective mirrors (see Fig. 1.3), while

a photonic-crystal micro-cavity is an engineered defect inside a photonic crystal. Cavities,

regardless of their geometries, are generically characterized by two quantities: mode volume

V and dimensionless quality factor Q. The mode volume represents the volume occupied by

the electromagnetic field and the quality factor is related to the storage time of field energy,

considered respectively as degrees of the spatial and temporal confinement of the field within

a cavity.
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Figure 1.3: Schematics of a (a) two-mirror linear and (b) three-mirror ring cavities. The
mode functions of the linear (ring) cavity are standing (traveling) waves.

Consider the perfect linear cavity shown in Fig. 1.3(a). The time-independent parts of

electromagnetic fields satisfy the Helmholtz equation (∇2 +ω2/c2)u(r) = 0 inside the cavity,

where ν = ω/2π is the frequency [89]. Due to the boundary conditions, solutions of the

Helmholtz equations are transverse electromagnetic (TEM) fields u(r) = u(r)e ∝ sin(kz)e

with kL = (ω/c)L = mπ, where e is a unit polarization vector in the xy plane, L is the

linear dimension of the cavity, and m is an integer. Consequently, the wavenumber k ≡ |k|

and frequency ν take discrete values ckm = ωm = 2πνm = (cπ/L)m. The set of allowed

discrete wavenumbers km (and resonance frequencies νm) can also be obtained by noting

that after a round trip of length 2L within the cavity a wave should reproduce itself, that

is, k(2L) = 2πm, yielding again km = (π/L)m (the phase shift of 2π imparted by mirrors is

ignored since it is immaterial) [88]. The function um(r) is referred to as a mode function.

The resonance frequencies νm are equally spaced in frequency. Free spectral range, the

frequency spacing between two adjacent modes, is ∆ν = ∆ω/2π = νm − νm−1 = c/2L. The

free spectral range ∆ν is inversely proportional to the linear dimension L of the cavity and it

therefore increases as L decreases. For instance, for a Fabry-Perot cavity of linear dimension

L = 3 µm, the free spectral range is ∆ν ' 50 THz, implying that there exist only a few
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modes within the optical-frequency range of ∼ 430 − 770 THz. The density of modes ρ(ν)

is the number of modes per unit frequency, per unit length of the cavity (including both

orthogonal polarizations) and is given by ρ(ν) = 2(1/∆ν)/L = 4/c [88]. The number of

modes within the cavity in the frequency interval dν is therefore (4/c)Ldν, which is directly

proportional to the linear dimension L of the cavity and decreases as L reduces.

There are losses associated with cavity mirrors. These losses can be divided into two main

categories [90]. First, the cavity mirrors are not perfect. That is, they are not completely

reflective and there is a minor transmission of the radiation through them as well as some

absorption of radiation. Second, mirrors have finite sizes and the confined radiation may be

diffracted out of the cavity by edges of the mirrors. The stored electromagnetic energy I

therefore leaks out of the cavity and is dissipated: dI/dt = −κI = −I/τp, where τp (κ) is

the photon lifetime (decay rate). If α is the photon loss per trip, then κ = (c/L)α is the

photon loss per unit time (or the photon decay rate), yielding τp = L/cα. The quality factor

is defined as Q ≡ −ωI/(dI/dt) = ωτp = ω/κ [90]. Therefore, the quality factor Q (or photon

life time τp or photon decay rate κ) indicates how well the radiation is temporally stored inside

a cavity. Nowadays in experiments, the Q factor on the order of 1010 is attainable [91]. The

finite lifetime of the stored radiation field inside the cavity leads to broadening of resonance

frequencies due to time-frequency uncertainty relation [88].

Likewise, the resonance frequencies of the three-mirror ring cavity shown in Fig. 1.3(b)

can be determined by the self-reproducing constraint. That is, after a complete trip of length

3L within the ring cavity, the wave should reproduce itself: k(3L) + 3π = 2πm, where 3π is

the phase introduced by reflections of light in three mirrors [88]. The resonance modes are

then ckm = ωm = 2πνm = (2m−1)cπ/3L. The corresponding mode functions are plane waves

um(r) ∝ e±ikm·r. Note that each mode is doubly degenerate, because for each wavenumber

km there are two possible wavevector ±km, associated with two counter-propagating waves.

When the radiation field is confined within a cavity, its mode structure, mode density,
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and resonance frequencies change drastically due to the boundary conditions and become

significantly different than corresponding ones in free space. In 1946, Purcell predicted that

these changes have significant effects on properties of a trapped atom inside the cavity and,

in particular, modify spontaneous emission rates of atomic excited states [92]. The Purcell

effect can be qualitatively understood by noting that cavity mirrors create many images of

the atom, which leads to a faster dissipation of the atomic energy and therefore enhancement

of the spontaneous emission rate [87]. It became possible by the end of 1960s to load atoms

inside high-quality (high-Q) tiny cavities. This opened the possibility for realizing a single

(two-level) atom interacting with a single mode of a second-quantized electromagnetic field

(i.e., a single bosonic degree of freedom), known as the Jaynes-Cummings (JC) model [93].

These subjects and related phenomena fall into the realm of cavity quantum electrodynamics

(QED) [94].

In free space, atoms couple very weakly to the radiation field and the rate of dissipative

and irreversible processes (such as the decay of atomic excited states) Γ is much larger than

the coherent atom-field coupling rate Ω; that is, Ω � Γ. This is the classical (extremely

weak-coupling) regime where fluctuations on the order of few in the number of atoms and/or

photons are not significant [91]. Nevertheless, this situation can be drastically altered when

the radiation field is confined within an extremely small high-Q cavity. In this system, the

coherent atom-photon coupling rate G can well exceed the decay rates of the cavity field

κ ∝ 1/Q [95] and atomic excitation γ. In some modern experiments in cavity environments,

the atom-photon coupling on the order of G /2π ∼ 10− 100 MHz can be reached, while the

decoherence rates are in the order of κ/2π ∼ 1− 10 and γ/2π ∼ 1 MHz [91, 96, 97]. These

parameter values result in critical atom Nc ≡ 2γκ/G 2 and photon nc ≡ 4γ2/3G 2 numbers in

the order of ∼ 10−2 and ∼ 10−4 [91], respectively, meaning that even a single atom and/or

photon plays a significant role. This is the so-called strong atom-photon coupling regime,

where the atoms and photons can coherently exchange energy and momentum [98, 99].
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In the JC model, an atom couples strongly to a single mode of a second-quantized field

and they coherently exchange energy, which is a reversible process. This is in sharp contrast

to free space where the atom interacts with a large number of electromagnetic modes and

there are irreversible processes involved (such as the decay of an atomic excited state due

to spontaneous emission). An example of a coherent reversible process in cavity QED is the

vacuum-field Rabi oscillations, where the atom is initially in an excited state with no photon

in the cavity; the atom spontaneously emits a photon into a cavity mode and re-absorbs it

later and the process continues in principle forever [100, 101]. In a pioneering experiment,

quantum vacuum Rabi oscillation was observed, which provided a direct evidence for second-

quantization of the intra-cavity field and the realization of the JC model [102]. Serge Haroche,

jointly with David Wineland, was awarded the 2012 Nobel Prize in Physics for his efforts in

this field.

Entanglement is one the peculiarities of quantum mechanics with no analogue in a classi-

cal world. An entangled state cannot be expressed as a tensor product of constituent states,

with the simplest and the most well-known example being Bell states [103]. Such entangled

states are at the core of quantum information and quantum computers. Atoms trapped

inside or passing slowly through a high-Q cavity can form entangled states with each other

or with cavity fields in the strong coupling regime [98]. Such entangled states of matter

and quantized fields (i.e., photons) have been realized with Rydberg atoms (i.e., highly ex-

cited atoms with the principal quantum number n in order of 50) passing slowly through a

microwave superconducting cavity [102]. They are commonly referred to as polariton states.

Laser light in free space has been used to cool and trap alkali atoms for decades, as well

as some molecules more recently [104]. Laser cooling has limitations however, and is not

applicable to every atom or molecule. The more complex the internal structure of a particle

(atom or molecule), the more difficult it becomes to apply laser cooling. This is because

when such a particle is excited, there are more allowed transitions where the particle can
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spontaneously emit a photon and decay into a dark state. The particle is therefore removed

from the cooling cycle and more pumping lasers are required to pump the particle back into

the cooling cycle. An alternative approach for cooling atoms and molecules is cavity cooling,

which relies on dissipating energy through cavity loss channels (i.e., photon leakage of the

cavity) rather than spontaneous emission [105, 106]. The kinetic energy of a particle (atom

or molecule) is extracted and transferred into cavity fields due to optical friction forces.

This energy is subsequently dissipated by photons leaking out of the cavity. This opens the

possibility for cooling any sufficiently polarizable particle, without a need for a closed optical

cycle [107].

Unlike in free space, the back-action of the atoms on the intra-cavity radiation field is not

negligible, leading to complex coupled dynamics of the matter and radiation fields in which

both entities are affected by one another and must be treated on the same footing [107].

As a consequence cavity fields mediate long-ranged interactions between atoms [96, 108].

This can be intuitively understood by noting that due to presence of an atom a cavity

resonance frequency and the corresponding field mode are modified with respect to the

empty cavity [107]. These modifications are dynamic in the sense that they depend on

atomic position and motion. These motion-induced frequency and field changes react back

and in turn affect the atomic motion and position. Consider that many atoms are loaded

inside the cavity [97]. The motion of a single atom leads to a dynamical change of the

resonance frequency and the corresponding mode, which in turn then affect the motion and

position of all atoms. Equivalently, the motion and position of a single atom depends on

local field which is affected by all atoms. This is the origin of cavity-induced long-range

interactions between atoms.

The cavity-mediated long-range interactions give rise to collective phenomena in atomic

systems. The most interesting example is the quantum Dicke phase transition from superfluid

to a self-organized state in a transversely pumped Bose condensate in a linear cavity [109,
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110, 111]. The Bose condensate is loaded inside a linear cavity, whose intra-cavity field is

in the vacuum state, and is then driven by a transverse pump laser. Both pump and cavity

resonance frequencies are far red-detuned from atomic transitions, but closely detuned from

each other. The condensate atoms then scatter photons from the pump laser into the cavity

mode and serve as sources of the intra-cavity photons. For a uniform Bose condensate, the

accumulation of intra-cavity photons is suppressed due to the destructive interference of

sources [110]. Above some critical pumping power, quantum fluctuations in the condensate

density nevertheless leads to a small buildup of the intra-cavity field. This results in the

formation of a 2D optical lattice (formed by the pump and cavity fields) which in turn

attracts the atoms into its odd or even sites (minima), further increasing coherent scattering

of the pump field into the cavity mode. The Bose condensate then spontaneously breaks

the translational symmetry and self-organizes itself into a checkerboard pattern to maximize

cooperative scattering of pump photons into the cavity mode [112]. This collective behavior

can be envisaged as cavity-mediated long-ranged interaction between condensate atoms.

Other example of cooperative phenomena in cavity QED includes the collective atomic recoil

laser [113, 114, 115].

1.4 Outline of the Thesis

In all previous proposals for inducing gauge potentials, the radiation field is treated classi-

cally and the back-action of the atoms on it is omitted. This is a fair assumption since all of

these proposals are based on laser light interacting with atoms in free space. Therefore, all

laser-based schemes result in static synthetic gauge potentials for neutral atoms, where the

emergent gauge potentials are only additional terms in the atomic Hamiltonian [57]. In other

words, the emergent gauge potentials are background potentials. In a cavity QED environ-

ment, the back-action of atoms on the quantized intra-cavity field is no longer negligible and

this is the origin of many intriguing dynamical and collective phenomena.
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These peculiarities of cavity QED attracted my attention in the early stage of my

Ph.D. and exploiting it to induce synthetic gauge potentials in ultracold atomic gases with

novel consequences has been the focus of my Ph.D. research. I developed a two-photon Ra-

man scheme in the strong atom-photon coupling regime, based on two counter-propagating

modes of a ring cavity, to induce both synthetic magnetic field and SO coupling for a single

neutral atom inside the cavity [116]. The SO interaction is only weakly dependent on the

occupation of the cavity modes, whereas the strength of the magnetic field is proportional

to the square of the total number of photons in the cavity and can be made arbitrary large,

which is desirable for realizing fractional quantum Hall phases and the Hofstadter butterfly.

I then extended this single-atom cavity QED scheme to many bosons in the weak atom-

photon coupling regime [117]. In addition to inducing SO coupling for the individual atoms,

the cavity fields also mediate infinite-ranged interactions between atoms, whose strengths

and signs can readily be tuned experimentally. The interplay between these cavity-mediated

long-ranged and the two-body contact interactions determines the many-body ground state

and its elementary excitations, with novel consequences such as the stabilization of an attrac-

tive Bose condensate which otherwise is unstable and collapses. The ground state is either

a stripe phase or plane-wave phase. In the stripe phase, atoms condense in both minima of

the single-particle energy dispersion, and consequently the translational symmetry is spon-

taneously broken and the total density exhibits fringes. This is in contrast to the plane-wave

phase and conventional Bose condensates where all atoms Bose condense into a single state.

The positive cavity-mediated interactions, which can be readily tuned experimentally, favor

the stripe phase. Thus, the ring-cavity environment provides an experimentally convenient

framework for exploring exotic ground states of SO-coupled Bose condensates. This might

have possible applications when the common Feshbach resonance techniques for tuning the

two-body interactions are impractical to implement due to the drastic atom losses or not

feasible at all [118, 119, 120, 121, 122].
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At the same time, a few other schemes were proposed to induce Abelian and non-Abelian

gauge potentials in ultracold atoms via cavity QED [123, 124, 125] and to couple a laser-

induced SO-coupled Bose condensate to the cavity field [126]. These schemes exhibit a

wealth of physics, including strong synthetic magnetic fields, intriguing instabilities, a cavity-

mediated Hofstadter spectrum, and a variety of magnetic orders. Furthermore, the cavity

QED setting can also open the possibility for engineering dynamical gauge potentials which

have their own Hamiltonians and evolve according to their own Hamiltonians [57], since

cavity fields are naturally dynamic.

This thesis is comprised of five chapters and four appendices. The introduction is pre-

sented in Chapter 1. I have reviewed in the current chapter the related historical development

of BEC and cavity QED. These include the emergent research areas of synthetic gauge fields

in ultracold atomic gases and collective phenomena in many-body cavity QED.

Chapter 2 is devoted to the theoretical framework used in the rest of the thesis. It

is divided into three main sections: Bose-Einstein condensation, gauge theories and gauge

fields, and the atom-field interaction. In Sec. 2.1, I review concepts associated with BEC in

the context of ideal and interacting Bose gases. I discuss the ground state and elementary

excitations of a single- and two-component Bose condensate. In particular, the GP mean-

field and Bogoliubov theories are introduced in this section. The notion of gauge theory and

gauge fields is introduced in Sec. 2.2, where I illustrate the electromagnetic fields and SO

coupling are examples of Abelian U(1) and non-Abelian SU(2) gauge fields which emerge

as a natural consequence of local gauge invariance. Finally in Sec. 2.3, I discuss atom-

field interaction using both semi-classical and fully quantum mechanical approaches. In

particular, cavity QED is introduced in the framework of the fully quantum mechanical

approach. I also illustrate in an abstract way how synthetic gauge potentials can emerge in

atom-field interaction Hamiltonians and discuss in detail a specific, important example.

In Chapter 3, which is our published work [116], I illustrate how to induce a synthetic
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magnetic field and SO coupling for a single pseudospin-1/2 neutral atom in a ring cavity.

The calculations are carried out analytically in the strong atom-photon coupling regime.

After introduction and literature review in Sec. 3.1, the model of a single atom interacting

with two counter-propagating modes of a ring cavity is described in Sec. 3.2 and then the

governing Hamiltonian is derived. In Sec. 3.3, this Hamiltonian is expressed in terms of

polaritons and diagonalized to yield the energy dispersion spectrum. Section 3.4 describes

the circumstances under which a synthetic SO interaction and a magnetic field emerge in

this model. A discussion of the results and concluding remarks are presented in Sec. 3.5.

Chapter 4 is dedicated to our published work [117] and is a generalization of Chapter 3

to the many-atom case. Nonetheless, the weak-coupling regime is assumed in this chapter to

allow a full analytical treatment of the system. After a survey of the literature in Sec. 4.1, I

start in Sec. 4.2 from the full atom-photon Hamiltonian density for a lossy but pumped cavity,

to derive an effective many-body atomic Hamiltonian with the photon fields eliminated. The

ground state of this effective Hamiltonian is explored in Sec. 4.3 using both a variational

method and by solving the generalized Gross-Pitaevskii equations. The remainder of this

section is devoted to the analysis of elementary excitations. A discussion of the results and

conclusions are found in Sec. 4.4.

Concluding remarks are presented in the last chapter, that is, Chapter 5. I also discuss

possible extensions and future directions related to this thesis.

Since the adiabatic evolution and adiabatic elimination are important parts of this the-

sis, Appendix A is dedicated to the Adiabatic Theorem and Berry’s phase. The notion of

adiabatic elimination is also illustrated in this appendix for a simple two-level atom inter-

acting with a monochromatic electromagnetic field. Appendices B and C provide details

of the adiabatic elimination of the atomic excited state in a Λ scheme in the strong- and

weak-coupling regimes, respectively. The adiabatic elimination of the cavity modes in the

weak-coupling regime is detailed in Appendix D. Appendix B is taken from the appendix
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of our published work in Ref. [116], and Appendices C and D from the appendices of our

published work in Ref. [117].
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Chapter 2

Theoretical Background

This chapter is comprised of three main sections and in each section I shall present theoretical

frameworks which are prerequisites for the next chapters. Section 2.1 is devoted to Bose-

Einstein condensation. I will review the concept of Bose-Einstein condensation in ideal

and interacting quantum degenerate Bose gases in Secs. 2.1.1 and 2.1.2, respectively. The

notion of gauge potentials will be introduced in Sec. 2.2. Two specific classes of gauge

potentials, namely Abelian and non-Abelian gauge potentials, will be considered in detail in

Secs. 2.2.1 and 2.2.2, respectively. Section 2.3 is dedicated to the atom-field interaction. The

semi-classical theory of the atom-field interaction will be presented in Sec. 2.3.1, while the

full quantum mechanical (i.e. cavity quantum electrodynamics) approach to the atom-field

interaction will be discussed in Sec. 2.3.2. I shall finally illustrate in Sec. 2.3.3 in an abstract

way how synthetic gauge potentials can emerge in a (semi-classical) atom-field interaction

Hamiltonian and then present a specific example.

2.1 Bose-Einstein Condensation

In this section, I introduce the concept of Bose-Einstein condensation in ideal and interacting

quantum degenerate Bose gases.

2.1.1 Non-Interacting Bosons

An ideal gas of N non-interacting, identical bosons is described by the many-body Hamilto-

nian density

H0 =
N∑

j=1

Hs,j =
N∑

j=1

[
p2
j

2m
+ Vext(rj)

]
, (2.1)
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where pj = −i~∇j is the momentum operator of the jth particle, m is the mass, and

Vext(rj) is an external potential acting at the position of the jth particle. Since the many-

body Hamiltonian density H0 is a sum of individual single-particle Hamiltonian densities

Hs, the non-interacting many-body bosonic wavefunction is merely a symmetrized state of

single-particle product states,

Φ(0)
τ (r1, r2, ..., rN) =

1√
N !

∑

P

P

(
N∏

j=1

φs,τj(rj)

)
, (2.2)

where the single-particle state φs,τ (r) satisfies the single-particle Schrödinger equation,

Hsφs,τ (r) = ετφs,τ (r), (2.3)

with ετ being the single-particle energy. Here τ labels quantum states of the single-particle

Hamiltonian density and τ = (τ1, τ2, ..., τN) is a collective quantum number. Note that the

sum on the permutation operator P runs over all N ! elements of the permutation group of

N identical particles.

At finite temperature, the average boson occupation of the single-particle state φs,τ is

determined by the Bose-Einstein distribution function [127],

Nτ =
1

eβ(ετ−µ) − 1
, (2.4)

where β = 1/kBT is the inverse temperature (with T being the temperature and kB the

Boltzmann constant) and µ is the chemical potential. The strict positivity of the occupation

number Nτ imposes the constraint µ < ετ for all single-particle states τ ; and in particular µ <

ε0, where ε0 is the ground-state eigenenergy. In thermal gases, the chemical potential is much

lower than the ground-state energy (i.e. it has a large negative value) and consequently the

average occupation numbers Nτ of all states, including the ground state N0, are much smaller

than one, Nτ ' e−β(ετ−µ) � 1. As the temperature T is lowered, the chemical potential µ

approaches its upper bound, the ground-state energy ε0, and the average occupancies of

all states but the ground state become vanishingly small. Since the number of particles is
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conserved N =
∑

τ Nτ , the bosons must be then accommodated in the ground state φs,0.

In other words, the single-particle ground state is macroscopically occupied, referred to as

“Bose-Einstein condensation” (BEC). The average occupation of the single-particle ground

state N0 becomes on the order of the total particle number N and N0/N . 1 determines the

condensate fraction.

2.1.2 Interacting Bosons

The non-interacting Bose gas is an ideal system and in reality particles interact with one

another. The exact form of the interaction potential between particles is required for solving

a many-body problem and it can be complicated in general. However, at extremely low

densities and low temperatures (such as are found in Bose-condensed gases) the situation

can be greatly simplified. As discussed in the preceding chapter, at extremely low densities

two-body interactions are the dominant interactions and higher few-body interactions (such

as three-body interactions) are highly suppressed and can be therefore omitted. In addition,

only the low-energy sector of the two-body interactions is relevant at extremely low temper-

atures. In this regime therefore, the particle-particle interactions in dilute Bose gases at low

temperatures can be well approximated by a pseudo-potential V (rj−rl) = gδ(rj−rl), which

is a two-body contact interaction [32]. The strength of the two-body contact interaction g is

related to the s-wave scattering length as via g = 4π~2as/m [7]. Hereafter, the temperature is

restricted to absolute zero, T = 0. This guarantees the validity of the low-energy assumption

and replacing of the full two-body interactions with the contact interactions. Furthermore,

the thermal component of the Bose gas becomes irrelevant. Then the Hamiltonian density

of a dilute, weakly interacting Bose gas at T = 0 reads,

H = H0 + g
N∑

l>j=1

δ(rj − rl), (2.5)

where H0 is the non-interacting Hamiltonian density, Eq. (2.1).
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The Mean-Field Ground State: Gross-Pitaevskii Equation

In order to proceed further and find the many-body ground state and energy, one may adopt

the Hartree mean-field theory, in which the many-body bosonic wavefunction is assumed

to be a symmetrized product of single-particle states, similar to the non-interacting case

Eq. (2.2). The Hartree ansatz is a mean-field approximation in the sense that it is a product

of single-particle states and does not contain any correlation due to the two-body contact

interactions. In a perfectly condensed state where all bosons are in the single-particle ground

state, the many-body Hartree-Fock wavefunction reduces to [7],

ΦMF
0 (r1, r2, ..., rN) =

N∏

j=1

φMF
0 (rj) ≡

N∏

j=1

φ0(rj). (2.6)

Note that the mean-field single-particle state φ0 ≡ φMF
0 is completely different than the

single-particle state φs,0 and in particular does not satisfy the single-particle Schrödinger

equation (2.3).

The expectation value of the total Hamiltonian density (2.5) with respect to the Hartree-

Fock ansatz (2.6) yields the mean-field total energy,

EMF
0 =

〈
ΦMF

0

∣∣H
∣∣ΦMF

0

〉
= N

∫
dr

[
~2

2m
|∇φ0(r)|2 + Vext(r)|φ0(r)|2 +

(N − 1)

2
g|φ0(r)|4

]
,

(2.7)

where the last term is due to the two-body contact interactions (recall that there are N(N −

1)/2 ways of pairing N identical objects). In the absence of the two-body interactions, the

mean-field single-particle state φ0 coincides exactly with the single-particle state φs,0 and

the Hartree-Fock ansatz becomes exact, yielding EMF
0 = Nε0 for the energy functional (2.7),

which is the total energy of N ideal bosons in the single-particle ground state φs,0. For a

uniform Bose gas the ground-state wavefunction is φ0 = 1/
√
V , where V is the volume.

The total mean-field energy then becomes EMF
0 = gN(N − 1)/2V ' gN2/2V (ignoring

the term of order 1/N under the assumption that N � 1), yielding the chemical potential

µ = ∂EMF
0 /∂N = gn for a canonical ensemble [127], where n = N/V is the particle density.
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Introducing the condensate wavefunction ψ(r) =
√
Nφ0(r) and omitting terms in the

order of 1/N , the mean-field total energy (2.7) can be re-expressed as,

EMF
0 =

∫
dr

[
− ~2

2m
ψ∗(r)∇2ψ(r) + Vext(r)|ψ(r)|2 +

1

2
g|ψ(r)|4

]
, (2.8)

where the first (i.e., kinetic-energy) term has been recast using integration by parts. The

condensate wavefunction ψ(r) must be determined in a self-consistent manner such that it

minimizes the energy functional EMF
0 , with the constraint that the total number of particles

is conserved, N =
∫
|ψ(r)|2dr =

∫
n(r)dr. This amounts to minimizing the grand potential

Ω = EMF
0 −µN with respect to the independent variations of ψ and ψ∗ at fixed µ, where the

chemical potential µ is the Lagrange multiplier fixing the total mean number of particles.

Taking a functional derivative from the grand potential with respect to ψ∗ and equating it

to zero, δΩ/δψ∗ = 0, yields the non-linear Schrödinger equation,

[
− ~2

2m
∇2 + Vext(r) + g|ψ(r)|2

]
ψ(r) = µψ(r), (2.9)

which is also known as the time-independent Gross-Pitaevskii (GP) equation. The non-linear

term g|ψ(r)|2 in the GP equation is the mean-field interaction potential a boson experiences

due to the rest of the bosons. For a uniform Bose gas the GP equation reduces to µ =

g|ψ|2 = gn, consistent with the chemical potential obtained above in the canonical framework

for a uniform Bose gas using the energy functional and the thermodynamic relation µ =

∂EMF
0 /∂N .

Elementary Excitations: Bogoliubov Theory

The many-body (quantum-field theoretical) Hamiltonian is obtained from the many-body

Hamiltonian density [128],

H =

∫
dr ψ̂†(r)Hsψ̂(r) +

1

2
g

∫
drdr′ ψ̂†(r)ψ̂†(r′)δ(r′ − r)ψ̂(r′)ψ̂(r)

=

∫
dr ψ̂†(r)

[
− ~2

2m
∇2 + Vext(r) +

1

2
gψ̂†(r)ψ̂(r)

]
ψ̂(r), (2.10)
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where ψ̂(r) and ψ̂†(r) are the bosonic field annihilation and creation operators1, respectively,

and they obey the bosonic commutation relation [ψ̂(r), ψ̂†(r′)] = δ(r−r′). The time evolution

of the field operator can be obtained from the Heisenberg equation of motion i~∂tψ̂ = [ψ̂, H]

using the Hamiltonian (2.10),

i~
∂ψ̂(r, t)

∂t
=

[
− ~2

2m
∇2 + Vext(r) + gψ̂†(r, t)ψ̂(r, t)

]
ψ̂(r, t). (2.11)

The Gross-Pitaevskii approach discussed in the preceding section is equivalent to omitting

the quantum fluctuation of the field and treating it as a classical field, which is accomplished

by virtue of replacing the field operator with its expectation value ψ̂ → ψ ≡ 〈ψ̂〉. This

is a good approximation provided that quantum fluctuations of the field operator is small

compared to its expectation value, which will be further justified in the following. Then

the Hamiltonian H, Eq. (2.10), reduces to the energy functional EMF
0 , Eq. (2.8); and the

Heisenberg equation of motion (2.11) becomes the time-dependent Gross-Pitaevskii equation

i~
∂ψ(r, t)

∂t
=

[
− ~2

2m
∇2 + Vext(r) + g|ψ(r, t)|2

]
ψ(r, t). (2.12)

Note that replacing the time-dependent condensate wavefunction with ψ(r, t) = e−iµt/~ψ(r)

in the time-dependent GP equation (2.12) yields the time-independent GP equation (2.9).

The condensate wavefunction ψ ≡ 〈ψ̂〉 can be envisaged as the order parameter for

the BEC transition: it is zero above the BEC transition temperature TBEC, while it is

macroscopically occupied below TBEC (in particular at zero temperature T = 0). It is

a classical field in the sense that it is macroscopically occupied and the particle-number

fluctuation in it due to quantum effects is negligible when the number of condensed particles

is large. This is the philosophy behind replacing the field operator ψ̂ with its expectation

value, the condensate wavefunction ψ. The fluctuations in the condensate wavefunction can

1 Throughout this thesis, I will only use the “hat” notation for operators when there is a possibility
of confusion, such as here where I use the hat notation for the field operator ψ̂ to distinguish it from the
condensate wavefunction ψ.
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be most conveniently accounted for by writing it as

ψ(r, t) = e−iµt/~ [ψ(r) + δψ(r, t)] , (2.13)

where δψ(r, t) � ψ(r) is the condensate fluctuation [26]. Substituting Eq. (2.13) (and

its complex conjugate) into the time-dependent GP equation (2.12) and linearizing it with

respect to the fluctuation (i.e. retaining terms only linear in δψ and δψ∗) yields the generic

equation

i~
∂

∂t
δψ(r, t) =

[
− ~2

2m
∇2 + Vext(r) + 2g|ψ(r)|2 − µ

]
δψ(r, t) + g

[
ψ(r)

]2
δψ∗(r, t), (2.14)

for the time evolution of δψ, with a similar equation for δψ∗. These coupled equations can

be solved using the Bogoliubov ansatz for the fluctuations [7],

δψ(r, t) = u(r)e−iωt + v∗(r)eiωt. (2.15)

Substituting the Bogoliubov ansatz (2.15) (and its complex conjugate) into Eq. (2.14) and

equating the coefficients of e±iωt separately yields a set of two coupled equations, referred to

as the Bogoliubov equations,

[
− ~2

2m
∇2 + Vext(r) + 2g|ψ(r)|2 − µ

]
u(r) + g

[
ψ(r)

]2
v(r) = εu(r),

[
− ~2

2m
∇2 + Vext(r) + 2g|ψ(r)|2 − µ

]
v(r) + g

[
ψ∗(r)

]2
u(r) = −εv(r), (2.16)

where ε ≡ ~ω is the spectrum of elementary (or collective) excitations.

For any trap, these coupled equations can be numerically solved to yield the spectrum

of collective excitations. Nonetheless, the excitation spectrum ε can be easily obtained

analytically in the homogenous case, Vext(r) = 0. One can assume plane-wave solutions,

u(r) =
1√
V

∑

q 6=0

uqe
iq·r, v(r) =

1√
V

∑

q 6=0

vqe
iq·r, (2.17)

with the coefficients uq and vq to be determined, where the quasi-momentum q = 0 is

excluded since BEC occurs at the momentum q = 0 for a homogenous Bose gas (in other
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words q = 0 corresponds to the condensate wavefunction itself). The Bogoliubov equations

(2.16) can then be recast in the matrix form,



~2q2

2m
+ gn gn

−gn −~2q2

2m
− gn






uq

vq


 = ε(q)



uq

vq


 . (2.18)

Here I have used the fact that for a uniform gas n = ψ2 = N/V and µ = gn. The Bogoli-

ubov Hamiltonian (2.18) can be readily diagonalized to yield the spectrum of elementary

excitations,

ε(q) =
√
ε20(q) + 2gnε0(q) =

√
ε0(q)

[
ε0(q) + 2gn

]
, (2.19)

and the relation between the Bogoliubov coefficients,

uq = −ε(q) + ξ(q)

gn
vq, (2.20)

where ε0(q) = ~2q2/2m is the energy dispersion of a free particle and ξ(q) = ε0(q) +

gn. The Bogoliubov excitation spectrum ε(q) is depicted in Fig. 2.1. It exhibits a linear,

collective sound-like dispersion at long wavelengths (or small momenta q), an indication of

the superfluidity; and it becomes quadratic, free-particle like at large momenta q. This is

in sharp contrast to non-interacting Bose gases whose excitations are always free-particle

like. The speed of sound for small momenta is found by omitting the quadratic term in

the Bogoliubov dispersion, ε(q) ' cs~q with cs =
√
gn/m being the speed of sound. Note

that the Bogoliubov Hamiltonian (2.18) is not Hermitian and the excitation spectrum can

be complex, in contrast to a Hermitian Hamiltonian, which indicates dynamical instabilities.

Negative excitations lower the energy of the system, signalling also that the mean-field

ground state is not the real ground state of the system.

The approach of treating non-condensate particles as the fluctuation δψ of the condensate

wavefunction ψ discussed above is equivalent to Bogoliubov’s original approach of writing

the field operator as ψ̂ = ψ + δψ̂, where δψ̂ is the quantum fluctuation operator of the field

operator ψ̂ [19]. One then substitutes ψ̂ = ψ + δψ̂ in the many-body Hamiltonian (2.10)
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Figure 2.1: The spectrum of elementary excitations ε(q) in unit of gn as a function of the di-
mensionless quasi-momentum ~q/mcs. The spectrum exhibits a linear sound-like dispersion
at small momenta, while it becomes quadratic free-particle like at large momenta.

and retains terms up to second order in fluctuation operators. The resultant Hamiltonian is

diagonalized by introducing the Bogoliubov ansatz for the quantum fluctuation operator [26],

analogous to the condensate fluctuation (2.15),

δψ̂(r, t) =
∑

i

[
ui(r)e−iωtα̂i + v∗i (r)eiωtα̂†i

]
. (2.21)

Here, α̂i is the Bogoliubov quasi-particle operator and must satisfy the bosonic commutation

relation [α̂i, α̂
†
j] = δij, which is ensured provided that

|ui|2 − |vi|2 = 1. (2.22)

The diagonalized Hamiltonian yields the spectrum ε of elementary excitations, which for

instance is identical with Eq. (2.19) for a uniform Bose gas.

The underlying assumption of the Bogoliubov approach is that the condensate or quan-

tum fluctuations are small compared to the condensate wavefunction, that is, δψ � ψ or

equivalently 〈δψ̂〉 � ψ. This can be confirmed by calculating the depletion of the condensate

wavefunction due to the two-body interactions [7],

nex =
1

(2π~)3

∫
|vq|2dq. (2.23)
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Using the normalization constraint (2.22), the coefficients uq and vq can be readily obtained

from Eq. (2.20) as,

u2
q =

1

2

[
ξ(q)

ε(q)
+ 1

]
, v2

q =
1

2

[
ξ(q)

ε(q)
− 1

]
. (2.24)

The ratio of the condensate depletion to the condensate density n is then obtained [7],

nex

n
=

8

3
√
π

(na3
s)

1/2. (2.25)

Noting that n ∼ 1/a3, where a is the average particle spacing, one has nex/n ∼ (as/a)3/2. In

most experiments, the average particle spacing a is much larger than the s-wave scattering

length as and the depletion of the condensate is therefore of the order of one percent [7].

Two-Component Bose Condensates

Consider a spinor-1/2 Bose gas where spin exchange interactions are suppressed and

the particle density of each spin component is therefore conserved under collisions. This

is formally equivalent to a two-component Bose gas. The two desired internal states of the

atoms are referred to as the pseudospin states in analogy to two possible spin projections of a

spin-1/2. These internal states can be for example the two hyperfine states |F = 2,mF = 2〉

and |F = 1,mF = −1〉 of 87Rb atoms [37]. The single-component many-body Hartree-Fock

wavefunction (2.6) can readily be generalized to a two-component condensate [7],

ΦMF
0 (r1, r2, ..., rN1 ; r

′
1, r
′
2, ..., r

′
N2

) =

N1∏

j=1

N2∏

l=1

φ
(1)
0 (rj)φ

(2)
0 (r′l), (2.26)

where φ
(1)
0 (φ

(2)
0 ) is the corresponding mean-field single-particle wavefunction for pseudospin

state |τ〉 = |1〉 (|2〉). The many-body Hamiltonian density (2.5) can be generalized in a

similar straightforward manner,

H =
∑

τ=1,2


H0,τ + gτ

Nτ∑

j′τ>jτ=1

δ(rjτ − rj′τ )


+ g12

N1∑

j=1

N2∑

l=1

δ(rj − rl), (2.27)

where H0,τ is the non-interacting Hamiltonian density (2.1) for pseudospin τ , and gτ (g12) is

the two-body intra- (inter-) species interaction strength. The many-body Hamiltonian then
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reads

H =

∫
dr

{
Ψ̂†(r)

[
− ~2

2m
∇2 + Vext(r)

]
Ψ̂(r) +

1

2
g1n̂

2
1(r) +

1

2
g2n̂

2
2(r) + g12n̂1(r)n̂2(r)

}
,

(2.28)

where Ψ̂ = (ψ̂1, ψ̂2)T is the two-component field operator and n̂τ = ψ̂†τ ψ̂τ is the density

operator for pseudospin τ . The field operators again obey the bosonic commutation relation

[ψ̂τ (rj), ψ̂
†
τ ′(rj′)] = δτ,τ ′δ(rj − rj′).

The Heisenberg equations of motion for the field operators ψ̂τ (r, t) can be easily ob-

tained using the many-body Hamiltonian (2.28), analogous to the single-component case

(2.11). Replacing the field operators ψ̂τ (r, t) with the corresponding condensate wavefunc-

tions ψτ (r, t) ≡ 〈ψ̂τ (r, t)〉 yields a set of two coupled time-dependent GP equations,

i~
∂ψ1(r, t)

∂t
=

[
− ~2

2m
∇2 + Vext(r) + g1n1(r, t) + g12n2(r, t)

]
ψ1(r, t),

i~
∂ψ2(r, t)

∂t
=

[
− ~2

2m
∇2 + Vext(r) + g2n2(r, t) + g12n1(r, t)

]
ψ2(r, t). (2.29)

Now in addition to the intra-species mean-field interaction potential gτnτ , each boson expe-

riences an inter-species mean-field interaction potential g12nτ ′ , where τ ′ = 2 (1) for τ = 1

(2).

For small fluctuations of the condensates, one can write ψτ (r, t) = e−iµτ t/~[ψτ (r) +

δψτ (r, t)]. Substituting these expressions into the time-dependent coupled GP equations

(2.29) and linearizing them yields the time-independent coupled GP equations for the sta-

tionary condensate wavefunctions ψτ (r),

[
− ~2

2m
∇2 + Vext(r) + g1n1(r) + g12n2(r)

]
ψ1(r) = µ1ψ1(r),

[
− ~2

2m
∇2 + Vext(r) + g2n2(r) + g12n1(r)

]
ψ2(r) = µ2ψ2(r), (2.30)
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and a set of two time-dependent coupled equations for the fluctuations δψτ (r, t),

i~
∂

∂t
δψ1(r, t) =

[
− ~2

2m
∇2 + Vext(r) + 2g1|ψ1(r)|2 + g12|ψ2(r)|2 − µ1

]
δψ1(r, t)

+ g1ψ
2
1(r)δψ∗1(r, t) + g12ψ1(r)ψ∗2(r)δψ2(r, t) + g12ψ1(r)ψ2(r)δψ∗2(r, t),

i~
∂

∂t
δψ2(r, t) =

[
− ~2

2m
∇2 + Vext(r) + 2g2|ψ2(r)|2 + g12|ψ1(r)|2 − µ2

]
δψ2(r, t)

+ g2ψ
2
2(r)δψ∗2(r, t) + g12ψ

∗
1(r)ψ2(r)δψ1(r, t) + g12ψ1(r)ψ2(r)δψ∗1(r, t). (2.31)

After assuming a Bogoliubov ansatz for each condensate fluctuation δψτ (r, t), Eqs. (2.30) and

(2.31) in principle can be solved numerically for any trap to yield the ground-state density

distributions (i.e. wavefunctions) and collective excitations around these ground states.

Similar to the single-component case, these equations nevertheless admit analytical solu-

tions in the homogenous case Vext(r) = 0. The density distributions can be readily obtained

from the coupled GP equations (2.30),

n1 =
g2µ1 − g12µ2

g1g2 − g2
12

, n2 =
g1µ2 − g12µ1

g1g2 − g2
12

. (2.32)

Assuming that the fluctuations are plane waves,

δψτ (r, t) =
∑

q 6=0

[
uτ,qe

i(q·r−ωt) + v∗τ,qe
−i(q·r−ωt)] , (2.33)

the time-dependent coupled equations for the fluctuations (2.31) can then be recast as




ε0(q) + g1n1 g1ψ
2
1 g12ψ1ψ

∗
2 g12ψ1ψ2

−g1ψ
∗2
1 −ε0(q)− g1n1 −g12ψ

∗
1ψ
∗
2 −g12ψ

∗
1ψ2

g12ψ
∗
1ψ2 g12ψ1ψ2 ε0(q) + g2n2 g2ψ

2
2

−g12ψ
∗
1ψ
∗
2 −g12ψ1ψ

∗
2 −g2ψ

∗2
2 −ε0(q)− g2n2







u1,q

v1,q

u2,q

v2,q




= ε(q)




u1,q

v1,q

u2,q

v2,q



,

(2.34)

where the chemical potentials µτ have been eliminated using the GP equations. Note that

for uniform gases, the condensate wavefunctions are real, that is, ψ∗τ = ψτ . The Bogoliubov
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Hamiltonian can then be diagonalized to yield the spectrum of elementary excitations,

ε±(q) =

√
ε20(q) + ε0(q)

[
(g1n1 + g2n2)±

√
(g1n1 + g2n2)2 − 4(g1g2 − g2

12)n1n2

]
. (2.35)

The spectrum of elementary excitations consists of two branches and is illustrated in

Fig. 2.2 as dimensionless ε±(q)/gn versus ~q/mc−, where c− =
√
gn/m is the speed of

sound in the negative branch. Both branches are gapless and exhibit linear sound-like be-

havior at long wavelengths (or small momenta q). Elementary excitations must be strictly

positive; negative or complex excitations signal an instability in the system. This imposes

the constraint

g1g2 > g2
12, (2.36)

on the intra- and inter-species interactions strengths. Note that when g2
12 = g1g2 the negative

excitation branch ε− reduces to the free-particle dispersion, ε−(q) = ε0(q); and in particular

when g ≡ g12 = g1 = g2 (which also implies g2
12 = g1g2) the positive excitation branch ε+

coincides exactly with the single-component excitation spectrum (2.19), upon identifying

n = n1 + n2 as the total density.

2.2 Gauge Theories and Gauge Fields

Gauge freedom was first discovered in classical electromagnetic theory. The Maxwell equa-

tions describe classical electromagnetic theory and in the vacuum (and in the absence of any

charge and current densities) they read [129],

∇ · E(r, t) =0,

∇ ·B(r, t) =0,

∇× E(r, t) =− ∂

∂t
B(r, t),

∇×B(r, t) =
1

c2

∂

∂t
E(r, t), (2.37)

where E (B) is the electric (magnetic) field and c = 1/
√
µ0ε0 is the speed of light in the

vacuum with ε0 (µ0) being the electric permittivity (magnetic permeability). The electro-
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Figure 2.2: The spectrum of elementary excitations ε±(q) in unit of gn (solid and dashed
curves respectively) of a two-component uniform Bose condensate as a function of the di-
mensionless quasi-momentum ~q/mc−. The parameters are set to g ≡ g1 = g2 = 2g12 and
n/2 = n1 = n2 (with n = n1 + n2 being the total density). The spectrum consists of two
branches and both exhibit linear sound-like dispersion at small momenta, while they become
quadratic free-particle like at large momenta. The speed of sound in the positive branch c+

is related to the speed of sound in the negative branch c− =
√
gn/m via c+ =

√
3c−.

magnetic fields {E,B} can be expressed in terms of a scalar ϕ(r, t) and a vector A(r, t)

potential

E(r, t) = −∇ϕ(r, t)− ∂

∂t
A(r, t),

B(r, t) = ∇×A(r, t).

(2.38)

The electromagnetic potentials {φ,A} are not unique, that is, the gauge transformation

of these potentials,

ϕ(r, t)→ ϕ′(r, t) = ϕ(r, t)− ∂

∂t
χ(r, t),

A(r, t)→ A′(r, t) = A(r, t) + ∇χ(r, t),

(2.39)

under any arbitrary gauge function χ(r, t) leaves the electromagnetic fields (2.38) invari-

ant [130]. Rather, the electromagnetic fields are gauge independent, as expected since they

are the physically measurable quantities. This allows the gauge to be chosen for a given

problem in order to simplify calculations, a procedure known as gauge fixing. The Coulomb
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(or radiation) gauge is such a suitable gauge for problems in vacuum,

∇ ·A(r, t) = 0, (2.40)

which also implies that ϕ(r, t) = 0 [130]. By substituting the electric field with Eq. (2.38)

in the first Maxwell equation (2.37) and then using the Coulomb gauge (2.40), one obtains

∇2ϕ(r, t) = 0. (2.41)

By imposing the boundary condition that the scalar potential must vanish at infinity, this

equation has the solution ϕ(r, t) = 0 in the absence of any charge. Then in the Coulomb

gauge the electromagnetic fields (2.38) are determined solely by the vector potential A. I

will demonstrate in Sec. (2.3.2) how to second-quantize the electromagnetic fields in the

Coulomb gauge.

Quantum mechanics is also invariant under a different kind of gauge transformation,

the global phase transformation. This gauge freedom of quantum mechanics leads to the

the continuity equation (i.e., conservation of probability) ∂tρ + ∇ · j = 0, where ρ is the

probability density and j the probability current2 [131]. It was further postulated that the

invariance of quantum fields (actions or Lagrangians, to be more accurate) under a wider

class of gauge transformation, the local gauge transformation, would yield the fundamental

interactions (i.e., forces) of the nature and the corresponding conservation laws [133]. Gauge

invariance has now become a cornerstone of modern physics, namely quantum field and

gauge field theories. This will be elaborated in the following sections, Sec. 2.2.1 and 2.2.2.

2 This is obtained by demanding the Lagrangian density of the Schrödinger field, Eq. (2.42), to be invariant
under an infinitesimal global gauge transformation, that is, δL = 0 [131]. The continuity equation can also
be obtained directly from the Schrödinger equation [132].
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2.2.1 Local U(1) Gauge Invariance and Abelian Gauge Fields

Consider the non-relativistic Lagrangian density of the Schrödinger field for a single charged

particle (with charge q) in some external static potential Vext(r) [134],

L = i~ψ∗∂tψ −
~2

2m
∇ψ∗ ·∇ψ − Vextψ

∗ψ, (2.42)

where the Euler-Lagrange equation

∂L
∂ψ∗

= ∂t
∂L

∂(∂tψ∗)
+ ∇ · ∂L

∂(∇ψ∗)
, (2.43)

yields the Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + Vextψ. (2.44)

Here ψ = ψ(r, t) is the Schrödinger field (or wavefunction) and ∂t = ∂/∂t. The global gauge

transformation of the Schrödinger field ψ → ψ′ = eiqχ/~ψ, where χ is a constant (and the

coefficient q/~ is included solely for convenience), leaves the Schrödinger Lagrangian (2.42)

invariant. Nevertheless, the Schrödinger Lagrangian in the current form is not invariant

under a local gauge transformation ψ → ψ′ = eiqχ(r,t)/~ψ, where χ(r, t) depends on both

position and time [128]. The potential energy term transforms as desired ψ∗ψ → (ψ∗ψ)′ =

ψ∗ψ, while extra terms appear in terms involving the temporal and spatial derivatives, e.g.,

∇ψ(r, t)→∇′ψ′(r, t) = ∇
[
eiqχ(r,t)/~ψ(r, t)

]
= eiqχ(r,t)/~

[
iq

~
ψ(r, t)∇χ(r, t) + ∇ψ(r, t)

]
.

(2.45)

This problem can be reconciled by substituting the derivatives with the covariant deriva-

tives in the Lagrangian (2.42) [29],

∂t → Dt = ∂t +
iq

~
ϕ(r, t),

∇→ D = ∇− iq

~
A(r, t), (2.46)
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with the following gauge transformation laws for ϕ(r, t) and A(r, t),

ϕ(r, t)→ ϕ′(r, t) = ϕ(r, t)− ∂tχ(r, t),

A(r, t)→ A′(r, t) = A(r, t) + ∇χ(r, t). (2.47)

It is straightforward to check that the covariant derivatives transform as the field itself, e.g.,

Dψ(r, t)→ D′ψ′(r, t) = eiqχ(r,t)/~
{
∇ψ(r, t)− iq

~
[A′(r, t)−∇χ(r, t)]ψ(r)

}

= eiqχ(r,t)/~Dψ(r, t). (2.48)

The “minimally coupled” Lagrangian density of the the Schrödinger field [131]

Lmc = i~ψ∗∂tψ −
~2

2m

(
∇− iq

~
A

)
ψ∗ ·

(
∇− iq

~
A

)
ψ − (Vext + qϕ)ψ∗ψ, (2.49)

is therefore invariant under the local gauge transformation.

The set of all gauge functions eiqχ/~ (with χ either being a constant or position- and/or

time-dependent) form a U(1) gauge symmetry group [131]. Furthermore, this gauge sym-

metry group is Abelian, since the gauge functions are just phase factors and commute with

each other eiqχ1/~eiqχ2/~ = eiqχ2/~eiqχ1/~. Requiring the Schrödinger Lagrangian density (2.42)

to be invariant under the local U(1) gauge transformation, therefore, leads to appearance

of the gauge potentials {ϕ,A} and the minimal-coupling Schrödinger Lagrangian density

Lmc, Eq. (2.49). Comparing the gauge transformation properties of these gauge potentials

(2.47) with those of the electromagnetic potentials in Eq. (2.39), it is obvious that the gauge

potentials {ϕ,A} are nothing but the electromagnetic scalar and vector potentials. The

minimal-coupling Lagrangian density Lmc (2.49) yields therefore the Schrödinger equation

of a (non-relativistic) charged particle coupled to an external electromagnetic field through

the electromagnetic (gauge) potentials {ϕ,A},

i~
∂ψ

∂t
= − ~2

2m

(
∇− iq

~
A

)2

ψ + (Vext + qϕ)ψ, (2.50)
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and the associated quantum-mechanical minimal-coupling Hamiltonian density is given by

Hmc = − ~2

2m

(
∇− iq

~
A

)2

+ Vext + qϕ. (2.51)

It is also instructive to construct the minimal-coupling Hamiltonian directly from the

minimal-coupling Lagrangian density (2.49) of the Schrödinger field via [134],

Hmc =

∫
dr (πψ∂tψ + πψ∗∂tψ

∗ − Lmc) . (2.52)

Here, πψ and πψ∗ are the canonically conjugate momentum densities associated with ψ and

ψ∗, respectively [134]:

πψ =
∂Lmc

∂(∂tψ)
= i~ψ∗, πψ∗ =

∂Lmc

∂(∂tψ∗)
= 0. (2.53)

The minimal-coupling Hamiltonian (2.52) then reads,

Hmc =

∫
dr

[
~2

2m

(
∇− iq

~
A

)
ψ∗ ·

(
∇− iq

~
A

)
ψ + (Vext + qϕ)ψ∗ψ

]

=

∫
ψ∗
[
− ~2

2m

(
∇− iq

~
A

)2

+ Vext + qϕ

]
ψdr, (2.54)

where the last equality has been obtained after integrating by parts. The quantum-mechanical

minimal-coupling Hamiltonian density is therefore identical with Eq. (2.51), as expected.

It is worth briefly mentioning how to second-quantize the Schrödinger field. This is at-

tained by promoting canonically conjugate variables into operators and imposing the usual

quantum mechanical commutation relation [134]. This procedure is referred to as the canon-

ical quantization and will be also exploited later in Sec. 2.3.2 to second-quantize the elec-

tromagnetic fields. Here, ψ(r, t) and πψ(r, t) = i~ψ∗(r, t) are the canonically conjugate

variables. They are then promoted into operators ψ̂(r, t) and π̂ψ̂(r, t) = i~ψ̂†(r, t) with the

following commutation relation:

[ψ̂(r, t), π̂ψ̂(r′, t)] = i~[ψ̂(r, t), ψ̂†(r′, t)] = i~δ(r− r′), (2.55)

which resembles the commutation relation [âi, â
†
j] = δi,j of harmonic oscillators. Substituting

ψ and ψ∗ with the corresponding field operators ψ̂ and ψ̂† in the total Hamiltonian of the
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classical Schrödinger field [i.e., Eq. (2.54) with A = ϕ = 0], one obtains the quantum-field

theoretical Hamiltonian

H =

∫
ψ̂†(r′, t)

[
− ~2

2m
∇2 + Vext

]
ψ̂(r′, t)dr, (2.56)

which has been introduced before in the context of interacting Bosons.

2.2.2 Local SU(2) Gauge Invariance and non-Abelian Gauge Fields

In the preceding section, the field (or wavefunction) ψ is treated as a complex scalar field.

Now let me assume that the field is a two-component Pauli spinor [131],

ψ =



ψ1

ψ2


 (2.57)

where each component ψτ = ψτ (r, t) is a complex scalar field. Consider the gauge transfor-

mation ψ → ψ′ = eigχ̌/~ψ, where g is a constant introduced in analogy to the charge q in the

preceding section and χ̌ is a two-by-two matrix which can be expressed as χ̌ =
∑

a χ
aσ̌a/2 =

(χ1σ̌1 + χ2σ̌2 + χ3σ̌3)/2 in terms of generators of the SU(2) group (i.e., the Pauli matrices),

σ̌1 = σ̌1 =




0 1

1 0


 , σ̌2 = σ̌2 =




0 −i

i 0


 , σ̌3 = σ̌3 =




1 0

0 −1


 . (2.58)

Here {χa} are the gauge transformation parameters; they can be position and time in-

dependent or dependent, leading to a global or local gauge transformation, respectively.

The gauge functions in this case do not necessarily commute with one another, that is,

eigχ̌1/~eigχ̌2/~ 6= eigχ̌2/~eigχ̌1/~. This stems from the fact that the generators of the SU(2)

group, Eq. (2.58), do not commute with one another. The set of all gauge functions eigχ̌/~

therefore form a non-Abelian SU(2) gauge symmetry group [135].

Invoking the local SU(2) gauge transformation ψ → ψ′ = eigχ̌(r,t)/~ψ and requiring the

Lagrangian density

L = i~ψ†12∂tψ −
~2

2m
12∇ψ† · 12∇ψ − Vextψ

†ψ, (2.59)
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to be invariant under this transformation leads to covariant derivatives [136]

12∂t → Ďt = 12∂t +
ig

~
ϕ̌(r, t),

12∇→ Ď = 12∇−
ig

~
ǍAA (r, t). (2.60)

Here ψ† = (ψ∗1, ψ
∗
2), 12 is the two-by-two identity matrix (which is omitted when there

is no ambiguity), ϕ̌(r, t) is a two-by-two matrix ϕ̌ =
∑

a ϕ
aσ̌a/2, and ǍAA (r, t) is a vector

of two-by-two matrices with component Ǎj =
∑

a A a
j σ̌

a/2. Then {ϕ̌, ǍAA } are referred

to as Yang-Mills-type, non-Abelian SU(2) gauge potentials [137] with the following gauge

transformation laws [136]:

ϕ̌(r, t)→ ϕ̌′(r, t) = ϕ̌(r, t)− ∂tχ̌(r, t) +
ig

~
[χ̌, ϕ̌],

ǍAA (r, t)→ ǍAA
′
(r, t) = ǍAA (r, t) + ∇χ̌(r, t) +

ig

~
[χ̌,ǍAA ]. (2.61)

In the following section, I will demonstrate that spin-orbit coupling can be envisaged as a

non-Abelian SU(2) gauge potential [131, 138].

Intrinsic Spin-Orbit Coupling

In atomic physics, the spin-orbit (SO) interaction is the coupling of an electron’s orbital

motion to its spin degrees of freedom [139]. Likewise in condensed matter physics, an SO

interaction commonly refers to the coupling of an electron’s center-of-mass motion to its

spin degrees of freedom and it has the same origin as the atomic SO coupling, that is, it is a

relativistic effect [140]. Consider an electron moving with velocity v in an external electric

field E. According to the Lorentz transformation up to the first order in (v/c)2 (with c being

the speed of light), the electron experiences a magnetic field B = E × v/c2 in its own rest

frame and consequently its magnetic moment µ̌ = −e~σ̌/2m couples to this magnetic field:

HSO = −µ̌ ·B = e~σ̌ · (E× p) /2m2c2. A more careful consideration reveals that HSO must

be rescaled by a factor of two,

HSO → HSO =
e~

4m2c2
σ̌ · (E× p) , (2.62)
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due to the non-inertial frame of the electron, an effect known as the Thomas precession [141].

Here, q = −e and m are the charge and rest mass of the electron, respectively, p = mv is

its momentum, and σ̌ = (σ̌1, σ̌2, σ̌3) is a vector of the Pauli matrices (2.58). Depending

on the form of the external electric field E, the SO coupling Hamiltonian (2.62) can take

different forms. The SO coupling Hamiltonian (2.62) obtained above from simple relativistic

considerations can be rigorously derived from the non-relativistic limit of the Dirac equation

coupled to an external electromagnetic field through the scalar ϕ(r, t) and vector A(r, t)

potentials [141, 142].

The SO coupling Hamiltonian (2.62) is linear in the momentum p and can be therefore

absorbed into the (non-relativistic) kinetic energy term p2/2m. Using the identity A · (B×

C) = (A×B) ·C, the SO coupling Hamiltonian can be recast as

HSO = − ~q
4m2c2

(σ̌ × E) · p. (2.63)

Combining the kinetic energy and SO coupling (2.63) terms yields

p2

2m
12 −

~q
4m2c2

(σ̌ × E) · p =
1

2m

(
p12 −

~q
4mc2

σ̌ × E

)2

− ~2q2

32m3c4
(σ̌ × E)2, (2.64)

where the two-by-two identity matrix 12 has been included for clarity and use has been made

of ∇ × E = 0. The kinetic energy momentum p12 − ~qσ̌ × E/4mc2 is now reminiscent of

the SU(2) covariant derivatives (2.60) with the non-Abelian gauge potential,

gǍAA (r) =
~q

4mc2
σ̌ × E(r). (2.65)

As mentioned earlier, depending on the form of the electric field E(r), the SO coupling

term can take different forms. Let me consider a specific case where the electric field is

homogeneous and along the z direction; E = Ez. Then the SO coupling Hamiltonian takes

the form,

HSO =
~qE

4m2c2
(σ̌xpy − σ̌ypx) , (2.66)
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which is the well-known Rashba SO coupling [55]. The corresponding non-Abelian gauge

potential is [131, 138],

gǍAA =
~qE
4mc2

(σ̌y,−σ̌x, 0) . (2.67)

2.3 Atom-Field Interaction

In Sec. 2.2.1, I derived the minimal coupling Hamiltonian (2.51), which describes the inter-

action between a (non-relativistic) charged particle and an electromagnetic field, from the

local gauge invariance principle. In this section, I will show using the minimal coupling

Hamiltonian how to describe the atom-field interaction in both the semiclassical and fully

quantum mechanical limits. In the semi-classical limit the atom is treated quantum me-

chanically, while the electromagnetic field is treated classically (Sec. 2.3.1). In contrast, in

the quantum mechanical limit, both atom and electromagnetic field are treated on the same

footing via quantum mechanics (Sec. 2.3.2). For the sake of simplicity, only single-electron

atoms are considered; generalization to many-electron atoms is straightforward in principle.

I shall illustrate in Sec. 2.3.3 in an abstract way how geometric gauge potentials can emerge

in (semi-classical) atom-field interaction Hamiltonians. As a specific and important example,

I will then review the emergent SO coupling in the semi-classical Λ scheme.

2.3.1 Semi-Classical Approach

Consider the minimal coupling Hamiltonian density,

Hmc =
1

2m
[p− qA(r, t)]2 + V (r−R), (2.68)

describing the interaction of a single-electron atom with an electromagnetic field. Here, p

(r) is the momentum (position) operator of the electron, q is the charge of the electron, and

V (r − R) = qϕnuc(r − R) is the potential energy due to the Coulomb interaction between

the electron and nucleus (located at R). Note that the Coulomb gauge is assumed so that

the vector potential A(r, t) solely determines the external electromagnetic fields.
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p ·A Hamiltonian

Expanding the first term of the minimal-coupling Hamiltonian density (2.68), one obtains

Hmc =
p2

2m
− q

2m
[p ·A(r, t) + A(r, t) · p] +

q2

2m
A2(r, t) + V (r−R). (2.69)

The terms in the square bracket involving the inner products of the momentum operator

and the vector potential can be simplified using the relation,

[p,A] = p ·A(r)−A(r) · p = −i~∇ ·A(r) = 0, (2.70)

where the last equality follows from the Coulomb gauge (2.40). Here I made use of

[p, C]φ = (pC − Cp)φ = (−i~∇C)φ, (2.71)

which can be understood by noting that p is an operator acting on everything standing to

its right, in contrast to ∇ which only acts on C [141]. The Hamiltonian (2.69) can then be

recast as

Hmc =
p2

2m
− q

m
p ·A(r, t) +

q2

2m
A2(r, t) + V (r−R). (2.72)

In most practical situations, the length scale over which the electromagnetic fields change

is usually much larger than the atomic size. Therefore, one can replace the position operator

r of the electron with that of the nucleus R in the vector potential, A(r, t) ' A(R, t). This

is the long-wavelength (or sometimes called the dipole) approximation. It basically means

that the electromagnetic field is practically constant over the entire extent of the atom.

Under this approximation the term proportional to A2(R, t) can be also omitted, since it

is a spatially constant term with zero matrix elements between different electronic states

[143]. Note that R is the position operator of the nucleus and cannot induce any transition

between electronic states. Then the Hamiltonian reads,

Hmc ≈
p2

2m
+ V (r−R)− q

m
p ·A(R, t), (2.73)

where the last term accounts for the atom-field coupling in the long wavelength limit. This

Hamiltonian is commonly referred to as the p ·A Hamiltonian [87].
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d · E Hamiltonian

In the previous section, I obtained the atom-field interaction Hamiltonian (2.73), where

the vector potential appears instead of the electromagnetic fields. It is however convenient

for later uses to obtain an equivalent atom-field interaction Hamiltonian in which the elec-

tromagnetic fields appear themselves. Consider the gauge function

χ(r, t) = −(r−R) ·A(R, t), (2.74)

under which the electromagnetic potentials are transformed as,

A(r, t)→ A′(r, t) = A(r, t)−A(R, t),

ϕ(r, t)→ ϕ′(r, t) = ϕ(r, t) + (r−R) · ∂
∂t

A(R, t), (2.75)

according to Eq. (2.39). This is the Göppert-Mayer gauge [143]. Then the minimal coupling

Hamiltonian (2.68) takes the form,

Hmc =
1

2m
[p− qA′(r, t)]2 + V (r−R) + qϕ′(r, t)

=
1

2m
[p− qA′(r, t)]2 + V (r−R) + q(r−R) · ∂

∂t
A(R, t). (2.76)

Recall that ϕ(r, t) = 0 in the original Coulomb gauge.

Defining the electric dipole operator

d = q(r−R), (2.77)

and using Eq. (2.38), the last term in Hamiltonian (2.76) can be re-expressed as −d ·E(R, t),

which is reminiscent of the interaction of a classical dipole moment with an electric field.

As before, it is reasonable to consider the long wavelength limit and replace r with R in

A′(r, t). The gauge-transformed vector potential then vanishes identically A′(R, t) = 0 and

Hamiltonian (2.76) reduces to,

Hmc =
p2

2m
+ V (r−R)− d · E(R, t). (2.78)
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This is the d · E Hamiltonian [87] and will be used in the subsequent sections to describe

the atom-field coupling.

2.3.2 Fully Quantum Mechanical Approach

In the previous section 2.3.1, the atom-field interaction was described semi-classically. In

this section, a fully quantum mechanical approach is presented, where both the atom and

electromagnetic fields are treated on the same footing.

Second Quantization of the Electromagnetic Fields

My approach for the second quantization of the electromagnetic fields is the canonical quan-

tization inside a finite box with perfectly conducting walls [143]. Maxwell’s equations (2.37)

can be obtained in the Coulomb gauge (2.40) from the electromagnetic Lagrangian density3

LEM =
ε0

2

[(
∂A

∂t

)2

− c2 (∇×A)2

]
=
ε0

2

(
E2 − c2B2

)
, (2.79)

using the Euler-Lagrange equation

∂LEM

∂Ai
=

∂

∂t

∂LEM

∂(∂Ai/∂t)
+
∑

j

∂

∂rj

∂LEM

∂(∂Ai/∂rj)
, (2.80)

where rj are the three components of the position vector r = (x, y, z) [144]. Here the vector

potential A (Ȧ ≡ ∂A/∂t) is the generalized coordinate (velocity). Defining the associated

generalized conjugate momentum

Π =
∂LEM

∂Ȧ
= ε0Ȧ = −ε0E, (2.81)

the electromagnetic energy (or classical Hamiltonian) density can be obtained using the

Legendre transformation EEM = Π · Ȧ− LEM as follows

EEM =
1

2ε0

[
Π2 + ε2

0c
2 (∇×A)2] =

ε0

2

(
E2 + c2B2

)
. (2.82)

Note that E2 = E · E = |E|2, and similarly for all other vectors.

3 The electromagnetic Lagrangian density (2.79) can be recast as LEM = − 1
4µ0

FµνF
µν in terms of the

field strength tensor Fµ,ν = ∂µAν−∂νAµ, with Aµ being the component of the four-potential A = (ϕ,−A) =
(0,−A).
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Recall that the electromagnetic fields and the vector potential all satisfy the wave equa-

tion,

(
∇2 − 1

c2

∂2

∂t2

)




E(r, t)

B(r, t)

A(r, t)





= 0, (2.83)

in the absence of any charge and current. These wave equations are obtained from Maxwell’s

equations (2.37); for instance taking the curl of the third Maxwell’s equation and then using

the first and last equations yields the wave equation for the electric field E:

∇× (∇× E) = ∇(∇ · E)−∇2E = −∇2E

= − ∂

∂t
(∇×B) = − 1

c2

∂2

∂t2
E. (2.84)

Likewise, substituting the electromagnetic fields with the electromagnetic potentials (2.38)

in the last Maxwell equation and utilizing the Coulomb gauge (2.40) yields the wave equation

for the vector potential A. Then the vector potential can be expressed as the superposition

of the monochromatic plane waves [145],

A(r, t) = A+(r, t) + A−(r, t)

=
−i√
V

∑

k

[
Ake

i(k·r−ωkt) −A∗ke
−i(k·r−ωkt)]

=
−i√
V

∑

k,λ

[
Ak,λe

i(k·r−ωkt) − A∗k,λe−i(k·r−ωkt)
]
eλ, (2.85)

with the dispersion relation ωk = c|k| = ck. Here, V is the volume of a box (with perfectly

conducting walls) enclosing the electromagnetic fields and Ak =
∑

λAk,λeλ are complex

coefficients (amplitudes) of the expansion, with eλ being two mutually orthogonal unit po-

larization vectors e1 · e2 = 0 and k · eλ = 0. The latter follows from the Coulomb gauge

∇ · A = k · A± = 0, implying that the vector potential is transverse k · eλ = 0. The
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electromagnetic fields then read

E(r, t) =
1√
V

∑

k,λ

ωk
[
Ak,λe

i(k·r−ωkt) + A∗k,λe
−i(k·r−ωkt)] eλ,

B(r, t) =
1√
V

∑

k,λ

[
Ak,λe

i(k·r−ωkt) + A∗k,λe
−i(k·r−ωkt)]k× eλ. (2.86)

The total electromagnetic field energy is obtained from the electromagnetic energy density

(2.82) as

EEM =

∫
dr EEM. (2.87)

Substituting the electromagnetic fields (2.86) in the electromagnetic energy density EEM and

using the orthonormality of the plane waves 1
V

∫
drei(k−k

′)·r = δk,k′ , the total electromagnetic

energy EEM then reads,

EEM = ε0

∑

k,λ

ω2
k

(
A∗k,λAk,λ + Ak,λA

∗
k,λ

)
= 2ε0

∑

k,λ

ω2
kA
∗
k,λAk,λ. (2.88)

Introducing new real canonical variables [145],

Qk,λ =
√
ε0(Ak,λ + A∗k,λ),

Pk,λ = −i√ε0ωk(Ak,λ − A∗k,λ), (2.89)

the electromagnetic field energy EEM can be recast as

EEM =
∑

k,λ

(
P 2
k,λ

2
+

1

2
ω2
kQ

2
k,λ

)
. (2.90)

This is the sum of energies of uncoupled simple harmonic oscillators with unit masses.

The (canonical) second quantization of the electromagnetic field energy (2.90) basically

amounts to promoting Pk,λ and Qk,λ to quantum operators4,

Pk,λ → P̂k,λ, Qk,λ → Q̂k,λ, (2.91)

4 Here I use the “hat” notation to distinguish quantum operators from classical quantities.
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with the commutation relation [145]

[Q̂k,λ, P̂k′,λ′ ] = i~δk,k′δλ,λ′ . (2.92)

This yields the second quantized Hamiltonian

HEM =
∑

k,λ

(
P̂ 2
k,λ

2
+

1

2
ω2
kQ̂

2
k,λ

)
. (2.93)

Note that EEM has been replaced by HEM to emphasize that Eq. (2.93) is the quantum

mechanical Hamiltonian. It is now convenient to introduce operators

âk,λ =

√
ωk
2~

(
Q̂k,λ +

iP̂k,λ

ωk

)
=

√
2ε0ωk
~

Âk,λ,

â†k,λ =

√
ωk
2~

(
Q̂k,λ −

iP̂k,λ

ωk

)
=

√
2ε0ωk
~

Â†k,λ, (2.94)

where the last equalities in both operators follow from Eq. (2.89), by also promoting Ak,λ

(A∗k,λ) to an operator Âk,λ (Â†k,λ). The operator âk,λ (â†k,λ) is the annihilation (creation)

operator of the simple harmonic oscillator; here it destroys (creates) a photon, the quantum

of the electromagnetic field, in the mode corresponding to {k, λ}. Substituting Eq. (2.94) in

the Hamiltonian (2.93) yields the familiar simple harmonic oscillator Hamiltonian expressed

in terms of the ladder operators,

HEM =
∑

k,λ

~ωk
(
â†k,λâk,λ +

1

2

)
. (2.95)

The second quantized electromagnetic fields can be readily obtained by substituting Eq. (2.94)

in (2.86), yielding

Ê(r, t) =
∑

k,λ

Ek
[
âk,λe

i(k·r−ωkt) + â†k,λe
−i(k·r−ωkt)

]
eλ,

B̂(r, t) =
∑

k,λ

Ek
ωk

[
âk,λe

i(k·r−ωkt) + â†k,λe
−i(k·r−ωkt)

]
k× eλ, (2.96)

where Ek =
√

~ωk/2ε0V is the electric field of a single photon.
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The time evolution of the ladder operators is given by the Heisenberg equation of motion;

for instance,

i~∂tâk,λ(t) = [âk,λ(t), HEM] = ~ωkâk,λ(t), (2.97)

which yields

âk,λ(t) = âk,λe
−iωkt, (2.98)

and similarly â†k,λ(t) = â†k,λe
iωkt. Nonetheless, the (photon) number operator n̂k,λ = â†k,λ(t)âk,λ(t)

is constant, which also follows from the fact that the number operator commutes with the

Hamiltonian

HEM =
∑

k,λ

~ωk(n̂k,λ + 1/2); (2.99)

that is, [n̂k,λ, HEM] = 0. This implies that the Hamiltonian and number operator have

simultaneous eigenvectors. The stationary states of the Hamiltonian HEM are therefore the

tensor product (denoted by ⊗) of single-harmonic oscillator number states |nk,λ〉,

|{nk,λ}〉 =
⊗

k,λ

|nk,λ〉 =
∏

k,λ

1√
nk,λ!

(
â†k,λ

)nk,λ |0〉 , (2.100)

where |0〉 is the vacuum. The occupation number state |{nk,λ}〉 means that there are nk1,λ1 ,

nk2,λ2 , ... photons in the corresponding modes {k1, λ1}, {k2, λ2}, ....

Cavity QED: Jaynes-Cummings Model

Having second quantized the electromagnetic field (2.96) within a perfectly conducting

box, I now turn my attention to describing the atom-field interaction quantum mechanically.

This box can be envisaged to be a high-Q cavity with highly reflective mirrors, such as a

Fabry-Perot resonator. The interaction of an atom with a quantized electromagnetic field

(2.96) of a cavity is described by the Hamiltonian density [87],

H = Ha +HEM +HI, (2.101)
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where

Ha =
P2

2M
+

p2

2m
+ V (r−R), (2.102)

is the atomic Hamiltonian density with M , P, and R being the mass, center-of-mass momen-

tum operator, and center-of-mass position operator of the atom, respectively. Here, HEM

is the Hamiltonian of the free electromagnetic fields, Eq. (2.99). The atom-field interaction

Hamiltonian in the d·E (and Schrödinger) picture and in the long-wavelength approximation

reads,

HI = −
∑

k,λ

Ek
[
âk,λfk(R) + â†k,λf

∗
k(R)

]
d · eλ, (2.103)

where fk(r) is the cavity-mode function (which is, for instance, fk(r) = sin (k · r) for a

standing cavity and fk(r) = eik·r for a ring cavity).

The first term in the atomic Hamiltonian density Ha (2.102) is the kinetic energy asso-

ciated with the center-of-mass motion of the atom,

P2

2M
|P〉 =

(~K)2

2M
|P〉 , (2.104)

where |P〉 (~K) is the eigenvector (eigenvalue) of the center-of-mass momentum operator

P. The last two terms describe the motion of the electron around the nucleus under the

Coulomb potential V (r−R). They form a simple Hamiltonian for the internal structure of

the atom,
[

p2

2m
+ V (r−R)

]
|τ〉 = ετ |τ〉 , (2.105)

with eigenstates |τ〉 and corresponding eigenenergies ετ . The complete atomic basis can be

then expressed as

|P, τ〉 ≡ |P〉 ⊗ |τ〉 . (2.106)

One possible basis for the entire system is the tensor product of the atomic (2.106) and

photonic (2.100) states [143],

|P, τ, n1, n2, · · ·〉 ≡ |P〉 ⊗ |τ〉 ⊗ |n1, n2, · · ·〉 , (2.107)
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where index j in nj is a collective index for {kj, λj}.

In the following, a few simplifying assumptions will be made [143, 146]. Relaxing these

assumptions will be the subject of next chapters. First, the atom is assumed to be at rest at

R = 0; consequently the center-of-mass motion of the atom is irrelevant. Second, I assume

that only one of the cavity modes â ≡ âk,λ (with definite wave number |k| = ω/c and

polarization λ) is near-resonant with an atomic transition |g〉 ↔ |e〉 (with the transition

frequency ~ω0 ≡ εe − εg ) and can induce this transition; that is, ω ∼ ω0 and 〈g|d · eλ |e〉 6=

0. Then all the cavity modes except â can be omitted. And finally, cavity mirrors are

presumed to be almost perfect; that is, the decay of the cavity mode is negligible. Under

these simplifying assumptions, the tensor-product basis (2.107) reduces to

|τ, n〉 = {|g〉 , |e〉} ⊗ {|0〉 , |1〉 , |2〉 , · · · }, (2.108)

and the atom-field interaction Hamiltonian (2.103) becomes

HI = −Ekfk(0)d · eλ
(
â+ â†

)
= −Ekfk(0)1ad · eλ1a

(
â+ â†

)
= ~Gge (σ+ + σ−)

(
â+ â†

)
,

(2.109)

where

~Gge ≡ −Ekfk(0) 〈g|d · eλ |e〉 = −Ekfk(0) 〈e|d · eλ |g〉 , (2.110)

is the single atom-photon coupling strength, 1a = |g〉 〈g| + |e〉 〈e| is the identity in the

atomic-state space, and σ+ = σ†− = |e〉 〈g| are the atomic transition (or raising and lowering)

operators. Note that 〈g|d · eλ |g〉 = 〈e|d · eλ |e〉 = 0 due to the parity (atomic states {|τ〉}

have well-defined parities while the dipole operator d ∝ r is odd under parity5) and I further

assumed fk(0) = f ∗k(0) [146].

The atom-field interaction Hamiltonian (2.109) can be further simplified by noting that

the terms σ+â
† and σ−â are not energy conserving: the atom is excited from the ground state

5 The parity operator P̂ commutes with the atomic Hamiltonian Ha (2.102): [P̂,Ha] = 0, implying
that they have simultaneous eigenstates. This in turn means that atomic states have definite parities. For
instance, the atomic s (p) orbital is even (odd) under parity [147].
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Figure 2.3: The Jaynes-Cummings ladder. The left side depicts the uncoupled states
{|g, n〉 , |e, n− 1〉}, Eq. (2.113), and the right side the polariton states {|φ±n 〉}, Eq. (2.116).

|g〉 into the excited state |e〉 and meanwhile a photon is also created, and vice versa. Such

processes violate energy conservation by an energy on the order of a two-photon energy 2~ω

and can therefore be omitted in comparison to the near energy conserving processes σ+â and

σ−â†, where the atom is excited while a photon is annihilated and the opposite process [146].

This is equivalent to the rotating wave approximation [87]. Then the atom-field interaction

Hamiltonian (2.109) reduces to

HI ' ~Gge
(
σ+â+ σ−â

†) . (2.111)

Dropping constant terms, the total Hamiltonian can be recast as

HJC = ~ω0σ+σ− + ~ωâ†â+ ~Gge
(
σ+â+ σ−â

†) , (2.112)

which is the celebrated Jaynes-Cummings (JC) Hamiltonian [93].

The JC Hamiltonian (2.112) can be diagonalized in a reduced tensor-product basis

(2.108). Other than the ground state |g, 0〉, all states {|g, n〉 , |e, n− 1〉} are arranged in

closely spaced doublet manifolds Mn; see Fig. 2.3. These are the eigenstates of the uncou-
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pled atom and field Hamiltonians HJC −HI,

(
~ω0σ+σ− + ~ωâ†â

)
|g, n〉 = n~ω |g, n〉 ,

(
~ω0σ+σ− + ~ωâ†â

)
|e, n− 1〉 = ~ [ω0 + (n− 1)ω] |e, n− 1〉 = ~(nω − δ) |e, n− 1〉 ,

(2.113)

where δ ≡ ω − ω0 � {ω, ω0} is the detuning between the bare cavity and atomic transition

frequencies. The atom-field interaction Hamiltonian HI (2.111) can solely couple states

within a single manifold Mn and it is therefore sufficient to diagonalize HJC in one generic

two-dimensional manifold Mn. In this subspace, the JC Hamiltonian in matrix form reads

HJC = ~




nω Gge
√
n

Gge
√
n nω − δ


 , (2.114)

which can be readily diagonalized to yields the eigen-energies

ε±n = ~

[
nω − δ

2
±
√

G 2
gen+

δ2

4

]
, (2.115)

and corresponding eigenvectors


|φ+
n 〉

|φ−n 〉


 =




cos θn sin θn

− sin θn cos θn






|g, n〉

|e, n− 1〉


 , (2.116)

with the mixing angle

tan 2θn =
2Gge
√
n

δ
. (2.117)

The eigenvectors |φ±n 〉 are entangled superpositions of atomic and photonic excitations and

cannot be decomposed as a tensor product of atomic and photonic states. They are fre-

quently referred to as polariton states in the literature. The polariton states and energies

are schematically illustrated in Fig. 2.3 along with uncoupled states and energies.

2.3.3 Emergent Geometric Gauge Potentials

In this section, I will first show in an abstract way how synthetic gauge potentials can emerge

in a semi-classical atom-field interaction Hamiltonian following the recent review article by
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Goldman et al. [57]. Consider the Hamiltonian density of a single atom with N internal

states {|mj〉} interacting with electromagnetic fields,

H =
P2

2M
1N + Ȟint(R, t), (2.118)

where P (R) are the center-of-mass momentum (position) operator and Ȟint(R, t) describes

the “internal” dynamics of the atom coupled to the electromagnetic fields (note that it also

includes the free internal atomic Hamiltonian) and depends parametrically on the center-of-

mass position R. The internal Hamiltonian density Ȟint can be diagonalized to yield dressed

states {|φj(R, t)〉},

Ȟint(R, t) =
N∑

j,j′=1

|mj〉Hjj′

int(R, t) 〈mj′| =
N∑

j=1

|φj(R, t)〉 εj(R, t) 〈φj(R, t)| , (2.119)

where Hjj′

int = 〈mj| Ȟint |mj′〉 and εj = 〈φj| Ȟint |φj〉 is the dressed energy [148]. In other

words, the internal Hamiltonian density can be diagonalized by the unitary transformation

Ǔ (R, t) constructed from the dressed states as Ǔ †ȞintǓ = ε̌, where ε̌ is a diagonal matrix

of the dressed energies. The dressed states are related to the bare atomic states through

|φj(R, t)〉 = Ǔ (R, t) |mj〉.

Since the dressed states form a complete basis, a general wavevector can be expanded in

the dressed-state basis,

|ψ〉 =
∑

j

φj(R, t) |φj(R, t)〉 = Ǔ
∑

j

φj(R, t) |mj〉 = Ǔ
∣∣∣ψ̃
〉
, (2.120)

where φj(R, t) are corresponding wavefunctions for the center-of-mass motion of the atom

in jth internal state. Substituting Eq. (2.120) in the Schrödinger equation i~∂t |ψ〉 = H |ψ〉

yields i~∂t
∣∣∣ψ̃
〉

= H̃
∣∣∣ψ̃
〉

with

H̃ = Ǔ †HǓ − i~Ǔ †∂tǓ . (2.121)

Recalling that the unitary transformation Ǔ diagonalizes the internal Hamiltonian density

Ȟint, it suffices to determine how the center-of-mass momentum P is transformed under this
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unitary transformation. Making use of Eq. (2.71), one obtains

[P, Ǔ ] = PǓ − Ǔ P = −i~∇Ǔ , (2.122)

implying that the center-of-mass momentum transforms as Ǔ †PǓ = P− i~Ǔ †∇Ǔ . Then

the effective Hamiltonian density H̃ takes the form

H̃ =
1

2M

(
P1N − i~Ǔ †∇Ǔ

)2
+ ε̌− i~Ǔ †∂tǓ , (2.123)

which resembles the minimal coupling Hamiltonian (2.51) and (2.60). Then the gauge po-

tentials can be identified as

q∗Ǎ(R, t) = i~Ǔ †(R, t)∇Ǔ (R, t) = q∗
∑

j,j′

|mj〉Ajj′ 〈mj′| ,

q∗ϕ̌(R, t) = −i~Ǔ †(R, t)∂tǓ (R, t) = q∗
∑

j,j′

|mj〉ϕjj′ 〈mj′| , (2.124)

with the matrix elements

q∗Ajj′(R, t) = i~ 〈φj(R, t)|∇ |φj′(R, t)〉 ,

q∗ϕjj′(R, t) = −i~ 〈φj(R, t)| ∂t |φj′(R, t)〉 . (2.125)

These gauge potentials can be envisaged as Berry connections; see also Appendix A for a

short review of the Adiabatic Theorem and Berry phase. By properly dressing an atom via

light, the artificial gauge potentials can therefore emerge for the center-of-mass motion of

the atom according to Eq. (2.125).

Synthetic SO Coupling in the Λ Scheme

It is possible in some cases to derive synthetic gauge potentials directly in a Hamiltonian,

without the need to obtain dressed states and compute Eq. (2.125). The most common case

is when radiation fields are monochromatic plane waves. Consider a three-level atom in

the Λ scheme interacting with two counter-propagating laser beams, with positive frequency

components E
(1)
+ = E

(1)
0 ei(k1z−ω1t)e1 and E

(2)
+ = E

(2)
0 ei(−k2z−ω2t)e2; see Fig. 2.4. Here kj = ωj/c

are the wavenumber of lasers expressed in terms of their frequencies ωj and ej are the
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ei(k1z−ω1t)

Figure 2.4: Schematic of the Λ scheme. Two low-lying atomic levels |a〉 and |b〉 are
coupled in the Λ scheme to an excited state |e〉 by two counter-propagating laser beams

E
(1)
+ = E

(1)
0 ei(k1z−ω1t)e1 and E

(2)
+ = E

(2)
0 ei(−k2z−ω2t)e2 with Rabi frequencies Ωae and Ωbe,

respectively. The transitions are detuned from resonance by ∆1 and ∆2.

polarization vectors. The states {|a〉 , |b〉 , |e〉} are arbitrary internal states of the atom whose

energies satisfy the relations εe > {εb, εa} and {εea, εeb} � εba, where εττ ′ ≡ ετ − ετ ′ . For

example, the states |a〉 and |b〉 might be energy levels in the same hyperfine manifold with

an energy separation on the order of MHz while the state |e〉 could be an excited electronic

level with an energy separation on the order of THz. The first (second) laser propagates to

the right (left) along z direction and induces solely the |a〉 ↔ |e〉 (|b〉 ↔ |e〉) transition.

Restricting to the z direction, the single-particle Hamiltonian density in the d ·E picture

and the rotating-wave approximation reads [149],

HΛ =
~2q2

z

2M
13 +

∑

τ

ετσττ + ~
[
Ωaee

i(k1z−ω1t)σea + Ωbee
i(−k2z−ω2t)σeb + H.c.

]
, (2.126)

where ~Ωae = E
(1)
0 〈a|d·e1 |e〉 and ~Ωbe = E

(2)
0 〈b|d·e2 |e〉 are the maximum Rabi frequencies

for the corresponding transitions and assumed to be real. Here, Pz = ~qz is the center-of-mass

momentum of the atom along the z direction, M the mass of the atom, 13 the three-by-three

identity matrix in the internal-state space, and σττ ′ = |τ〉 〈τ ′|. It is convenient to set to the
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excited-state energy εe as the reference and recast the atomic internal energy as

∑

τ

ετσττ = εe13 − ~ωeaσaa − ~ωebσbb, (2.127)

where ~ωea = εe − εa and ~ωeb = εe − εb are the atomic transition frequencies. In or-

der to remove the explicit time dependence in the Hamiltonian HΛ, one can transfer the

Hamiltonian (2.126) to the rotating frame of lasers by applying the unitary transformation

UΛ = exp [−i(ω1tσaa + ω2tσbb)] via the relation6 H̃Λ = UΛHΛU †
Λ +i~(∂tUΛ)U †

Λ . Considering

that UΛσeaU
†

Λ = eiω1tσea and UΛσebU
†

Λ = eiω2tσeb, the Hamiltonian in the rotating frame of

lasers then reads as,

H̃Λ =
~2q2

z

2M
13 + ~∆aσaa + ~∆bσbb + ~

[
Ωaee

ik1zσea + Ωbee
−ik2zσeb + H.c.

]
, (2.128)

where ∆a = ω1 − ωea and ∆b = ω2 − ωeb.

If the laser beams are far off-resonance from atomic transitions then the adiabatic condi-

tion holds, and therefore the atomic excited state |e〉 reaches its steady state quickly and can

be adiabatically eliminated. More precisely, the adiabatic condition holds when |δ̃| � ∆,

where δ̃ ≡ ∆b−∆a is the two-photon detuning and ∆ ≡ (∆a + ∆b)/2 [149]. After adiabatic

elimination of the atomic excited state, the effective Hamiltonian for the ground pseudospin

states {|a〉 , |b〉} then becomes7 [67],

H̃eff =
~2q2

z

2M
12 +

1

2
~δσ̌z +

1

2
~ΩR

[
ei(k1+k2)zσba + H.c.

]
, (2.129)

where σ̌z = |b〉〈b| − |a〉〈a| is the third Pauli matrix, ΩR = 2ΩaeΩbe/∆ the Raman (or two-

photon Raman-Rabi) frequency, and

δ =

(
∆b +

Ω2
be

∆

)
−
(

∆a +
Ω2
ae

∆

)
= δ̃ +

1

∆

(
Ω2
be − Ω2

ae

)
, (2.130)

6 This relation can be readily proven by considering the time-depend Schrödinger equation. If the wave-
function ψ satisfies the time-depend Schrödinger equation i~∂tψ = Hψ, then the transferred wave function
ψ → ψ̃ = U ψ satisfies the equation i~∂tψ̃ = H̃ψ̃, with H̃ = U HU † + i~(∂tU )U †.

7 See Appendix A for a general review of the Adiabatic Theorem. See also Appendix B for details of
adiabatic elimination of the atomic excited state in the Λ scheme in the cavity QED framework.
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the modified two-photon detuning due to ac Stark shifts {Ω2
ae/∆,Ω

2
be/∆}.

It is evident from Eq. (2.129) that only pseudospin states with momentum difference

~|k1 +k2| can be connected with one another. In other words, the atom acquires momentum

±~(k1 + k2) when its internal pseudospin state is flipped due to the two-photon Raman

process. In order to make the induced gauge structure explicit, one must apply the unitary

transformation Ǔ = exp [i(k1σaa − k2σbb)z] into the Hamiltonian H̃eff , yielding

HSO = Ǔ H̃effǓ † =
~2

2M
(q̃z12 + kRσ̌z)

2 +
1

2
~δσ̌z +

1

2
~ΩRσ̌x, (2.131)

where q̃z = qz − (k1 − k2)/2, kR = (k1 + k2)/2, and σ̌x = σab + σba is the first Pauli matrix.

The gauge structure is now apparent: the Galilean transferred center-of-mass momentum

P̃z = ~q̃z is minimally coupled to the synthetic gauge potential e∗Ǎz = −~kRσ̌z, reminiscent

of non-Abelian gauge potentials (2.60). Here, e∗ is the synthetic charge, which is normally

set to unity for convenience. Although the synthetic gauge potential e∗Ǎz acts in the internal

pseudospin state and has a structure similar to non-Abelian gauge potentials, it might be

interpreted as an Abelian gauge potential since it has only one component and therefore

[Ǎi, Ǎj] = 0 for any i, j ∈ {x, y, z} [57]. After pseudospin rotation σ̌z → σ̌y → σ̌x → σ̌z [57],

the synthetic gauge potential transforms to e∗Ǎz → e∗Ǎz = −~kRσ̌y, which is then evident

that e∗Ǎz can be interpreted as an equal contribution of the Rashba ∝ σ̌xpy − σ̌ypx [55] and

Dresselhaus ∝ −σ̌xpy − σ̌ypx [56] SO couplings.

The effective SO-coupling Hamiltonian HSO can be readily diagonalized to yield the

single-particle energy dispersion,

ε±(qz) = ER



(
qz
kR

)2

+ 1± 1

2

√(
4qz
kR

+
~δ
ER

)2

+

(
~ΩR

ER

)2

 , (2.132)

where ER = ~2k2
R/2M is the recoil energy and I set q̃z = qz for the sake of simplicity of

notation8. The energy dispersion ε(qz) is depicted in Fig. 2.5 for different values of the

8 This substitution is stemmed from the assumption that kR ≡ k1 ' k2, which is valid when ω1 = ω2+∆ω
with |∆ω|/ωj � 1, such as in the experiment of Ref. [67].

64



WR increasing

WR increasing

-2 -1 1 2
qz � kR

-1

1

2

3
Ε±HqzL�ER

Figure 2.5: The energy dispersion ε±(qz) is shown for δ = 0 and ~ΩR/ER in a range from
0 to 5 in equal increments. Increasing ~ΩR/ER (with the dashed curve being correspond to
ΩR = 0) reduces the barrier between the two minima in the energy dispersion.

Raman coupling ~ΩR/ER in a range between 0 to 5 in equal increments for the two-photon

resonance case, δ = 0. The lower energy dispersion ε−(qz) consists of a symmetric double

well (for δ = 0) with two minima located at

qz = ±q0 = ±kR

√
1−

(
ΩR

4ER

)2

, (2.133)

when ΩR < 4ER. When the two-photon Raman coupling ΩR is increased slowly from zero,

the two dressed pseudospins |a′〉 and |b′〉 follow their corresponding minima located at ±q0.

The effect of a small non-zero two-photon detuning (i.e., |δ|/ΩR � 1) is to distort the energy

dispersion.

In the following chapters, I will build upon the two-photon Raman scheme, discussed in

the present section, in a cavity QED setting. This is motivated by the quantum-dynamic

nature of cavity fields. I will exploit two counter-propagating modes of a ring cavity, instead

of two counter-propagating laser beams. Unlike classical laser fields, the cavity fields interact

dynamically with atoms and the quantum nature of light plays an essential role, as discussed

in Sec. 2.3.2. Then, I shall study this scheme in both single- and many-particle cases.

The interplay between the Raman coupling ΩR, the two-photon detuning δ, and photon
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numbers will be thoroughly investigated in the single-particle case in Chapter 3. In the

many-particle case presented in Chapter 4, the interplay between cavity-mediated infinite-

ranged and contact two-body interactions will be the main theme of the study.
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Chapter 3

Synthetic Spin-Orbit Interactions and Magnetic Fields

in Ring-Cavity QED

The interactions between light and matter are strongly enhanced when atoms are placed in

high-finesse quantum cavities, offering tantalizing opportunities for generating exotic new

quantum phases. In this work we show that both spin-orbit interactions and strong syn-

thetic magnetic fields result when a neutral atom is confined within a ring cavity, whenever

the internal atomic states are coupled to two off-resonant counter-propagating modes. We

diagonalize the resulting cavity polariton Hamiltonian and find characteristic spin-orbit dis-

persion relations for a wide range of parameters. An adjustable uniform gauge potential

is also generated, which can be converted into a synthetic magnetic field for neutral atoms

by applying an external magnetic field gradient. Very large synthetic magnetic fields are

possible as the strength is proportional to the (average) number of photons in each of the

cavity modes. The results suggest that strong-coupling cavity quantum electrodynamics can

be a useful environment for the formation of topological states in atomic systems.

3.1 Introduction

The spin-orbit (SO) interaction in solids is the coupling of an electron’s spin to its center-

of-mass momentum, and is closely related to the SO coupling in atomic systems. In two-

dimensional electron gases two kinds of SO coupling have important effects on the electronic

band structure: Dresselhaus [56] and Rashba [55, 150] SO interactions. In a groundbreaking

paper [51], Kane and Mele showed that including a SO interaction in the Hamiltonian of

graphene, while respecting all of the material’s symmetries, nevertheless opens up a band gap.

67



The resulting bands become topologically nontrivial, so that the material supports a pair of

robust conducting edge states characterized by a nontrivial Z2 topological invariant [52]. This

new phase of matter is known as a topological insulator, or a quantum spin Hall insulator in

two dimensions, and its discovery has opened up a fascinating new research area in condensed

matter physics [47]. Determining the conditions under which topological states could arise

in condensed matter systems is the subject of continuing investigations [151, 152, 153].

Ultracold atomic gases provide a rich environment for the simulation of condensed matter

physics [38, 39, 40]. For example, interacting atoms confined in optical lattices experience a

crystalline environment that can mimic strongly correlated superfluid and magnetic states.

Over the past decade, many theoretical schemes have been proposed to generate synthetic

gauge potentials for neutral ultracold atomic gases via atom-light interactions [59]. In recent

years, both synthetic magnetic [65] and electric [66] fields have been realized experimentally.

The SO coupling can be interpreted as a non-Abelian gauge field [154], and Lin et al. recently

realized a scheme to generate a combination of Rashba and Dresselhaus SO couplings in

ultracold neutral atoms by means of nearly resonant two-photon Raman transitions [67].

The strength of the gauge field potentials in these experiments is limited by the atomic

recoil momentum, though there are recent theoretical proposals that would push these to

much higher values [155, 156, 157].

Placing atoms in high-finesse optical cavities strongly enhances atom-photon interac-

tions [99], with numerous potential applications to quantum information science [98]. While

much of the early work focused on single atoms, recent investigations of cavity quantum

electrodynamics (QED) with multiple trapped ultracold atoms [158] are revealing fascinat-

ing new phenomena. The field mode to which atoms are collectively coupled is in turn

affected by the atomic states, giving rise to cavity mediated long-range atom-atom interac-

tions [107]. Other examples include the Dicke phase transition [110] and a collective atomic

recoil laser [113, 114, 115, 159] in many-atom linear and ring cavity QED, respectively.
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The strong coupling of cavity QED therefore offers the tantalizing prospect of enhancing

the magnitude of synthetic gauge fields and SO interactions in atomic systems, as well as

inducing unique strongly correlated states of both atoms and photons with no analog in

condensed matter systems. In this work, we show how to simultaneously engineer a SO

interaction and a synthetic magnetic field for a single neutral atom confined inside a ring

cavity, as a first step toward generating topological states in ultracold atomic systems. We

build on the central ideas of two-photon Raman transitions described in Ref. [67], in which

absorption and re-emission of photons from one beam to the other naturally couples the

atom’s internal states to its center-of-mass momentum. Two propagating modes of a high-

finesse ring cavity accomplish the same purpose, but with an enhanced atom-photon coupling

strength. This potential advantage comes at the cost of increased mathematical complexity,

because unlike the free space Raman case both the atom and photon degrees of freedom need

to be treated fully quantum mechanically.

The calculations presented here reveal that the SO interactions and synthetic magnetic

fields emerge naturally as the limits of zero two-photon detuning between the atomic and

cavity frequencies and large two-photon detuning, respectively. The SO interactions are only

weakly dependent on the occupation of the cavity modes, and in fact are robust already at

the level of a few photons. That said, the energy barrier between the energy levels split by

the SO interactions is greatest when the difference between the occupation of the two modes

is largest. In principle, this parameter is adjustable experimentally [160, 161, 162, 163].

The strength of the synthetic magnetic fields is proportional to the square of the total

number of photons in the cavity. The cavity QED environment therefore promises huge

synthetic magnetic fields, potentially much larger than are currently accessible to ultracold

atom experiments. The readiness with which SO interactions and synthetic magnetic fields

are manifested in cavity QED should facilitate the production of new strongly correlated

states in these systems.
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This chapter is organized as follows. The model of the atom interacting with a ring

cavity is described in Sec. 3.2, and the governing Hamiltonian is derived. In Sec. 3.3, this

Hamiltonian is expressed in terms of polaritons and diagonalized to obtain the spectrum of

excitations. Sec. 3.4 describes the circumstances under which synthetic SO interactions and

magnetic fields emerge in this model. Sec. 3.5 discusses the results with a view toward future

calculations.

3.2 Model and Hamiltonian

Consider a ring cavity with two counter-propagating modes Â1e
ik1z and Â2e

−ik2z, where Âj

are field annihilation operators for the photon and kj = ωj/c are the photon wavenumber

expressed in terms of their frequencies ωj. Three atomic levels are coupled via these two

cavity modes in the Λ scheme, as depicted in Fig. 4.1(b). The states {|a〉 , |b〉 , |e〉} are

arbitrary internal states of an atom whose energies satisfy the relations εe > εb > εa and

{εea, εeb} � εba, where εττ ′ ≡ ετ − ετ ′ . For example, the states |a〉 and |b〉 might be energy

levels in the same hyperfine manifold with an energy separation on the order of MHz while

the state |e〉 could be an excited electronic level with an energy separation on the order of

THz. The mode Â1e
ik1z (Â2e

−ik2z) propagates to the right (left) and couples solely to the

|a〉 ↔ |e〉 (|b〉 ↔ |e〉) transition.

The single-particle Hamiltonian density in the rotating-wave approximation reads

H(1) =
~2q2

z

2m
I3×3 +

∑

τ

ετσττ + ~
∑

j

ωjÂ
†
jÂj + ~

(
Gae(z)Â1σea + Gbe(z)Â2σeb + H.c.

)
,

(3.1)

where σττ ′ = |τ〉 〈τ ′|, Gae(z) = Gaeeik1z, Gbe(z) = Gbee−ik2z and H.c. stands for Hermitian

conjugate. Here ~qz is the center-of-mass momentum of the atom and I3×3 is the identity

matrix in the internal atomic state space. To a first approximation, this Hamiltonian rep-

resents an atom with infinite excited-state lifetime and an exceptionally high-finesse cavity,
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Figure 3.1: Two low-lying atomic levels |a〉 and |b〉 are coupled in the Λ scheme to an excited
state |e〉 by two counter-propagating cavity modes Â1e

ik1z and Â2e
−ik2z with strength Gae

and Gbe, respectively. The transitions are detuned from resonance by ∆1 and ∆2.

neglecting atomic spontaneous emission and cavity losses by mirror leakage, as well as gains

by external pumps. Even with these simplifying assumptions, the analysis of this Hamilto-

nian is quite involved as can be seen below; relaxing these assumptions will therefore be the

focus of future work.

If the cavity modes are far off-resonance from atomic transitions then the adiabatic

condition holds. That is, if the frequency detunings ~∆1 ≡ ~ω1 − εea and ~∆2 ≡ ~ω2 − εeb
are very large compared to εba then the excited state |e〉 can be adiabatically eliminated [164].

Details of the procedure can be found in the Appendix B. The effective Hamiltonian for the

ground pseudospin states {|a〉 , |b〉} and the cavity modes then becomes

Heff =
~2q2

z

2m
I2×2 +

1

2
~ω̃0σz + ~

(
ω1Â

†
1Â1 + ω2Â

†
2Â2

)
+ ~ΩR

(
ei(k1+k2)zÂ†2Â1σba + H.c.

)
,

(3.2)

where σz = |b〉〈b|− |a〉〈a|, and ~ω̃0 = ε̃b− ε̃a > 0. The ε̃τ corresponds to the ac Stark-shifted

atomic energies (B.5). The I2×2 operator is the identity matrix in the ground pseudospin

state space, and will be implied in the remainder of this work. The two-photon Rabi fre-

quency (B.6) is given by ΩR = GaeGbe
(

∆1+∆2

∆1∆2

)
under the assumption that {Gae,Gbe} ∈ R.
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It is useful to perform a Galilean transformation of this Hamiltonian into the frame

moving at the momentum transferred to the atom by the interaction with the photons. This

is accomplished using the unitary operator U = exp [i(k1σaa − k2σbb)z]:

H̃eff ≡ U HeffU † =
~2

2m
[qz − (k1σaa − k2σbb)]

2 +
1

2
~ω̃0σz + ~

(
ω1Â

†
1Â1 + ω2Â

†
2Â2

)

+ ~ΩR

(
Â†2Â1σba + H.c.

)
, (3.3)

where U σbaU † = e−i(k1+k2)zσba using the Baker-Campbell-Hausdorff formula. One could

have applied the unitary transformation U ′ = exp [i(k1Â
†
1Â1 − k2Â

†
2Â2)z] instead; although

the first term of the resulting Hamiltonian will be different from that given above, the final

results discussed below are independent of the particular choice of a unitary transformation.

The last term in Eq. (3.3) resembles the interaction term in the Jaynes-Cummings model

[165], but the Â is replaced by a two-photon Â†2Â1 operator.

In order to reveal the underlying symmetries of the Hamiltonian (3.3), it is useful to

express the operators in the Schwinger representation. Let σ+ = σba = 1
2
(σx + iσy) =

1
~(sx + isy) = 1

~s+ and σ− = σab = 1
~s− be the raising and lowering operators for the

atom, and 2
~sz = σz = σ+σ− − σ−σ+ = |b〉〈b| − |a〉〈a|. If there are only exactly two

modes of the cavity and ω1 > ω2, one can make use of the Schwinger angular momentum

operators [166] for the photon field operators jx = ~
2
(Â†1Â2 + Â†2Â1), jy = ~

2i
(Â†1Â2 − Â†2Â1),

and jz = ~
2
(Â†1Â1 − Â†2Â2), which satisfy the SU(2) Lie algebra (or angular momentum

commutation relation)

[jn, jm] = i~εnmljl, (3.4)

where εnml is the totally antisymmetric tensor. As in the atomic case, one can define photonic

angular-momentum raising and lowering operators j+ = jx+ijy = ~Â†1Â2 and j− = jx−ijy =

~Â†2Â1. The Hamiltonian (3.3) can then be recast as

H̃eff =
~2

2m

{
qzI2×2 −

[
∆k

2
I2×2 − kσz

]}2

+ ω̃0sz +
~
2

(ω1 + ω2)n̂+ (ω1 − ω2)jz

+
ΩR

~
(j−s+ + j+s−), (3.5)
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where k = (k1 +k2)/2, ∆k = k1−k2 and I2×2 = σaa+σbb as before. Here, n̂ = Â†1Â1 +Â†2Â2 is

the total photon number operator with eigenvalues n = 2j, where ~2j(j+1) is the eigenvalue

of the total photon spin operator j2.

The first term in the Hamiltonian (3.5) strongly resembles SO coupling, with equal con-

tributions of Dresselhaus and Rashba terms. Expanding the quadratic operator provides a

cross term that explicitly couples the linear momentum to the pseudospin degree of freedom.

A more formal mapping will be discussed in detail in the next section.

Aside from the first term, the Hamiltonian (3.5) corresponds to a generalized Jaynes-

Cummings model:

HGJC = ω̃0sz +
~
2

(ω1 + ω2)n̂+ (ω1 − ω2)jz +
ΩR

~
(j−s+ + j+s−). (3.6)

The components of j and s both satisfy the angular momentum commutation relation (3.4),

so one can define the total angular momentum operator J = j + s. Because [HGJC, n̂] =

[HGJC, j
2] = [HGJC, Jz] = 0, it is conventional to represent the eigenstates of HGJC and

H̃eff in a basis labeled by the eigenstates of sz, jz, and j, with eigenvalues ~ms = ±~/2,

~mj ≡ ~(n1−n2)/2, and ~j = (~/2)(n1+n2) = (~/2)n, respectively. For reasons described in

detail below, it turns out to be more convenient to instead express the basis in eigenstates of j,

sz, and Jz, where the eigenvalues of the last quantity ~mz = ~(mj+ms) = (~/2)(n1−n2±1).

Note that the only component of the total angular momentum operator J that commutes

with H̃eff is Jz. Thus, the symmetry of the spin space of the Hamiltonian is reduced to U(1).

3.3 Polariton Mapping

While the first part of the effective Hamiltonian (3.5) indicates that the atoms experience

an effective SO coupling through their interactions with the cavity modes, the remainder

corresponds to a generalized Jaynes-Cummings model. The natural representation of the

quasiparticles in the latter model is that of cavity polaritons (superpositions of atomic and
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Figure 3.2: The energy manifolds of the atom-cavity system in the uncoupled qz, sz, n̂1, and
n̂2 basis (i.e. |qz, ↑↓, n1, n2〉) are shown in (a). Shown in (b) is the 2j-photon manifold and
the corresponding sub-manifolds in the uncoupled qz, sz, j, and Jz basis (i.e. |qz, ↓↑, j,mz〉),
and the resulting dressed states of Eq. (3.11) within the manifold. Note that here δ = 0.

photonic excitations). Explicit diagonalization of the full polariton Hamiltonian, performed

below, shows that in fact it is the dressed pseudospin states that experience the SO interac-

tions and synthetic magnetic fields.

3.3.1 Diagonalizing the Generalized Jaynes-Cummings Hamiltonian

In order to map the Hamiltonian (3.5) into the polariton basis, we first exactly diagonalize

HGJC. Ignoring the atom-photon coupling j+s− + j−s+ term, the natural basis states can

be represented by |qz〉 ⊗ |↓↑〉 ⊗ |n1〉 ⊗ |n2〉 = |qz, ↓↑, n1, n2〉, where |↓〉 = |a〉, |↑〉 = |b〉, and

n1 and n2 are the number of photons in the first and second cavity modes, respectively.

With a total of n photons in the cavity, there are 2(n + 1) basis states for each value of

qz. These states are depicted in Fig. 3.2. For example, the states for n = 1 correspond to

{|qz, ↓, 0, 1〉 , |qz, ↓, 1, 0〉 , |qz, ↑, 0, 1〉 , |qz, ↑, 1, 0〉}. The j+s− + j−s+ term couples basis states

|qz, ↓, n1, n2〉 and |qz, ↑, n1 − 1, n2 + 1〉 together within a given n manifold, but the states
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|qz, ↓, 0, n〉 and |qz, ↑, n, 0〉 will remain uncoupled. For each value of n, the Hamiltonian

therefore block diagonalizes into n + 2 distinct blocks, of which n are two-dimensional and

two are one-dimensional.

It is convenient to represent the basis states above in terms of pseudospin quantum

numbers: |qz, ↓↑, j,mz〉 = |qz〉 ⊗ |↓↑〉 ⊗ |j,mz〉, where ~j = ~n/2 and ~mz = ~(mj + ms) =

~
2
(n1−n2±1) withmz = −j−1

2
, . . . , j+1

2
. In this representation, the states

∣∣qz, ↓, j,−j − 1
2

〉
≡

∣∣∣u0
qz ,j,−j− 1

2

〉
and

∣∣qz, ↑, j, j + 1
2

〉
≡
∣∣∣u0
qz ,j,j+

1
2

〉
are independent of the others, and have energies

E0
j,−j− 1

2
= −~ω̃0

2
+ ~ω2n2 = −~ω̃0

2
+ 2~ω2j;

E0
j,j+ 1

2
=

~ω̃0

2
+ ~ω1n1 =

~ω̃0

2
+ 2~ω1j. (3.7)

The remaining 2n states couple in pairs keeping mz fixed. For example, states with mj =

1
2
(n1−n2) and ms = −1

2
(atomic state |↓〉 = |a〉) couple with states with m′j = 1

2
(n′1−n′2) =

1
2
[(n1−1)− (n2 +1)] = mj−1 and ms = +1

2
; both these have mz = 1

2
(n1−n2−1) = mj− 1

2
.

The two-dimensional blocks of the Hamiltonian HGJC are therefore

Hj,mz
GJC =




~ω̃0

2
+ ~ω1(n1 − 1) + ~ω2(n2 + 1) ~ΩR

√
n1 (n2 + 1)

~ΩR

√
n1 (n2 + 1) −~ω̃0

2
+ ~ω1n1 + ~ω2n2




= Ēj,mzI2×2 +
~
2




−δ ΩR

√
(2j + 1)2 − 4m2

z

ΩR

√
(2j + 1)2 − 4m2

z δ


 , (3.8)

where Ēj,mz ≡ ~ [(ω1 + ω2) j + (ω1 − ω2)mz]. Here, the two-photon detuning is defined to

be δ ≡ (ω1 − ω2) − ω̃0 ≈ ∆1 − ∆2 and the number of photons in each mode is written in

terms of the pseudospin quantum numbers as n1 = j+mz+ 1
2
, and n2 = j−mz− 1

2
. Defining

∆j,mz ≡
√

Ω2
R [(2j + 1)2 − 4m2

z] + δ2, (3.9)

the eigenvalues of the two-dimensional blocks (3.8) are

E±j,mz = Ēj,mz ±
1

2
~∆j,mz . (3.10)
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Defining the mixing angle θj,mz ≡ cos−1(−δ/∆j,mz), the dressed states (or polariton states)

can be written


∣∣u+
qz ,j,mz

〉

∣∣u−qz ,j,mz
〉


 =




cos
θj,mz

2
sin

θj,mz
2

− sin
θj,mz

2
cos

θj,mz
2






|qz, ↑, j,mz〉

|qz, ↓, j,mz〉


 . (3.11)

Note that this treats ω̃0 and therefore δ as a constant independent of j and mz, which

is not strictly correct. Using results found in the Appendix B, the Stark-shifted atomic

transition frequency is

ω̃0 = ω0 +
2G 2

be

∆2

(j −mz)−
2G 2

ae

∆1

(j +mz + 1)

= ω0 −
2G 2

ae

∆1

+ 2j

(
G 2
be

∆2

− G 2
ae

∆1

)
− 2mz

(
G 2
ae

∆1

+
G 2
be

∆2

)
, (3.12)

where ~ω0 = εb − εa. The terms proportional to j and mz can be ignored to a first ap-

proximation. While 2j = n is a large number when many photons occupy both modes, for

a judicious choice of levels one should be able to ensure that G 2
be/∆2 ≈ G 2

ae/∆1. Likewise,

mz = (n1 − n2 − 1)/2, which should be small if n1 ∼ n2. Thus ω̃0 ≈ ω0 − 2G 2
ae/∆1 for each

block. In fact, as shown below, synthetic magnetic fields are maximized when n1 ∼ n2. Even

if mz is not small, for sufficiently big frequency detunings ∆i, the second and the last term

in Eq. (3.12) will be negligible and ω̃0 ≈ ω0. Yet the important off-diagonal term in the 2×2

Hamiltonian blocks (3.8) will remain appreciable as long as j � mz.

The generalized Jaynes-Cummings Hamiltonian HGJC is now diagonal in the dressed

state basis

HGJC =
∑

j,mz ,λ

Eλ
j,mzP

†
j,mz ,λ

Pj,mz ,λ, (3.13)

where j = 0, 1
2
, 1, 3

2
, . . ., mz = −j− 1

2
, . . . , j+ 1

2
in integer steps, and λ = {0,±}. The energies

Eλ
j,mz are defined in Eqs. (3.7) and (3.10). The polariton field creation operator is defined

as (c.f. Ref. [167, 168])

P †j,mz ,λ =
∣∣uλqz ,j,mz

〉 〈
u0
qz ,0,−1/2

∣∣ , (3.14)

where the dependence of the field operator on qz is suppressed for convenience.
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3.3.2 Diagonalizing the Full Hamiltonian

We are now in a position to obtain the matrix elements of the full Hamiltonian (3.5) in the

dressed-state basis. It suffices to obtain the coefficients

tλλ
′

j,mz = k
〈
uλqz ,j,mz

∣∣σz
∣∣∣uλ′qz ,j,mz

〉
, (3.15)

which are

t±±j,mz = ±k cos θj,mz ; t±∓j,mz = −k sin θj,mz ; t00
j,j+ 1

2
= −t00

j,−j− 1
2

= k. (3.16)

With Eqs. (3.7), (3.10), (3.13) and (3.15) and some straightforward algebra, the total Hamil-

tonian (3.5) becomes:

H̃eff =
∑

j,mz

[
~2

2m

(
q̃z +

∑

λ,λ′

tλλ
′

j,mzP
†
j,mz ,λ

Pj,mz ,λ′
)2

+
∑

λ

Eλ
j,mzP

†
j,mz ,λ

Pj,mz ,λ

]
. (3.17)

in the polariton basis. Here we have introduced the Doppler-shifted center-of-mass momen-

tum q̃z ≡ qz−∆k/2. The second term in the square brackets can be considered as a Zeeman

energy shift for each sub-manifold. The first term contains the essential feature of the SO

interaction: a spin-dependent shift of the center-of-mass momentum. This can be made more

explicit by introducing the effective spin operators

X̌j,mz ≡ P †j,mz ,+Pj,mz ,− + P †j,mz ,−Pj,mz ,+;

Žj,mz ≡ P †j,mz ,+Pj,mz ,+ − P
†
j,mz ,−Pj,mz ,−, (3.18)

whenever mz 6= ±(j + 1/2). The Hamiltonian (3.17) can then be written

H̃j,mz
eff =

~2

2m

[
q̃zIj,mz + k cos θj,mz Žj,mz − k sin θj,mzX̌j,mz

]2

+
1

2
~∆j,mz Žj,mz + Ēj,mzIj,mz ,

(3.19)

for some arbitrary j 6= 0 and mz 6= ±(j + 1/2). This equation can be considered to be the

main result of the present chapter. The term in brackets corresponds to the Hamiltonian of

a particle with a Doppler-shifted center-of-mass momentum q̃z subject to a spin-dependent
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gauge potential (i.e., the sign and strength of the gauge field depends on the eigenstate of ms).

This takes a particularly simple form when cos θj,mz = 0, or zero two-photon detuning δ = 0.

For this case, the kinetic energy term takes the usual SO form (~2/2m)[q̃zIj,mz − kX̌j,mz ]
2.

The last term is an overall energy shift for each two-dimensional block labeled by mz. The

penultimate term can be considered as a Zeeman splitting for the dressed states.

Eq. (3.19) can be simplified slightly by defining ER ≡ ~2k2/2m as the atomic recoil energy

and pz ≡ q̃z/k as the Doppler-shifted center-of-mass momentum in units of k. Ignoring the

constant shift for each submanifold labeled by mz, one obtains

H̃j,mz
eff

ER
=
[
pzIj,mz + cos θj,mz Žj,mz − sin θj,mzX̌j,mz

]2

+
~∆j,mz

2ER
Žj,mz . (3.20)

This Hamiltonian can then be diagonalized, yielding the dispersion relation

ε±j,mz(pz)

ER
= p2

z + 1±
√

4p2
z − 2pz

~δ
ER

+

(
~∆j,mz

2ER

)2

. (3.21)

Note that the energy dispersions for the 1D submanifolds mz = ±(j + 1/2) are independent

of j and mz and given by

ε0j,±(j+1/2)(pz)

ER
= (pz ± 1)2, (3.22)

where here also the energy offsets, Eq. (3.7), have been omitted.

3.4 Synthetic SO Interactions and Magnetic Fields

3.4.1 Synthetic SO Interactions

To see the effect of the SO interactions, consider first the lower energy band in the simplest

case of zero two-photon detuning, δ = 0. This corresponds to dressed energy levels that are

equal superpositions of the original atomic pseudospin states, c.f. Eq. (3.11). The extrema

of the dispersion relation ∂ε−j,mz/∂pz = 0 are located at

pex
z =



0,±

√
1− 1

16
[(2j + 1)2 − 4m2

z]

(
~ΩR

ER

)2



 . (3.23)
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Figure 3.3: The energy dispersion ε±9/2,4(qz) is shown for δ = 0 and ~ΩR/ER in a range from

0 to 0.5 in equal increments. Increasing ~ΩR/ER (with the dashed curve corresponding to
ΩR = 0) reduces the barrier between the two minima in the energy dispersion.

The non-zero solutions will be real only if

~ΩR

ER
≤ 4√

(2j + 1)2 − 4m2
z

. (3.24)

The largest possible value corresponds to m2
z =

(
j − 1

2

)2
, which yields ~ΩR ≤

√
2/jER. The

maximum number of photons in the cavity is therefore nmax = 2jmax = b4(ER/~ΩR)2c. The

value of nmax can be made arbitrarily large by setting ~ΩR/ER → 0, which corresponds to

big frequency detunings ∆i of the cavity mode frequencies from the atomic transitions (note

that one cannot strictly set ΩR = 0 unless the number of photons is exactly zero). The

curvature at the extremum pex
z = 0 is given by

∂2ε−j,mz
∂p2

z

∣∣∣∣∣
pz=0

= 2− 8√
(2j + 1)2 − 4m2

z

(
ER
~ΩR

)
, (3.25)

which is negative for all j < jmax; likewise, the curvature at the other two extrema is strictly

positive.

The low-lying excitations for the resonant case, given by the band ε−j,mz(pz) in Eq. (3.21)

with δ = 0, therefore consist of a symmetric double-well centered at q̃z = qz − ∆k/2 = 0

whose minima are located at q̃z ' ±k in the limit ~ΩR/ER → 0. In this same limit the energy
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Figure 3.4: The low-lying energy dispersions ε−j,mz(qz) are shown for j = 9/2 and
|mz| = 0, ..., 4. Parameters correspond to ~ΩR/ER = 0.415 and ~δ/ER = −0.06. The
bottommost curve corresponds to mz = 0 and the topmost one to mz = ±4. For this
choice, only the three topmost energy dispersions correspond to a SO interaction, with an
appreciable energy barrier between minima only for mz = ±4.

barrier reaches its maximum value of ER. The exact energy bands ε±j,mz(qz) are depicted in

Fig. 3.3 for the particular case δ = 0, j = 9/2, and mz = 4. For concreteness, we have used

values for atomic mass and cavity wavenumbers corresponding to an 87Rb atom confined in

a ring cavity with nearly degenerate wavelength (i.e., ∆k ' 0) λ = 2π/k = 804.1 nm [67].

For large ~ΩR/ER, the bottom of the dispersion curve is almost flat, but as ~ΩR/ER → 0

the minima approach a separation of 2k and are separated by a barrier approaching ER. The

existence of such a double well in the energy dispersion is a hallmark of an equal Rashba-

Dresselhaus SO interaction.

In the weakly non-resonant case δ 6= 0 but ~δ/ER � 1, the double-well dispersion curves

become asymmetric. For ~ΩR/ER � 1, the splitting γ of the energy minima is approximately

γ ≈
[

1− (2j + 1)2 − 4m2
z

32

(
~ΩR

ER

)2
]
~δ

which is independent of j and mz only for ΩR → 0. The minima are now separated

by 2k(γ/~δ). Fig. 3.4 depicts the atomic dispersion relations ε−j,mz(qz) for j = 9/2 and

|mz| = 0, . . . , 4, assuming ~δ/ER = −0.06 and ~ΩR/ER = 0.415. The bottommost curve
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corresponds to mz = 0 and the topmost one to mz = ±4. For these parameters with ~δ/ER

small, the dispersion curves qualitatively follow the δ = 0 results above. The uppermost

curves with |mz| = 2, 3, 4 now correspond to asymmetric double-wells centered near q̃z = 0

with well minima slightly less than 2k apart and an energy splitting of order ~δ that is

only weakly mz-dependent. Only for the energy dispersion corresponding to |mz| = 4 is the

energy barrier appreciable between the two minima. A single well results for |mz| = 0, 1 be-

cause the energy difference between the two minima exceeds the barrier height. The analog

of Eq. (3.24) for the δ 6= 0 case is

~ΩR

ER
≤ 4[(2j + 1)2 − 4m2

z]

[(2j + 1)2 − 4m2
z + δ2/Ω2

R]3/2
, (3.26)

which is equivalent to mz∆j,mz ≤ 2~k2 sin2 θj,mz . Violating this condition results in a single

well. Thus, the SO interaction persists for most values of mz, but is strongest when there is

a large difference between the number of photons in the two cavity modes.

3.4.2 Synthetic Magnetic Fields

In the strongly non-resonant limit ~δ/ER � 1, there is only one minimum of the dispersion

curve ε−j,mz , located at

pex
z ≈ −1 +

(2j + 1)2 − 4m2
z

2

Ω2
R

δ2
. (3.27)

The lowest energy dispersion then consists of a single well, as shown in Fig. 3.5. For the

parameters chosen (j = 9/2, mz = 4, k1 = k2 = k, ~ΩR = 0.3ER, and ~δ = 3ER),

the theoretical minimum of the dispersion curve based on the expression above occurs at

qz = −0.82k, which is close to the exact result −0.97k. These parameters yield a mixing

angle θ 9
2
,4 ≈ 0.21π, indicating that the spin mixing is nevertheless appreciable. Note that

the ~δ/ER � 1 condition is already well-satisfied here for the case ~δ/ER = 3.

Under these circumstances it is reasonable to also assume that δ � ΩR so that ∆j,mz ∼ δ.

The effective Hamiltonian (3.20) then becomes

H̃j,mz
eff

ER
≈
[
pzIj,mz − Žj,mz

]2

+
~δ

2ER
Žj,mz . (3.28)
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Figure 3.5: The energy dispersion ε−9/2,4(qz) is shown for ~ΩR = 0.3ER and ~δ = 3ER.

The lower branch has dispersion relation

ε−j,mz(pz) ≈ ER

[
(pz + 1)2 − ~δ

2ER

]
, (3.29)

consistent with Eq. (3.27) in the limit δ � ΩR. In terms of the original atomic momentum

the dispersion relation becomes

ε−j,mz ≈
~2

2m

(
qz −

∆k

2
+ k

)2

− ~δ
2

=
~2

2m
(qz + k2)2 − ~δ

2
. (3.30)

Ignoring the overall energy shift −~δ/2, the dispersion relation is equivalent to the minimal

coupling energy dispersion ~2(qz−q∗Az/~)2/2m of a particle with effective charge q∗ subject

to a synthetic Abelian gauge potential q∗Az/~ = −k2. This is simply −k in the case k1 = k2.

Note that in the strongly non-resonant limit for negative two-photon detuning, that is

~δ/ER � −1, the minimum of the energy dispersion ε−j,mz is instead located at

pex
z ≈ 1− (2j + 1)2 − 4m2

z

2

Ω2
R

δ2
. (3.31)

The synthetic gauge potential then becomes q∗Az/~ = ∆k/2 + k = k1, which can be consid-

ered as the artificial Abelian gauge potential for the other pseudospin dressed state. Thus

the difference in the effective gauge potential strengths for the two pseudospin states is set

by the maximum two-photon momentum transfer k1 + k2, consistent with the free space

case [65].
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The synthetic gauge potential q∗Az is position-independent and therefore cannot yield

a synthetic magnetic field. Unfortunately it is not possible to make k or ∆k depend on

position. Instead, one can relax the assumption that ΩR/δ ≈ 0 and rather make the two-

photon detuning δ position-dependent by applying a real external magnetic field gradient

transverse to the cavity mode direction. For example, huge magnetic field gradients B′

are generated by integrating copper wires in the immediate vicinity of high-finesse optical

cavities on microfabricated atom chips [169].

Consider a magnetic field gradient aligned along the y direction giving rise to a position-

dependent cavity detuning δ−µB′y/~, where µ/~ is the atomic gyromagnetic ratio. Taking

the curl of Eq. (3.27) then yields the synthetic magnetic field

q∗B
~k

=
µB′

~
[
(2j + 1)2 − 4m2

z

] Ω2
R

(δ − µB′y/~)3
x = 4

µB′

~
n1(n2 + 1)

Ω2
R

(δ − µB′y/~)3
x, (3.32)

which the second equality is written in terms of the cavity occupation numbers. This result

shows that the magnitude of the synthetic magnetic field depends not only on the strength

of the external magnetic field gradient B′ but also on the population of the cavity modes,

with the maximum corresponding to n1 = (n+ 1)/2 where n is the total number of photons

in the cavity. The maximum synthetic magnetic field therefore scales as n2, which implies

that much higher synthetic magnetic fields for atoms can be reached in cavities than in

the free space. For example, choosing the same parameters as in Fig 3.5, namely j = 9/2,

mz = 4 (or n = 9 photons in the cavity with n1 = 9, n2 = 0, and spin down), ~δ/ER = 3,

~ΩR/ER = 0.3, λ = 804.1 nm [65] and µB′/h = 114 kHz/µm [169], gives a synthetic

magnetic field of |q∗Bx| ≈ 3.8~k/µm at the cavity center. Instead using the optimal value

j = 9/2, mz = 0 (or n1 = 5, n2 = 4, and spin down) gives |q∗Bx| ≈ 10~k/µm.

To get a sense of the magnitude of the synthetic magnetic field (3.32), consider the

phase ϕ acquired by the atomic wavefunction for a closed trajectory in the yz-plane. For

concreteness, suppose that the path is a rectangle with lengths y0 and z0. The accumulated
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phase is then

Γ =

∮
q∗

~
A · dr = 2kz0n1(n2 + 1)

(
ΩR

δ

)2 [
1

(1− µB′y0/~δ)2
− 1

]
. (3.33)

A natural choice is y0, z0 = λ/2, corresponding to the length of one unit cell of an external

optical lattice generated by external lasers with wavelength λ. Using the parameters above

that maximize the synthetic magnetic field, one obtains Γ ≈ 0.45π. This is equivalent to

almost one quarter of a flux quantum per plaquette. Increasing the number of photons in

the cavity to only n = 15 increases the effective field to over one flux quantum per plaquette.

Comparable magnetic field strengths are impossible to attain in traditional condensed matter

systems, requiring applied fields on the order of B ∼ 109 G [170] while the highest non-

destructive value so far achieved is just over 106 G [171].

It is also instructive to compare the magnetic field (3.32) with its free-space counterpart

q∗LBLx/~k = ~δ′L/(4EL − ~ΩL) for low-lying band [172]. Here δ′L is the detuning gradient

related to an applied external magnetic field gradient, ΩL is the laser two-photon Rabi

frequency and the subscript L refers to the laser based scheme. In order to have a consistent

comparison, assume that δ′L ≈ µB′/~. The ratio between the two magnetic fields at the origin

is then ζj,mz = 4n1(n2+1)(4EL/~−ΩL)Ω2
R/δ

3. For ~δ = 10~ΩR = 3ER and ~ΩL = 16EL [172]

(note that we have set ER = EL for convenience), the absolute value of ζj,mz scales as

0.16n1(n2 + 1). With only n1 = n2 = 25 photons in each cavity mode, the artificial magnetic

field in the cavity exceeds that in the free space by over two orders of magnitude.

3.4.3 Cavity Coherent States

Strong-Coupling Regime

The foregoing analysis has assumed that the cavity modes are prepared in number (or Fock)

states |n〉. There have been several theoretical proposals for quantum optics schemes that

can deterministically prepare such Fock states in cavities [173, 174, 175]. In these schemes,

the maximum value of n is restricted by the number of Zeeman sublevels of the atom. In
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principle, the ideas can also be extended to the two-mode ring-cavity states on which the

present calculations are based.

That said, in the majority of experiments the cavity modes are best described by being

occupied by photon coherent states

|αi〉 = e−|αi|
2/2

∞∑

ni=0

αnii√
ni!
|ni〉 , i = 1, 2, . . . , (3.34)

where |αi|2 = 〈ni〉 is the average number of photons in the ith cavity mode coherent state.

The probability of finding the ith mode in a particular photon number state |ni〉 is then

found using a Poisson distribution [87]:

P(ni) =
〈ni〉nie−〈ni〉

ni!
. (3.35)

The dispersion curves for coherent states can then be obtained by summing over all the

Fock-state low-lying bands (3.21) and (3.22), weighted by their respective probabilities:

ε(pz) =
∑

j,mz

∑

λ={0,−}
Pλj,mzελj,mz(pz), (3.36)

with the associated probabilities given by

P0
j,−(j+1/2) =

1

2
e−〈n1〉 〈n2〉2je−〈n2〉

(2j)!
; P0

j,j+1/2 =
1

2
e−〈n2〉 〈n1〉2je−〈n1〉

(2j)!
, (3.37)

for mz = ±(j + 1/2) and

P−j,mz =
1

2
e−(〈n1〉+〈n2〉)

[
〈n1〉j+mz+1/2〈n2〉j−mz−1/2

(j +mz + 1
2
)!(j −mz − 1

2
)!

+
〈n1〉j+mz−1/2〈n2〉j−mz+1/2

(j +mz − 1
2
)!(j −mz + 1

2
)!

]
, (3.38)

for the remaining states.

The coherent-state dispersion curve ε(pz), Eq. (3.36), is shown as the solid curve in Fig. 3.6

for 〈n1〉 = 5, 〈n2〉 = 4, ~ΩR = 0.215ER and ~δ = −0.06ER. The single-manifold Fock-state

energy dispersion ε−j,mz(pz) with j = (n1 + n2)/2 = 9/2 and mz = (n1 − n2 − 1)/2 = 0 is

shown for comparison as the dashed curve. The results clearly show that the dispersion

relations for coherent and Fock states are not appreciably different in the regime where
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Figure 3.6: The average energy dispersion ε(pz) computed for 〈n1〉 = 5, 〈n2〉 = 4,
~ΩR = 0.215ER and ~δ = −0.06ER. The dashed curve corresponds to ε−9/2,0(pz), see text.

the (exact or mean) occupations of the two cavity modes are comparable. Note that since

mz = 0 corresponds to the shallowest SO interaction (see Fig. 3.4), the value of ΩR has been

decreased to 0.215ER in order to yield an appreciable barrier between the two minima.

The coherent-state energy dispersion ε(pz) becomes increasingly distorted from that of a

double-well as the average photon numbers in the two cavity modes become more asymmetric,

i.e., for 〈n1〉 � 〈n2〉 ∼ 0 or vice versa, even in the case of zero two-photon detuning. This is

because the probabilities P0
j,±(j+1/2) and P−j,mz in Eqs. (3.37) and (3.38) are proportional to

〈ni〉. For 〈n1〉 → 0, both P−j,mz ,P0
j,j+1/2 → 0 which favors the occupation of themz = −j−1/2

singlet state. As discussed in Sec. 3.3.2, the associated dispersion relation (3.22) corresponds

to a single well centered at q̃z = k. For 〈n2〉 → 0 the resulting dispersion relation for coherent

states approaches a single well centered instead at q̃z = −k. For 〈n1〉 . 〈n2〉 or vice versa, the

double-well dispersion relation with δ = 0 can be made strongly asymmetric. Thus, in the

resonant and weakly non-resonant limits, more or less symmetric double-well dispersions can

be realized for the coherent-state cavity modes provided that 〈n1〉 ∼ 〈n2〉 and ~ΩR � ER.

Just as was the case for SO interactions, for the analysis of synthetic magnetic fields for

coherent-state cavity modes, one should again sum over all Fock states weighted by their
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Figure 3.7: The average energy dispersion ε(pz), computed for 〈n1〉 = 8, 〈n2〉 = 7,
~ΩR = 0.115ER and ~δ = 1.9ER. The dashed curve represents ε−15/2,0(pz). Inset: 〈n1〉 = 0.1,

〈n2〉 = 15, with ΩR and δ as the main panel.

probabilities, noting that that the singlet manifolds ε0j,±(j+1/2) do not contribute in Eq. (3.32).

Thus, the average ratio of the cavity to free-space synthetic magnetic fields ζ is now given

by

ζ = 4

(
Ω2
R

δ3

)(
4EL
~
− ΩL

)∑

j,mz

P−j,mz
(
j +mz +

1

2

)(
j −mz +

1

2

)
, (3.39)

recalling that n1 = j + mz + 1
2

and n2 = j −mz − 1
2
. When 〈n1〉 ' 〈n2〉, the summation is

approximately equals to 〈n1〉[〈n2〉 + 1], and the average ratio ζ is approximately equals to

the single-manifold ratio ζj,mz . This observation is borne out by numerical calculations for

the dispersion curve in the strongly non-resonant limit, as shown in Fig. 3.7. The curves

in the main panel correspond to the coherent-state (solid) and the single-manifold Fock-

state (dashed) dispersions with 〈n1〉 = 8, 〈n2〉 = 7, ~ΩR = 0.115ER and ~δ = 1.9ER.

As evident from Fig. 3.7, the coherent-state and single-manifold Fock-state dispersions are

almost indistinguishable in this limit.

It is interesting that in the strongly non-resonant limit one can restore symmetric single-

or double-well dispersions by changing the average photon numbers in the two cavity modes.

This is illustrated in the inset of Fig. 3.7, where 〈n1〉 = 0.1, 〈n2〉 = 15, with ΩR and δ

set to the same values as the main panel (note that one cannot strictly set 〈ni〉 to zero).
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The coherent-state energy dispersion (solid) is a shallow double well, with the centre of the

double well displaced from the origin qz = 0 and the two minima located some fraction

of k apart from each other. For comparison, the dashed curve represents the Fock-state

energy dispersion with n1 = 0, n2 = 15 and spin up (i.e., j = 15/2 and mz = −7). The

change in shape has the same origins as the loss of the (approximately) symmetric double-

well dispersion discussed above for the SO case: as 〈n1〉 → 0, the occupations of all but the

mz = −j − 1/2 singlet will be strongly suppressed, which will favor the appearance of an

additional well in the vicinity of qz = k and the suppression of the minimum near qz = −k.

For very small values of 〈ni〉, the synthetic magnetic field (which has its origin strictly in

the doublets) will then approach zero.

Weak-Coupling Regime

So far, the strong-coupling limit has been assumed; that is, (Gae,Gbe) � κ ∼ 0, where κ is

the cavity loss rate for both cavity modes Â1 and Â2. In this subsection, we briefly consider

the weak-coupling regime κ � (Gae,Gbe) to show how our scheme reduces to the free-space

formulation of Lin et al. [67]. A deeper and detailed exploration of this limit will be presented

in Chapter 4; see also Ref. [117].

In the strong-coupling regime, cavity coherent states can be generated by pumping the

cavity modes by monochromatic lasers of frequency ωjp with amplitude ηj for a short period

of time. In principle, one could add the pump term

Hpump = β(t)i~
∑

j=1,2

(
ηjÂ

†
je
−iωjpt − H.c.

)
, (3.40)

to the Hamiltonian (3.1), where β(t) is some time-dependent function that defines the time

interval over which the lasers are applied. Since the cavity decay is negligible, the mean-cavity

photon numbers 〈ni〉 would remain almost constant after the pump lasers are turned off and

the Hamiltonian (3.1) (or equivalently the Hamiltonian (3.3) after adiabatic elimination of

the atomic excited state) well describes the system.
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As the cavity decay κ increases, however, one must keep the pumping lasers on (i.e.,

β(t) = 1) in order to balance the cavity loss. Otherwise, the cavity modes will decay to their

vacuum states, leaving the atom-cavity system in the ground-state energy manifold, that is,

the lowest energy manifold of Fig. (3.2a). In order to remove the time dependence in the

pump term, one can re-express the Hamiltonian in the rotating frame of the pump lasers

(see Appendix C):

H =
~2q2

z

2m
I3×3 +

~δ̃
2
σaa −

~δ̃
2
σbb −

~
2

(∆̃a1 + ∆̃a2)σee + ~
[
Gae(z)Â1σea + Gbe(z)Â2σeb + H.c.

]

− ~
(

∆̃c1Â
†
1Â1 + ∆̃c2Â

†
2Â2

)
+ i~

(
η1Â

†
1 + η2Â

†
2 − H.c.

)
, (3.41)

where one can define the atomic and cavity detunings relative to the pump laser frequencies:

~∆̃a1 = ~ω1p − (εe − εa); ~∆̃a2 = ~ω2p − (εe − εb);

~δ̃ = ~(ω1p − ω2p)− (εb − εa) = ~(∆̃a1 − ∆̃a2); ∆̃cj = ωjp − ωj, j ∈ {1, 2}. (3.42)

Note that (δ̃, ∆̃aτ ) reduce to (δ,∆τ ) when ∆̃c1 = ∆̃c2 = 0. As before, one can adiabatically

eliminate the atomic excited state and then apply a unitary transformation to obtain an

effective Hamiltonian (see Appendix C):

H̃eff =
~2

2m
[qzI2×2 − (k1σaa − k2σbb)]

2 − ~δ̃
2
σ̌z + 2~

[ G 2
ae

∆̃a1

Â†1Â1σaa +
G 2
be

∆̃a2

Â†2Â2σbb

]

+ ~Ω̃R

(
Â†2Â1σba + H.c.

)
+ ~

∑

j

[
−∆̃cjÂ

†
jÂj + i

(
ηjÂ

†
j − H.c.

)]
, (3.43)

where now the two-photon Rabi frequency is defined as Ω̃R = GaeGbe
(

∆̃a1+∆̃a2

∆̃a1∆̃a2

)
.

In the presence of cavity loss, the Hamiltonian (3.43) is not conserving and therefore exact

diagonalization is not feasible. Instead, the master equation approach should be used to ana-

lyze the dynamics of the system [176]. That said, in the weak-coupling regime κ� (Gae,Gbe),

the master equation approach amounts to including the dissipation in the Heisenberg equa-

tions of motion, that is, i~∂tÂj = [Âj, H̃eff ] − i~κÂj [107]. In this regime, the cavity fields

reach a steady state much more quickly than other operators. Thus they can be adiabatically
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eliminated (by setting ∂tÂj = 0) to obtain an effective model for the atom (details are given

in Appendix D). In the extreme weak-coupling regime (Gae/κ,Gbe/κ) ∼ 0 when ηi and κ are

the dominant energy scales (i.e., the classical regime), the steady-state cavity fields approach

their coherent field amplitudes |Âj| = αj ∼ ηj/κ. Substituting this result into Eq. (3.43)

and dropping constant terms, one obtains

H̃eff ≈
~2

2m
[q̃zI2×2 + kσ̌z]

2 − ~δ̃
2
σ̌z + ~Ω̃R

η1η2

κ2
σ̌x + 2

~
κ2

[G 2
aeη

2
1

∆̃a1

σaa +
G 2
beη

2
2

∆̃a2

σbb

]
, (3.44)

where as before q̃z = qz−∆k/2, ∆k = k1−k2, k = (k1 +k2)/2, and σ̌x = (σba+σab). The last

term of Eq. (3.44) represents ac Stark shifts for pseudospin states and can be omitted when

Gae ∼ Gbe, η1 ∼ η2, and ∆̃a1 ∼ ∆̃a2. The structure of the Hamiltonian (3.44) is identical

to the semi-classical SO-coupled Hamiltonian of Ref. [67]; thus, our results in the extremely

bad-cavity limit reduce to those found previously in the free space.

3.5 Discussion and Conclusions

In this work, we considered three internal atomic states in the Λ scheme coupled to two

counter-propagating far off-resonance ring-cavity modes. After adiabatic elimination of the

atomic excited state by virtue of the large detunings of the cavity frequencies from the

atomic transitions, we obtained the effective Hamiltonian H̃eff . This Hamiltonian can be

divided into two parts: a generalized Jaynes-Cummings Hamiltonian HGJC and a kinetic

contribution H̃eff − HGJC. Diagonalizing HGJC yields dressed (i.e., polariton) states, so

the total Hamiltonian H̃eff is then naturally expressed in the polariton basis, with HGJC

essentially a Zeeman shift for the polaritons.

The dispersion relation of the total Hamiltonian H̃eff is found to correspond to a symmet-

ric double-well structure in the limit of zero two-photon detuning δ, which is the hallmark of

an induced SO interaction. The energy barrier between degenerate polariton ground states

is found to shrink as the Rabi frequency ΩR increases. Furthermore, the strength of the SO
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interactions is enhanced by accentuating the asymmetry in the occupation of the two cavity

modes. Assuming Fock states the largest energy barrier occurs for one photon in one mode,

and all the other photons in the other mode. For coherent states a strong asymmetry in

the average mode occupations destroys the double-well structure, instead yielding single-well

dispersion relations. Therefore, a SO coupling (i.e., a double well) with a large barrier re-

quires instead approximately equal average photon numbers in each cavity mode as well as

smaller values of ΩR. In either case, this mode occupation parameter is unique to cavities,

with no analog in the free space where atoms interact with many-photon laser fields, and

is in practice an experimentally accessible parameter. For small two-photon detunings, the

energy dispersions become slightly asymmetric; that is, one of the two energy wells is shifted

up or down with respect to the other.

For larger cavity detunings a single well results, corresponding to a uniform vector gauge

potential for one pseudospin dressed state. In the presence of a real external magnetic

field gradient, this potential becomes position dependent and yields a synthetic magnetic

field for the neutral atom. For large occupation asymmetry, the strength of the magnetic

field is proportional to the number of photons in one of the modes, but the largest fields

result for smallest asymmetry in which case the strength is proportional to the square of the

total number of cavity photons. For large magnetic field gradients, which can be generated

particularly easily with integrated atom-chip cavity QED, even moderate occupations (on

the order of 10-20 photons in the cavity) result in synthetic magnetic fields that can easily

exceed one flux quantum per cavity wavelength squared, much larger than is accessible using

(fundamentally weak-coupling) laser Raman techniques in the free space.

The present strong-coupling calculations have neglected cavity gain and loss that are

non-negligible in many practical situations, such as the presence of cavity pump lasers and

loss due to the spontaneous decay into vacuum modes or decay of the cavity modes. Under

these conditions, the exact polariton approach that is adopted here is not wholly suitable,
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and other approaches such as use of a master equation are required. That said, in the weak-

coupling limit it should be possible to adiabatically eliminate the cavity fields to obtain an

effective Hamiltonian for the atoms. This regime will be explored in the next chapter.

The natural emergence of the SO interaction and strong synthetic magnetic field for a

neutral atom in a ring cavity suggests that exotic quantum phases would result for many

atom systems. For example, one might expect topological insulators, including quantum

Hall-type states, to result. Cavities provide a unique environment where strong atom-atom

correlations could emerge naturally. The dynamic of the atomic field operators depends

on the cavity fields and vice versa; in this respect, the system resembles a real material

characterized by strong interplay between the electrons and phonons. In the presence of

an additional optical lattice, for example, the effective Hamiltonian for the cavity atoms

would resemble a SO-coupled Hubbard Hamiltonian [177] locally, but would also enjoy a

variety of infinite-range atom-atom interactions. These would include arbitrarily long-range

density-density interaction of the form N̂i,τ N̂j,τ , where N̂i,τ is the particle number operator

for pseudospin state τ ∈ {a, b} at the lattice site i. The emergence of such infinite-range

interactions is a direct consequence of the back-action of the cavity fields in the atomic states

and they drastically modify the quantum phases of the original Hubbard model and can give

rise to exotic many-body states [178, 179].
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Chapter 4

Enhanced Stripe Phases in Spin-Orbit-Coupled

Bose-Einstein Condensates in Ring Cavities

The coupled dynamics of the atom and photon fields in optical ring cavities with two counter-

propagating modes give rise to both spin-orbit interactions as well as long-ranged interactions

between atoms of a many-body system. At zero temperature, the interplay between the

two-body and cavity-mediated interactions determines the ground state of a Bose-Einstein

condensate. In this work, we find that cavity quantum electrodynamics in the weak-coupling

regime favors a stripe-phase state over a plane-wave phase as the strength of cavity-mediated

interactions increases. Indeed, the stripe phase is energetically stabilized even for condensates

with attractive intra- and inter-species interactions for sufficiently large cavity interactions.

The elementary excitation spectra in both phases correspond to linear dispersion relation at

long wavelengths, indicating that both phases exhibit superfluidity, although the plane-wave

phase also displays a characteristic roton-type feature. The results suggest that even in the

weak coupling regime cavities can yield interesting new physics in ultracold quantum gases.

4.1 Introduction

The experimental realization of Bose-Einstein condensation (BEC) has opened many op-

portunities for realizing new many-body phases [17, 18, 40]. Ultracold atoms trapped in

laser-generated optical lattice potentials experience crystalline environments and exhibit

a variety of intriguing phenomena [39], most notably the superfluid–Mott-insulator phase

transition [43]. There are numerous proposals for inducing gauge fields in quantum gases by

means of laser light [59], and recently Abelian [65] and non-Abelian [67] gauge fields have
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been realized. In the latter work an equal combination of Rashba and Dresselhaus spin-orbit

(SO) couplings were induced via two-photon Raman transitions. These developments have

set the stage for realizing topological states in these systems [48].

The single-particle energy dispersion of a (equal Rashba-Dresselhaus) SO-coupled atom is

a momentum-space double well, which is two-fold degenerate in the symmetric case [65]. In a

Bose-Einstein condensate of atoms, the two-body interactions lift this degeneracy and drive

the Bose condensate into either a plane wave phase (PWP) or a stripe phase (SP), depending

on the strength and sign of the intra- and inter-species two-body interactions [74, 75, 76, 77].

In the PWP, all atoms condense into one of the two single-particle energy minima, while the

SP is a superposition state of the minima and the total condensate density exhibits faint

fringes [78]. Additional phases are found for fully three-dimensional SO interactions [180].

When a SO-coupled quantum gas is confined in an optical lattice, the ground state of the

system exhibits a variety of magnetic orderings in the Mott-insulator regime, such as fer-

romagnetic, antiferromagnetic, spin spiral, vortex and antivortex crystals, and skyrmion

crystal phases [79, 80, 81]. The superfluid to Mott-insulator phase transition of SO-coupled

quantum gases has also been investigated [79, 82].

In laser-based approaches to generating SO couplings, the radiation field is treated clas-

sically and one ignores the back-action of the atoms on it. Confining the radiation field

to within an optical cavity leads to a coherent exchange of energy and momentum be-

tween atoms and photons [91]. The back-action of the atoms on the photon fields is no

longer negligible, leading to complex coupled dynamics of the matter and radiation fields

in which both entities are affected by one another and must be treated on the same foot-

ing [107]. As a consequence, cavity-mediated long-range interactions are induced between

atoms, yielding novel collective phenomena in atomic systems [110]. A few schemes have

been recently proposed to induce SO coupling in ultracold atoms via cavity quantum elec-

trodynamics [116, 123, 124, 125] and to couple a laser-induced SO-coupled Bose condensate
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to the cavity field [126]. These schemes exhibit a wealth of physics, including strong synthetic

magnetic fields, a cavity-mediated Hofstadter spectrum, and a variety of magnetic orders.

In this work we investigate the ground state and the elementary excitations of a two-

component Bose-Einstein condensate at zero temperature subject to ring-cavity-induced SO

interaction [116]. Here we consider lossy cavities where a steady-state photon population is

maintained by the application of external pump lasers. The cavity photons mediate infinite-

range interactions between atoms, whose strengths can be tuned experimentally by adjusting

the amplitudes of the pump lasers. The sign of these interactions can be made positive or

negative depending on the cavity detuning, the frequency difference between the applied

pump lasers and the cavity. These cavity-mediated interactions compete with the inher-

ent two-body interactions between atoms to determine the ground state of the SO-coupled

Bose condensate. In particular, the SP is always favored when positive cavity-mediated in-

teractions dominate the two-body-interactions, even in the case where the intrinsic atomic

interactions (both intra- and inter-species) are attractive. Asymmetry in the strength of

cavity-mediated interactions for different spin components yields SP states with an arbi-

trary number of atoms in the left or right minimum of the single-particle dispersion relation,

so that the magnetization varies continuously from zero in the SP to unity in the PWP. This

behavior allows us to identify a SP order parameter, and to identify its associated mean-field

critical exponent.

Consideration of the quantum fluctuations around the mean-field ground states reveals

that the particle-hole elementary excitation spectra in both PWP and SP have the usual

linear sound-like dispersion relation at long wavelengths, an indication of superfluidity. In

the PWP, the dispersion relation also exhibits a roton-type feature at the same wave vector

that charactizes the fringe periodicity in the SP, which could be used experimentally as a

distinguishing feature. The critical transition between the PWP and SP occurs when the

energy of this minimum falls below zero. Unlike for the PWP, in the SP the speed of sound
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depends strongly on the cavity-mediated interactions. The speed of sound is found to fall

below zero at a critical value of the cavity interactions and inter-species interactions strength,

but this appears to signal a phase transition to a phase-separated state. Overall, the ring-

cavity environment provides an experimentally convenient framework for exploring exotic

ground states of SO-coupled Bose-Einstein condensates.

This chapter is organized as follows. In Section 4.2, we start from the full atom-photon

Hamiltonian density for a lossy but pumped cavity, to derive an effective atomic Hamil-

tonian with the photon fields eliminated. The ground state of this effective Hamiltonian

is explored in Section 4.3 using both a variational method and by solving the generalized

Gross-Pitaevskii equations. The remainder of this Section is devoted to an analysis of the

elementary excitations. A discussion of the results and conclusions are found in Sec. 4.4.

4.2 Model and Hamiltonian

Consider spin-1 bosonic atoms inside a ring cavity with two driven counter-propagating

running modes Â1e
ik1z and Â2e

−ik2z, where Âj is the annihilation operator for the photon

in jth mode with wave vector kj = ωj/c and z is the direction along the cavity axis; see

Fig. 4.1(a). Without loss of generality, one can assume that the wave vectors k1 and k2 of

the two modes are approximately equal to each other1, kR ≡ k1 ≈ k2. The mode Â1e
ikRz

(Â2e
−ikRz) propagates to the right (left) and solely induces the atomic transition |a〉 → |e〉

(|b〉 → |e〉), where {|a〉 , |b〉} are non-degenerate pseudospin states of interest and |e〉 is an

excited state; see Fig. 4.1(b). These ground pseudospin states could be chosen to be the

|a〉 = |F = 1,mF = −1〉 and |b〉 = |F = 1,mF = 1〉 hyperfine states of an 87Rb atom in the

ground electronic manifold (5S1/2) with the Zeeman splitting εb − εa = ~ωZ . With this

choice, the |a〉 ⇔ |e〉 and |b〉 ⇔ |e〉 transitions would be driven by right and left circularly

1 The applied frequencies are assumed to be ω1 = ω2+∆ω with |∆ω|/ωj � 1 (implying that |k1−k2|/kj �
1). In the general case when k1 6= k2, one can define kR ≡ 1

2 (k1 + k2) and ∆k ≡ k1 − k2. All the results still
hold, except that the momentum operator pz is replaced by pz − 1

2~∆k after transferring to the co-moving
frame of the cavity modes, which is just a Galilean transformation of the momentum; see also Chapter 3.
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Figure 4.1: (Color online) (a) A schematic of the ring cavity geometry. (b) The atom-photon
coupling in the Λ scheme.

polarized cavity modes, respectively, the so-called σ+ − σ− configuration [181, 182]. As

discussed further below, no appreciable additional light-shift energies result for suitably

chosen parameters. The two cavity modes Âj are assumed to be sufficiently populated to

justify omitting associated degenerate modes Â′j, an approximation justified further below.

The single-particle Hamiltonian density in the dipole and rotating-wave approximations

is

H(1) = H(1)
at +Hcav +H(1)

ac , (4.1)

with

H(1)
at =

[
− ~2

2m
∇2 + Vext(r)

]
I3×3 +

∑

τ∈{a,b,e}
ετσττ ,

Hcav = ~
∑

j=1,2

ωjÂ
†
jÂj + i~

∑

j=1,2

(
ηjÂ

†
je
−iωpjt − H.c.

)
,

H(1)
ac = ~

[(
Gaee

ikRzÂ1σea + Gbee
−ikRzÂ2σeb

)
+ H.c.

]
, (4.2)

where ετ are the internal atomic-state energies, σττ ′ = |τ〉 〈τ ′|, and I3×3 is the identity matrix

in the internal atomic-state space. The atom-photon coupling for the transition τ ↔ τ ′ is

denoted Gττ ′ , and H.c. stands for the Hermitian conjugate. The cavity mode Â†j is driven
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by a pump laser with frequency ωpj and amplitude ηj, indicated by the second sum in Hcav.

Here Vext(r) is a state-independent external potential imposed to confine atoms inside the

cavity. In order to simplify the analytical calculations throughout this work, we consider a

box potential where Vext(r) = 0 except at the boundaries; such a potential has recently been

realized experimentally [183, 184, 185]. The transverse dimensions Lx,y of this box trap can be

assumed to be smaller than the waist w (1/e2) of the radial cavity-mode function e−(x2+y2)/w2
,

so that the plane-wave mode approximation e−(x2+y2)/w2±ikRz ' e±ikRz is reasonable. The

waist of the radial mode function in a typical ring-cavity experiment is w ∼ 130 µm [186],

while the transverse dimensions of a box trap with volume V = LxLyLz ∼ 10−4 mm3 are

Lx ∼ Ly ∼ 35 (with Lz ∼ 70) µm [184].

After expressing the Hamiltonian (4.1) in the rotating frame of the pump lasers [178] and

assuming that the atomic detunings ∆1 = ω1−εea/~ and ∆2 = ω2−εeb/~ are large compared

to εba/~ = (εb − εa)/~, one can adiabatically eliminate the atomic excited state to obtain

an effective Hamiltonian H′(1)
SO for the ground pseudospin states {|1〉 , |2〉} ≡ {|b〉 , |a〉}. The

details are presented in Appendix C. One can then transform to the co-moving frame of the

cavity modes by applying the unitary transformation U2 = e−ikRzσ̌z (where σ̌z = σ11 − σ22

is the third Pauli matrix, see also Appendix C). The kinetic-energy part of the Hamiltonian

density H′′(1)
SO ≡ U2H′(1)

SO U †
2 associated with the momentum pz, Eq. (C.7), then takes the

familiar form of an equal Rashba-Dresselhaus SO coupling: 1
2m

(pzI2×2 + ~kRσz)2, which is

characterized by a double-well energy dispersion [67].

In the presence of dissipation, such as when the decay rate κ of both cavity modes is non-

zero, one should in principle numerically solve the associated master equation [176]. That

said, in the weak-coupling regime when κ is the dominant energy scale, κ � (Gae,Gbe), the

master equation approach is equivalent to including dissipation in the Heisenberg equations

of motion for the cavity fields: ∂tÂj = −i[Âj,H′′(1)
SO ]/~− κÂj [107]. The cavity fields quickly

reach steady states, allowing them to be adiabatically eliminated. Setting ∂tÂj = 0 one
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obtains steady-state expressions for Âj that can be substituted intoH′′(1)
SO to yield an effective

atomic Hamiltonian; the details are relegated to Appendix D.

The resulting effective many-body Hamiltonian reads

Heff =

∫
d3r

(
Ψ̂†H(1)

SOΨ̂ +
1

2
g1n̂

2
1 +

1

2
g2n̂

2
2 + g12n̂1n̂2

)

+
∑

τ=1,2

Uτ N̂
2
τ + U±Ŝ+Ŝ− + U∓Ŝ−Ŝ+ + 2UdsN̂ Ŝx, (4.3)

where Ψ̂(r) = (ψ̂1(r), ψ̂2(r))T are the bosonic field operators obeying the commutation rela-

tion [ψ̂τ (r), ψ̂†τ ′(r
′)] = δτ,τ ′δ(r− r′), N̂τ =

∫
n̂τ (r)d3r =

∫
ψ̂†τ (r)ψ̂τ (r)d3r is the total atomic

number operator for pseudospin τ ∈ {1, 2}, N̂ = N̂1+N̂2 is the total atomic number operator,

and the x-component of the total spin operator is defined in the usual way Ŝx = 1
2
(Ŝ+ + Ŝ−)

using the collective pseudospin raising and lowering operators Ŝ+ = Ŝ†− =
∫
ψ̂†1(r)ψ̂2(r)d3r.

The atoms in this system experience two kinds of interactions, reflected in the effective

Hamiltonian Heff : the standard two-body contact interactions and the cavity-mediated long-

ranged interactions. Here gτ ≡ gττ denotes the two-body intra-species interaction strength

and g12 the two-body inter-species interaction strength. The strength of the cavity-mediated

interactions are found in Appendix D:

U1(2) =
4~G 4

0 ∆c(∆
2
c − 3κ2)

∆2(∆2
c + κ2)3

η2
2(1),

U±(∓) =
4~G 4

0 ∆c

∆2(∆2
c + κ2)3

[
∆2

c −
(

1 + 2
η2

2(1)

η2
1(2)

)
κ2

]
η2

1(2),

Uds =
4~G 4

0 ∆c (∆2
c − 3κ2)

∆2(∆2
c + κ2)3

η1η2,

(4.4)

where G0 ≡ Gae = Gbe, ∆ ≡ ∆1 = ∆2, and ∆c ≡ ωpj − ωj. The single-particle part of

the effective Hamiltonian density has the familiar form of the equal Rashba-Dresselhaus SO

coupling:

H(1)
SO =

~2

2m

[
−∇2

⊥+ (−i∂z + kRσ̌z)
2]+ ~ΩRσ̌x +

~δ
2
σ̌z, (4.5)
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with the effective two-photon detuning and Raman coupling given by (see Appendix D)

δ =
2G 2

0 (∆2
c − κ2)

∆(∆2
c + κ2)2

(η2
2 − η2

1),

ΩR =
2G 2

0 (∆2
c − κ2)

∆(∆2
c + κ2)2

[
1− 2G 2

0 ∆c

∆(∆2
c − κ2)

]
η1η2.

(4.6)

Before proceeding further, consider briefly some realistic order-of-magnitude estimates for

various parameters used in the theory based on current experiments in ultracold atomic gases

and cavity QED. The first experimental realization of a synthetic SO coupling was carried

out on 87Rb atoms using two counter-propagating Raman laser beams with wavelength

λR = 804.1 nm (ER = 2.33 × 10−30 J) [67]; the two-body interaction strengths for the

desired pseudospin states of 87Rb atoms are reported to be g1 = 5.009× 10−51 Jm3 and g2 =

g12 = 4.986×10−51 Jm3. With typical average BEC densities n̄ of order 1020−1021 m−3 [18],

one obtains gτ n̄/ER ∼ 1.

One might reasonably expect interesting physics to emerge when the strength of cavity-

mediated interactions becomes comparable to the intrinsic inter-particle interactions, i.e.

when V Uτ/gτ ∼ 1. Most experimental work is focused on the strong-cavity limit, where

G � κ; typical atom-cavity coupling and cavity decay rates for 87Rb are Gae ∼ Gbe ∼ 10κ ∼

2π × 10 MHz [96, 97]. One can attain V Uτ/gτ ∼ 1 by choosing ∆ ∼ 26 THz, η1 = η2 =

−∆c = 10 MHz (for example, ∆c ≈ 28κ and η ≈ 2.2κ in Ref. [96]), and a gas volume

V = 10−4 mm3 [184]; for these parameters one also obtains ~ΩR/ER ∼ 4× 10−3. The weak

coupling regime relevant to the present work can be attained by increasing the value of κ,

for example by decreasing the reflectivity of the cavity mirrors. Choosing κ ∼ 2π×100 MHz

one can nevertheless ensure V Uτ/g1 ∼ 1 by choosing a larger volume V = 10−3 mm3 as well

as stronger pump fields and cavity detuning η1 = η2 = −3∆c = 3 GHz; these choices yield

~ΩR/ER ∼ 4× 10−2. Further increasing the driving field intensities up to η1 = η2 = 15 GHz

at the fixed ∆c = −1 GHz results in cavity-mediated interactions that are an order of

magnitude larger than the two-body interactions V Uτ/g1 ∼ 30 while ~ΩR/ER ∼ 1. Note

that for all cases, the light-shift energies ∼ ~Ω2
R/∆ � 1 associated with the two coupling
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lasers are negligible.

In Appendix D, which discusses the adiabatic elimination of the cavity fields and the

origin of the long-ranged cavity interactions, quantities such as ξ ≡ 2G 2
0 /[∆(∆c + iκ)] and

ξNτ are assumed to be small. Using the weak-coupling values considered above and assuming

a typical average BEC particle number Nτ ∼ 105, it is straightforward to verify that both

|ξ| � 1 and |ξ|Nτ ∼ 10−2 � 1. Making use of κ � ∆c and ξ ≈ 2G 2
0 /∆∆c � 1, one can

write

ΩR ≈
ξ

∆c

η1η2, δ ≈ ξ

∆c

(
η2

2 − η2
1

)
;

Uds ≈
~ξ2

∆c

η1η2, U1(2) = U∓(±) ≈
~ξ2

∆c

η2
1(2). (4.7)

If η1 = η2 then ~δ = 0 and Uds = U1(2) = U∓(±) with U1/~ΩR = ξ � 1. Alternatively,

if both pump fields are non-zero (η1, η2 6= 0), then defining δU ≡ U2 − U1 one obtains

δU/~δ = Uds/~ΩR = ξ � 1. These relations will be important below when choosing

parameters for the theoretical calculations.

With these expressions in hand, the average occupation of the cavity modes can be

obtained from the steady-state field solutions (D.8), which up to leading order in ξ give

A∗ssjAssj ≈ η2
j/(∆

2
c + κ2). Using the weak-coupling values considered above, one obtains

A∗ss1Ass1 ∼ A∗ss2Ass2 on the order of 32 to 152. The probability of scattering a photon into the

already-populated modes Â1/2e
±ikRz is therefore one or two orders of magnitude larger than

the probability of scattering a photon into empty counter-propagating degenerate modes

Â′1/2e
∓ikRz [143]. This justifies the omission of these modes in the Hamiltonian (4.1).

4.3 Ground State and Excitations: Mean-Field and Bogoliubov Theories

The above analysis indicates that as long as η1 and η2 are not too different from one an-

other then δ � ΩR; in the following we therefore restrict calculations to δ ' 0. The

effective single-particle Hamiltonian can be diagonalized and expressed in the form H
(1)
SO =
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∑
k,λ=± ελ(k)ϕ̂†λ(k)ϕ̂λ(k), with single-particle energy dispersion relation

ε̃±(k̃) ≡ ε±(k)

ER
= k̃2 + 1±

√
4k̃2

z + Ω̃2
R, (4.8a)

and spinor eigenstates

φ−(k) =




sin θk

− cos θk


 ; φ+(k) =




cos θk

sin θk


 , (4.8b)

where ‘+’ and ‘−’ designate the upper and lower band, respectively, and sin 2θk = Ω̃R/
√

4k̃2
z + Ω̃2

R.

The unitless parameters k̃ = k/kR and Ω̃R = ~ΩR/ER are defined for convenience, where

ER = ~2k2
R/2m is the recoil energy.

The energy dispersion with respect to k̃z consists of two bands with a band gap of 2Ω̃R

at the origin k̃ = 0. The lower energy band ε̃−(k̃) is a symmetric double well along the k̃z

direction with the two minima located at

k̃z = ±k̃0 ≡ ±
√

1− Ω̃2
R/4, (4.9)

for Ω̃R < 2, and it has a single minimum at k̃z = 0 when Ω̃R > 2 (the minima along

the other two directions always occur at k̃⊥ = 0). The operators Φ̂(k) = (ϕ̂+(k), ϕ̂−(k))T

annihilate a boson at momentum k in the upper and lower bands and are related to the field

operators through Ψ̂(r) =
∑

k,λ=± e
ik·rφλ(k)ϕ̂λ(k). Note that the laboratory-frame bosonic

field operators ˆ̃Ψ(r) (which gives the observable atomic density distribution) are related to

Ψ̂(r) by the unity transformation U2, i.e. ˆ̃Ψ(r) = U †
2 Ψ̂(r).

The single-particle ground state of the symmetric double well (i.e. when Ω̃R < 2) is two-

fold degenerate; the atom is either in the left minimum at k̃ = −k̃0 = (0, 0,−k̃0) or the

right minimum at k̃ = k̃0 = (0, 0, k̃0). The non-interacting N -particle ground state, when

the cavity-mediated interactions are also absent, is therefore (N + 1)-fold degenerate (any

number of pseudospin-up atoms, up to N , can reside in the left well). Nonetheless, the

two-body and cavity-mediated interactions compete with each other to lift this degeneracy.
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4.3.1 Variational Approach

To determine the nature of the ground state, consider the ansatz for the Bose condensate

wavefunction: 

ψ1(r)

ψ2(r)


 =

√
n̄


c1e

−ik0z




cos θk0

− sin θk0


+ c2e

ik0z




sin θk0

− cos θk0





 (4.10)

where k0 = kRk̃0 and n̄ = N/V is the average particle density, with N and V being the total

particle number and volume, respectively. The variational parameters are c1 and c2 with

the normalization constraint |c1|2 + |c2|2 = 1. Once they are determined, one can find the

relevant ground-state quantities such as the total density n(r) = |ψ1(r)|2 + |ψ2(r)|2, and the

magnetization per particle sz(r) = [|ψ1(r)|2 − |ψ2(r)|2] /n̄:

n(r) = n̄ [1 + 2|c1c2| cos(2k0z + γ) sin 2θk0 ] , (4.11)

sz(r) =
(
|c1|2 − |c2|2

)
cos 2θk0 , (4.12)

where γ is the relative phase between c1 and c2. Note that the magnetization sz is homoge-

neous while the total density n(r) exhibits fringes in the z direction provided that c1c2 6= 0.

Constraining Ω̃R < 2, one can write sin 2θk0 = Ω̃R/2 and cos 2θk0 = k̃0; then these take

the simpler form n(z) = n̄[1 + Ω̃R|c1c2| cos(2k0z + γ)] and sz = k̃0 (2|c1|2 − 1). The energy

functional E[c1, c2] = E0 + Eint is obtained from Eq. (4.3) by replacing the field operators

ψ̂τ with the corresponding condensate wavefunctions ψτ . This yields E0 = −NERΩ̃2
R/4 and

Eint =
N2|g1|

4V

{
sgn(g1) + g̃2 + 4Ũ1 + 2δŨ − 2ŨdsΩ̃R

+
[
2g̃12 − sgn(g1)− g̃2 + 4

(
Ũss − Ũ1

)
− 2δŨ

] Ω̃2
R

8

+
1

2

(
|c1|2 − |c2|2

) (
4− Ω̃2

R

)1/2 [
sgn(g1)− g̃2 − 2δU

]

− 2|c1c2|2
[

sgn(g1) + g̃2 + 4Ũ1 + 2δŨ − 2g̃12

−
(

3 sgn(g1) + 3g̃2 + 8Ũ1 + 4δŨ − 2g̃12

) Ω̃2
R

8

]}
, (4.13)
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where the two-body interaction strengths are rescaled by |g1| (for example g̃2 = g2/|g1|)

and the cavity-mediated interaction strengths are rescaled by |g1|/V (for example Ũ1 =

V U1/|g1|). In the above equations we have defined 2Ũss ≡ Ũ± + Ũ∓ and δŨ ≡ Ũ2 − Ũ1,

and sgn(g1) = g1/|g1| = ±1 denotes the sign of g1. E0 is the single-particle contribution

to the energy and is independent of ci, as expected. Minimizing Eint with respect to ci

determines the ground state of the system. The parameters Ũ1 and δŨ (or Ũ2) are the only

cavity-mediated interaction parameters having an effect on the ground state.

Consider first the simplest case where g̃2 = sgn(g1) and δŨ = 0, so that only the last

line of Eq. (4.13) contributes to the interaction energy. Then the energy is minimized either

with (c1, c2) = (1, 0) or (0, 1), or with c1 = c2 = 1/
√

2 (neglecting relative phases). The

first solution set corresponds to all atoms condensing in a single minimum of the single-

particle energy dispersion (i.e. a single plane wave with wave vector −k0 or k0), labeled

the plane wave phase (PWP). In the PWP the total density is uniform. The magnetization

takes the value sz = ±k̃0 = ±(1 − Ω̃2
R/4)1/2, with the upper (lower) sign corresponding to

c1 = 1 (c1 = 0). For small Ω̃R the magnetization approaches unity. Note that the PWP is

twofold degenerate; that is, all atoms can condense in the left (c1 = 1) or right minimum

(c2 = 1). The second solution set corresponds to atoms condensing into a superposition state

of plane waves. It is characterized by the broken translational symmetry and the resulting

density n(z) = n[1+ 1
2
Ω̃R cos(2k0z+γ)] exhibits spatial variations in the z (i.e., SO-coupling)

direction, so this is referred to as the stripe phase (SP). In this phase the density oscillations

have greatest contrast for large Ω̃R → 2. The SP magnetization sz is zero.

The SP solution yields a lower energy than the PWP solution when the term in square

brackets in the last line of Eq. (4.13) is positive. (Recall g̃2 = sgn(g1) and δŨ = 0 so that the

middle line vanishes identically.) The cavity interaction strength that favors the SP solution

is therefore Ũ1 > Ũ0
1c, where

Ũ0
1c ≡

8 [g̃12 − sgn(g1)]− [g̃12 − 3 sgn(g1)] Ω̃2
R

4(4− Ω̃2
R)

, (4.14)
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is the critical cavity interaction for the SP-PWP transition. In the limit of small Ω̃R, this

becomes Ũ0
1c ' 1

2
[g̃12 − sgn(g1)] + 1

16
[g̃12 + sgn(g1)]Ω̃2

R. If g̃12 = sgn(g1) the SP is favored

for any non-zero, positive cavity interaction in the limit Ω̃R → 0. On the other hand when

Ω̃R → 2 and g̃12 6= − sgn(g1), the critical cavity interaction Ũ0
1c diverges and SP is only

favored for very large positive cavity interaction.

It is important to verify that the total interaction energy, Eq. (4.13), remains positive;

the system is stable only if ∂2Eint/∂N
2 > 0. Let us examine this first in the SP where

c1 = c2 = 1/
√

2, for a special case where Ũds = Ũss = Ũ1 (and g̃2 = sgn(g1) and δŨ = 0 as

before). One obtains

Eint =
N2|g1|

4V

{
1

8
[g̃12 + sgn(g1)]

(
8 + Ω̃2

R

)
+

1

2
Ũ1

(
2− Ω̃R

)2
}
. (4.15)

Surprisingly, the SP is energetically stable for two-component attractive Bose condensates in

the presence of SO interactions as long as the inter-species interaction strength is sufficiently

large and positive. Substituting the critical cavity interaction Ũ0
1c into Eq. (4.15) yields the

constraint

g̃12 > sgn(g1)
Ω̃R

[
(2− Ω̃R)2 − 12

]

Ω̃3
R + 16

. (4.16)

In the limit of Ω̃R → 0, for the lowest possible values of the cavity interaction favoring the

SP phase Ũ1 & Ũ0
1c = 1

2
[g̃12 − sgn(g1)], the SP is energetically stable as long as g̃12 > 0, with

no constraint on the sign of the intra-species interaction strength. Thus, the infinite-range

cavity-mediated atom-atom interactions stabilize attractive two-component Bose conden-

sates against collapse, even in the absence of a confining potential. For larger values of Ũ1

even the inter-species interactions can be attractive.

The coefficient of Ũ1 in Eq. (4.15) is strictly positive. Therefore, for a given parameter

set {sgn(g1), g̃12, Ω̃R} one can choose arbitrary large positive values of the cavity interaction

strength to strongly favor SP without compromising stability (i.e. to satisfy Ũ1 > Ũ0
1c while

ensuring that Eint > 0). In other words, the minimal cavity interaction Ũ1 which favors a
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stable SP satisfies

Ũ1 > max




−

[g̃12 + sgn(g1)]
(

8 + Ω̃2
R

)

4
(

2− Ω̃R

)2 , Ũ0
1c




. (4.17)

The stability of PWP can be investigated in a similar manner. The plane wave phase is

favored when Ũ1 < Ũ0
1c. The positivity constraint of the interaction energy in the PWP

Eint =
N2|g1|

2V

{
sgn(g1) +

1

8
[g̃12 − sgn(g1)] Ω̃2

R + Ũ1

(
2− Ω̃R

)}
> 0, (4.18)

imposes a lower bound in the cavity interaction

−8 sgn(g1) + [g̃12 − sgn(g1)] Ω̃2
R

8
(

2− Ω̃R

) < Ũ1 < Ũ0
1c, (4.19)

beyond which PWP is unstable. Thus, even the PWP becomes energetically stable for

attractive SO-coupled two-component Bose condensates if the cavity-mediated interactions

are judiciously chosen.

Figure 4.2 depicts the phase diagrams in the {Ũ1, Ω̃R} and {Ũ1, g̃12} parameter planes.

The phase diagrams are comprised of two physical regions: the SP and PWP, denoted by

black and white in Fig. 4.2, respectively. The dark (light) grey indicates the regions where the

SP (PWP) is energetically unstable. Figure 4.2(a) shows the phase diagram in the {Ũ1, Ω̃R}

parameter space for sgn(g1) = g̃2 = 1 and different values of g̃12. The SP is favored over an

ever-larger parameter space as Ũ1 increases as long as |Ω̃R| < 2 to assure the existence of

a double-well single-particle dispersion. This general trend is also evident from Fig. 4.2(b),

the phase diagram in the {Ũ1, g̃12} parameter plane for sgn(g1) = g̃2 = −1 and constant

Ω̃R = 0.1, where Eq. (4.14) reveals that the phase boundary is linear in g̃12 for fixed Ω̃R.

Relaxing the constraint considered above that δŨ = 0 in Eq. (4.13), one can prepare any

arbitrary superposition state, i.e. arbitrary c1 and c2 subject to |c1|2 + |c2|2 = 1. The PWP

is no longer degenerate; rather, the minimum favored depends on the sign of δŨ . Figure 4.3

shows the dependence of |c1|2 in the {Ũ12, Ω̃R} plane for sgn(g1) = g̃2 = δŨ = 1, and g̃12 = 2.

Under these conditons the SP with |c1| = |c2| is found only for very large Ũ1 � Ũ1c, i.e. far
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Figure 4.2: Phase diagrams in the (a) {Ũ1, Ω̃R} and (b) {Ũ1, g̃12} parameter planes. The
stripe and plane-wave phases are denoted by black and white, respectively; dark (light)
grey indicates the regions where the SP (PWP) is unstable. (a) Phase diagram for
sgn(g1) = g̃2 = 1 and different values of g̃12 = 0.1, 1, and 2. (b) Phase diagram for
sgn(g1) = g̃2 = −1 and Ω̃R = 0.1.

from the SP-PWP phase boundary Ũ1c. Whereas for Ũ1 → Ũ+
1c, |c1| increases monotonically

until the PWP with |c1|2 = 1 is attained for Ũ1 < Ũ1c (note that the critical value Ũ1c ' Ũ0
1c

and is weakly dependent on δŨ , as discussed below). The PWP begins to be unstable in the

left bottom corner of this figure.

The magnetization sz = k̃0 (2|c1|2 − 1) as a function of Ũ1 is illustrated with the black

solid curve in Fig. 4.4 for sgn(g1) = g̃2 = δŨ = 1, g̃12 = 2, and Ω̃R = 0.1. For contrast, the

magnetization when δŨ = 0 is also shown (blue dashed curve). Note that while the sign

of the magnetization in the PWP is arbitrary for the δŨ = 0 case (a spontaneously broken

symmetry in the ground state), in the present case the sign of sz always follows that of δŨ .

On the PWP side, the magnetization is fixed at its maximal value sz = k̃0; for Ũ1 & Ũ1c on

the SP side, the magnetization decreases sharply before reaching an asymptotic value deep

within the SP phase.

For small δŨ and Ω̃R, the SP-PWP phase transition occurs at almost the same value of
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Figure 4.3: (Color online) Density plot of |c1|2 in the {Ũ1, Ω̃R} parameter plane for
sgn(g1) = g̃2 = δŨ = 1, and g̃12 = 2. The PWP begins to be unstable in the left bot-
tom corner.

the critical cavity interaction Ũ0
1c = 0.5 obtained using Eq. (4.14) which assumed δŨ = 0.

Near the phase transition point on the SP side, one can write c1 = 1 − x2 and c2 =
√

2x,

where x� 1 and c2
1 +c2

2 ' 1+O(x4). Setting the term proportional to x2 in Eint[c1 = 1, c2 =

0]− Eint[c1 = 1− x2, c2 =
√

2x] equal to zero yields a modified critical cavity interaction

Ũ1c = Ũ0
1c −

[
2− (4− Ω̃2

R)1/2 − 1
2
Ω̃2
R

4− Ω̃2
R

]
δŨ . (4.20)

In the small Ω̃R limit this may be simplified to Ũ1c ' 1
2
[g̃12−sgn(g1)]+ 1

16
[g̃12+sgn(g1)+δŨ ]Ω̃2

R,

which is the same critical cavity interaction Ũ0
1c obtained above in the small Ω̃R limit, save

for the δŨ -dependent correction.

The behavior of the magnetization for Ũ1 > Ũ1c suggests that one can define the order

parameter for the SP to be P = 1 − sz/k̃0 = 2(1 − c2
1). As desired, this vanishes in the

PWP (here we only consider a PWP with momentum −k0) and takes a nonzero value in SP.

The order parameter is shown in the inset of Fig. 4.4. The discontinuity in the derivative

of P with Ũ1 suggests that the SP-PWP quantum (zero-temperature) phase transition is
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second order. It is therefore of interest to determine the (mean-field) exponent β for the

order parameter P in the vicinity of the transition point. Substituting Ũ1 = Ũ1c +χ into the

energy functional Eint and minimizing it with respect to c1 yields

c1 =

√√√√√√
2δŨ

(
4− Ω̃2

R

)1/2

+ χ
(

4− Ω̃2
R

)

2δŨ
(

4− Ω̃2
R

)1/2

+ 2χ
(

4− Ω̃2
R

) . (4.21)

The order parameter P = 2(1 − c2
1) computed using this expression for c1 is illustrated

as the green dashed curve in the the inset of Fig. 4.4, and is in excellent agreement with

the numerical results of the variational approach, shown as the black solid curve. Taylor

expanding c1 in Eq. (4.21) for small χ and Ω̃R up to first and second order, respectively, one

obtains cMF
1 ' 1 − χ/2δŨ (the term proportional to χΩ̃2

R is also omitted). This yields the

mean-field order parameter PMF = 2χ/δŨ = 2(Ũ1− Ũ1c)
β/δŨ and a critical exponent β = 1.

The behavior of the order parameter near the transition point fits well to P , as is shown by

the orange dashed curve in the inset of Fig. 4.4.

In principle, it is not valid to consider δŨ 6= 0 while at the same time assuming that δ̃ ≡

~δ/ER = 0. Rather, if η1 6= η2 6= 0 but η1 ∼ η2, then Eqs. (4.7) state that δ̃ ∼ δŨ whenever

Ũ1 ∼ Ω̃R. That said, in Fig. 4.4 the parameters are chosen so that Ω̃R = 0.1� δŨ = 1. One

can therefore expect δ̃ � δŨ by a similar ratio, which again justifies neglecting it.

Consider briefly the effect of keeping a non-zero but small value of δ̃. The single-particle

energy dispersion of the spin-orbit Hamiltonian (4.5) becomes

ε̃±(k̃) = k̃2 + 1±
√

1

4

(
4k̃z + δ̃

)2

+ Ω̃2
R, (4.22)

rather than the expressions given in Eq. (4.8a). The associated (orthogonal) spinors have the

same form as Eqs. (4.8b) but now sin 2θk = Ω̃R/

√
1
4

(
4k̃z + δ̃

)2

+ Ω̃2
R. For δ̃ 6= 0, the lower

double-well dispersion curve ε̃− is no longer symmetric; rather, the right well is lower (higher)

when δ̃ > 0 (δ̃ < 0). Thus, in the absence of particle interactions a PWP is energetically

favored in one well or the other with no ambiguity. The presence of δ̃ precludes a simple
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Figure 4.4: (Color online) The magnetization sz as a function of Ũ1 shown as the black
solid curve for sgn(g1) = g̃2 = δŨ = 1, g̃12 = 2, and Ω̃R = 0.1. The blue dashed curve
represents the magnetization when δŨ = 0. The red dotted curves are the magnetization
computed from solutions of the coupled Gross-Pitaevskii equations in the SP and PWP
assuming Ũss = Ũds = Ũ1 for the same parameters as the solid black curve, and |g1|n̄/ER = 1.
Inset: the SP order parameter P is shown as a function of Ũ1 (black curve); an analytical
approximation (dashed green curve) and the behavior near the critical point (orange dashed
curve) are shown for comparison.

form like Eq. (4.9) for the location of the energy minima, but in the limit when both Ω̃R � 1

and δ̃ � 1 one obtains

k̃0 ≈ 1− Ω̃2
R

8

(
1− δ̃

2

)
. (4.23)

The lowest-order contribution of δ̃ is a correction to the coefficient of the already small

Ω̃R-dependent term, and therefore the value of k̃0 is well-approximated by assuming δ̃ = 0.

Likewise, the BEC approximation consists of k̃z with k̃0; because 4k̃z → 4k̃0 ≈ 4 � δ̃ in

the expressions for the single-particle energies and eigenvectors above, δ̃ can be similarly

neglected in the calculations.

4.3.2 Coupled Gross-Pitaevskii Equations

While the variational calculation discussed in the preceding section has revealed that a ring

cavity can stabilize SPs in attractive SO-coupled Bose-Einstein condensates, it is important

to verify the results using a more rigorous approach. In this section, the coupled Gross-
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Pitaevskii (GP) equations are derived for both PWP and SP states and the ground state

properties are obtained from their solutions. The GP equations can be obtained directly

from the many-particle Hamiltonian (4.3):
[
~2

2m
4̂1 + g1|ψ1|2 + g12|ψ2|2 + 2U1N1 + 2UdsSx

]
ψ1 +

[
~ΩR + 2UssS− + UdsN

]
ψ2 = µψ1,

[
~2

2m
4̂2 + g2|ψ2|2 + g12|ψ1|2 + 2U2N2 + 2UdsSx

]
ψ2 +

[
~ΩR + 2UssS+ + UdsN

]
ψ1 = µψ2,

(4.24)

where 4̂1 = −∇2
⊥+ (−i∂z + kR)2 and 4̂2 = −∇2

⊥+ (−i∂z − kR)2 and the Bose condensate

wavefunctions for the two spin components are denoted by ψ1(2) rather than ψ1(2)(r) to save

space.

Plane-Wave Phase

The GP equations (4.24) can be simplified in the PWP by assuming homogeneous wave-

functions ψτ (r) = e±ik0zψ̄τ , where the upper (lower) sign corresponds to a condensate in the

right (left) minimum. The GP equations are then recast as

|g1|
ER

{[(
sgn(g1) + 2Ũ1

)
|ψ̄1|2 +

(
g̃12 + 2Ũss

)
|ψ̄2|2

]
ψ̄1 + Ũds

(
2|ψ̄1|2 + |ψ̄2|2

)
ψ̄2 + Ũdsψ̄

2
1ψ̄
∗
2

}

=
[
µ̃− (k̃0 ± 1)2

]
ψ̄1 − Ω̃Rψ̄2,

|g1|
ER

{[(
g̃2 + 2Ũ2

)
|ψ̄2|2 +

(
g̃12 + 2Ũss

)
|ψ̄1|2

]
ψ̄2 + Ũds

(
|ψ̄1|2 + 2|ψ̄2|2

)
ψ̄1 + Ũdsψ̄

2
2ψ̄
∗
1

}

=
[
µ̃− (k̃0 ∓ 1)2

]
ψ̄2 − Ω̃Rψ̄1, (4.25)

where again the upper (lower) sign in each equation corresponds to a condensate in the right

(left) minimum, and the chemical potential is expressed in recoil energy units, µ̃ ≡ µ/ER.

The chemical potential can be obtained from the first of Eqs. (4.25) and then substituted

into the second. Under the assumption that both condensate wavefunctions are real, Ũ1 =

Ũss = Ũds, and sgn(g1) = g̃2, one obtains

|g1|
ER

[(
g̃12 − sgn(g1)

) (
ψ̄2

2 − ψ̄2
1

)
ψ̄1ψ̄2 + Ũ1

(
ψ̄4

2 − ψ̄4
1

)]
± 4k̃0ψ̄1ψ̄2 + Ω̃R

(
ψ̄2

2 − ψ̄2
1

)
= 0.

(4.26)
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In the PWP, both ψ̄1 and ψ̄2 are assumed to be constant, so that ψ̄2
1 + ψ̄2

2 = n̄ and ψ̄2
1− ψ̄2

2 =

n̄sz. Inserting these into Eq. (4.26) gives

√
1− s2

z

[
∓4k̃0 + sz

|g1|n̄
ER

(
g̃12 − sgn(g1)

)]
+ 2sz

(
Ω̃R + Ũ1

|g1|n̄
ER

)
= 0. (4.27)

When Ũ1 = 0 and Ω̃R ≈ 0, this expression is approximately correct when sz ≈ 1, consistent

with the variational results in this regime. Recall that in the variational approach, the

magnetization sz = k̃0 is constant [c.f. Eq. (4.12)], solely determined by Ω̃R. Unlike the

variational result, however, it is immediately apparent from the second term in Eq. (4.27)

that the magnetization must decrease monotonically as Ũ1 is increased.

The magnetization sz obtained via numerical solution of Eq. (4.27) is shown as the red

dotted curve in Fig. 4.4 for a condensate in the left well (i.e. choosing the lower sign) of the

PWP for Ũ1 ≤ Ũ1c. Parameters are Ũ1 = Ũss = Ũds, sgn(g1) = g̃2 = |g1|n̄/ER = δŨ = 1,

g̃12 = 2, and Ω̃R = 0.1. As expected, the magnetization decreases monotonically with Ũ1

from its maximum at Ũ1 = 0. The difference between the results of the two methods has its

origins in the fact that the variational ansatz, Eq. (4.10), is a single-particle wavefunction

which satisfies the GP equations in PWP only when all the two-body and cavity-mediated

interactions are zero. In principle, the variational ansatz could be remedied by allowing both

k0 and θk0 to be variational parameters [76]. The dependence of the solution of GP equations

on the two-body and cavity-mediated interactions will be investigated further in Sec. 4.3.3,

where we calculate elementary excitations in the PWP.

Stripe Phase

The momentum dependence of the condensate in the SP is not as readily apparent as

it is for the PWP. It is therefore convenient to instead construct an effective low energy

Hamiltonian by first mapping the complete Hamiltonian (4.3) into the lower band and then

deriving the low energy coupled GP equations [78, 187]. This is reasonable because the

occupation of the upper band ε+(k) can be assumed to be small at low temperatures kBT �

~ΩR. Furthermore, only states in the vicinity of the two minima ±k̃0 will be occupied.
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The field operators Ψ̂(r) can then be expanded in the lower band basis around the two

minima (recall that φ−(k) is the two-component spinor of the lower band):

Ψ̂(r) '
∑

q<qc

[
ei(−k0+q)·rφ−(−k0 + q)ϕ̂−(−k0 + q) + ei(k0+q)·rφ−(k0 + q)ϕ̂−(k0 + q)

]
,

(4.28)

where the sum over q need only be taken up to some maximum qc. Approximating the

spinor φ−(±k0 + q) ' φ−(±k0) in the limit Ω̃R � 2 and defining the new operators

ϕ̂1′(q) ≡ ϕ̂−(−k0 + q) and ϕ̂2′(q) ≡ ϕ̂−(k0 + q) [78], the field operators read

Ψ̂(r) = e−ik0·rφ−(−k0)ψ̂1′(r) + eik0·rφ−(k0)ψ̂2′(r), (4.29)

where ψ̂τ ′(r) =
∑

q e
iq·rϕ̂τ ′(q). In the small Ω̃R limit and keeping terms only up to second

order in Ω̃R and noting that k0 ' (1− Ω̃2
R/8)kR, the field operators can be further simplified

to


ψ̂1(r)

ψ̂2(r)


 '




(1− Ω̃2
R

32
)e−ik0z Ω̃R

4
eik0z

− Ω̃R
4
e−ik0z −(1− Ω̃2

R

32
)eik0z






ψ̂1′(r)

ψ̂2′(r)


 . (4.30)

Note that the lab-frame pseudospin field operator ˆ̃ψτ maps correctly to the corresponding

dressed pseudospin field operator ψ̂τ ′ in the Ω̃R → 0 limit; recall that ˆ̃Ψ(r) = U †
2 Ψ̂(r).

Substituting Eq. (4.30) back into the original Hamiltonian (4.3) and only keeping terms to

second order in Ω̃R yields the effective low-energy Hamiltonian:

He =

∫
d3r

(
Ψ̂′†H(1)

e Ψ̂′ +
1

2
g′1n̂

2
1′ +

1

2
g′2n̂

2
2′ + g′12n̂1′n̂2′

)
+

1

2
U ′1N̂

2
1′ +

1

2
U ′2N̂

2
2′ + U ′12N̂1′N̂2′ ,

(4.31)

where Ψ̂′(r) = (ψ̂1′(r), ψ̂2′(r))T, as before N̂τ ′ =
∫
n̂τ ′(r)d3r =

∫
ψ̂†τ ′(r)ψ̂τ ′(r)d3r is the total

atomic number operator for the dressed pseudospin τ ′ ∈ {1′, 2′}, and we have introduced the
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dressed interaction parameters

g′τ ≡ gτ ′τ ′ = gτ −
1

8
(gτ − g12)Ω̃2

R,

g′12 ≡ g1′2′ = g12 +
1

8
(g1 + g2)Ω̃2

R,

U ′τ ≡ Uτ ′τ ′ = 2Uτ − UdsΩ̃R −
1

4
(Uτ − Uss)Ω̃

2
R,

U ′12 ≡ U1′2′ = −UdsΩ̃R +
1

8
(U1 + U2 + 2Uss)Ω̃

2
R, (4.32)

with τ ∈ {1, 2} and τ ′ ∈ {1′, 2′}.

The single-particle part of the effective low energy Hamiltonian H
(1)
e = (−~2/2m)[∇2

⊥+

(1 − Ω̃2
R/4)∂2

z ] can be easily diagonalized [78], yielding the effective low energy dispersion

εe(k)/ER = k̃2
⊥+ (1− Ω̃2

R/4)k̃2
z . It is important to note that the lowest single-particle energy

state for both dressed pseudospins is the k = 0 momentum state, not k = ±k0 as it was

for the actual pseudospins. Then the effective low energy GP equations for the SP can be

obtained from He, Eq. (4.31):

[(
g̃′1 + Ũ ′1

)
|ψ1′|2 +

(
g̃′12 + Ũ ′12

)
|ψ2′ |2

]
ψ1′ = µ̄ψ1′ ,

[(
g̃′2 + Ũ ′2

)
|ψ2′ |2 +

(
g̃′12 + Ũ ′12

)
|ψ1′ |2

]
ψ2′ = µ̄ψ2′ , (4.33)

where the dressed pseudospin wavefunctions ψτ ′ are assumed to be homogeneous and unit-

less parameters have been introduced for convenience: g̃′τ = g′τ/|g1|, g̃′12 = g′12/|g1|, Ũ ′τ =

V U ′τ/|g1|, and Ũ ′12 = V U ′12/|g1|. Here µ̄ = µ/|g1| which has units of inverse volume. These

algebraic equations have the solution

n1′ =
2Ũ2 + g̃′2 − g̃′12 − 1

8

(
Ũ1 + 3Ũ2

)
Ω̃2
R

g̃′1 + g̃′2 − 2g̃′12 + 2
(
Ũ1 + Ũ2

)(
1− 1

4
Ω̃2
R

) n̄,

n2′ =
2Ũ1 + g̃′1 − g̃′12 − 1

8

(
3Ũ1 + Ũ2

)
Ω̃2
R

g̃′1 + g̃′2 − 2g̃′12 + 2
(
Ũ1 + Ũ2

)(
1− 1

4
Ω̃2
R

) n̄, (4.34)

where n1′ + n2′ = n̄. Note that although the GP equations for the SP, Eq. (4.33), depend

on the cavity parameters Ũss and Ũds, these solutions do not; rather, Ũ1 and Ũ2 are the
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only cavity interaction parameters that affect ψτ ′ , consistent with the variational approach

of Sec. 4.3.1.

The dressed magnetization s′z = (n1′−n2′)/n̄ can easily be obtained from Eq. (4.34), and

the actual magnetization sz = s′z(1− Ω̃2
R/8) up to O(Ω̃3

R) is found using Eq. (4.30):

sz =

[
g̃′2 − g̃′1 + 2δŨ

(
1− 1

8
Ω̃2
R

)](
1− 1

8
Ω̃2
R

)

g̃′1 + g̃′2 − 2g̃′12 + 2
(
Ũ1 + Ũ2

)(
1− 1

4
Ω̃2
R

) . (4.35)

The SP magnetization sz is displayed as a function of Ũ1(> Ũ1c) in Fig. 4.4 with the red

dotted curve for sgn(g1) = g̃2 = δŨ = 1, g̃12 = 2, and Ω̃R = 0.1. The behavior is indistin-

guishable from the magnetization obtained from the variational approach, Eq. (4.12). The

critical cavity interaction for the SP-PWP phase transition can be obtained from Eq. (4.34)

by setting n1′ = n̄ (or setting s′z = 1):

ŨL
1c =

1

4(4− Ω̃2
R)

{
−
[
g̃12 − sgn(g1)− 2g̃2 − δŨ

]
Ω̃2
R + 8 [g̃12 − sgn(g1)]

}
, (4.36)

for a phase transition from SP to a PWP at the left minimum. Instead setting n1′ = 0 (or

s′z = −1) for a phase transition from SP to a PWP at the right minimum, one obtains

ŨR
1c =

1

4(4− Ω̃2
R)

{
−
[
g̃12 − sgn(g1)− 2g̃2 − 3δŨ

]
Ω̃2
R + 8

[
g̃12 − sgn(g1)− 2δŨ

]}
. (4.37)

Note that when sgn(g1) = g̃2 and δŨ = 0, the two critical cavity interactions ŨL
1c and ŨR

1c

become equal to the value Ũ0
1c found using the variational approach, Eq. (4.14).

4.3.3 Elementary Excitations: Bogoliubov Theory

Thus far we have treated the bosons as classical fields, having replaced the field operators

with their expectation values ψ̂τ → ψτ ≡ 〈ψ̂τ 〉. In this section, we consider the quantum

fluctuations of the fields and obtain the elementary excitation spectrum using Bogoliubov

theory. This is accomplished by writing the field operators as ψ̂τ = ψτ+δψ̂τ , where δψ̂τ is the

quantum fluctuation operator. These expressions are substituted into the time-dependent

GP equations and the resulting equations are linearized, i.e. terms are retained only up to

first order in the fluctuations. One then obtains a set of time-dependent coupled equations

for δψ̂τ which yields the elementary excitation spectrum after diagonalization.
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Plane-Wave Phase

Following the approach taken in Sec. 4.3.2 for the PWP, it is reasonable to define the bosonic

field operator

ψ̂τ (r, t) ≡ e±ik0z
[
ψ̄τ + δψ̂τ (r, t)

]
, (4.38)

where ψ̄τ are the time-independent, homogeneous solutions of the coupled GP equations (4.25)

in the PWP. To consider time-dependent fluctuations around the equilibrium solutions it is

convenient to replace the chemical potential (which is the eigenvalue of the time-independent

GP equations) by a time-dependent operator, µ → µ + i~∂t. The time-dependent fluctua-

tions can then be expressed using the usual Bogoliubov approach in terms of particle and

hole excitations with amplitudes ūτ,qe
i(q·r−ωt) and v̄∗τ,qe

−i(q·r−ωt), respectively.

Consider the specific case of a condensate in the left minimum −k̃0 of the double-well

single-particle dispersion relation; for condensation in the right well one need only replace

k̃0 in what follows with −k̃0. Substituting Eq. (4.38) into the time-dependent GP equations

and keeping only linear terms in the fluctuations, one obtains the following non-Hermitian

eigenvalue equation for each value of q:




M11 − ~ω(q) g1ψ̄
2
1 g12ψ̄1ψ̄

∗
2 + ~Ωeff g12ψ̄1ψ̄2

−g1ψ̄
∗2
1 −M22 − ~ω(q) −g12ψ̄

∗
1ψ̄
∗
2 −g12ψ̄

∗
1ψ̄2 − ~Ω∗eff

g12ψ̄
∗
1ψ̄2 + ~Ω∗eff g12ψ̄1ψ̄2 M33 − ~ω(q) g2ψ̄

2
2

−g12ψ̄
∗
1ψ̄
∗
2 −g12ψ̄1ψ̄

∗
2 − ~Ωeff −g2ψ̄

∗2
2 −M44 − ~ω(q)







ū1,q

v̄1,q

ū2,q

v̄2,q




= 0,

(4.39)

where

M11/22 = ER

[
q̃2 ∓ 2(k̃0 − 1)q̃z

]
+ g1|ψ̄1|2 − ~Ωeff

ψ̄2

ψ̄1

,

M33/44 = ER

[
q̃2 ∓ 2(k̃0 + 1)q̃z

]
+ g2|ψ̄2|2 − ~Ω∗eff

ψ̄1

ψ̄2

,

~Ωeff = ~ΩR + |g1|Ũdsn̄+ 2|g1|Ũssψ̄1ψ̄
∗
2. (4.40)
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In deriving the Bogoliubov Hamiltonian (4.39), we made use of the fact that N̂τ =
∫
ψ̂†τ (r, t)ψ̂τ (r, t)dr =

∫
|ψ̄τ |2dr = V |ψ̄τ |2 = Nτ , because ψ̄τ is homogeneous by assumption and

∫
δψ̂τ (r, t)dr = 0

because the spatial integral of either Bogoliubov amplitude ūτ,qe
i(q·r−ωt) or v̄∗τ,qe

−i(q·r−ωt) is

zero for any q 6= 0. A similar argument ensures that Ŝ+ = S+ and Ŝ− = S− as well. Note

also that the chemical potential in Eq. (4.39) has been eliminated using the coupled GP

equations (4.25).

Diagonalizing Eq. (4.39) yields the spectrum ωPW
± (q) of collective excitations. The results

are shown in Fig. 4.5(a) for the parameters sgn(g1) = g̃2 = |g1|n̄/ER = 1, g̃12 = 2, and

Ω̃R = 0.1, when all the cavity-mediated interaction terms are zero (Ũ1 = Ũ2 = Ũss = Ũds = 0),

i.e. the system is deep in the PWP. The lower curve exhibits the usual superfluid sound-like

linear dispersion around the origin q̃z ≡ qz/kR = 0 (around the left minimum of the single-

particle energy dispersion where all the atoms are condensed) and a roton-type minimum

around q̃z ' 2. As the cavity interactions are increased, the energy of the roton minimum

lowers. For parameters Ũ1 = 0.5, δŨ = 1.5, Ũss = Ũds = 0, and the other parameters same

as in Fig. 4.5(a), this minimum coincides with zero energy (i.e. the excitation energy at

the origin q̃z = 0); see the black solid curve in Fig. 4.5(b). The red dashed-dotted curve

represents the elementary excitation spectrum for the same values of Ũ1 and δŨ but for

Ũss = Ũds = 0.5. In this case, ~Ωeff/ER [cf. Eq. (4.40)] is somewhat bigger than the bare

Ω̃R = 0.1 for the black solid curve, so the roton minimum lies somewhat above that of the

black solid curve around q̃z ' 2.

The energy of the roton minimum near qz ' 2kR can be reduced below zero by further

increasing the cavity interaction strength Ũ1. This signals a dynamic instability toward the

formation of the SP; recall from Eq. (4.11) that the density modulation in the SP has wave

vector 2k0 ' 2kR for Ω̃R → 0. The critical cavity interactions for the black solid and the

red dashed-dotted excitation spectra in Fig. 4.5(b) are Ũ1c ' 0.5 and 0.53, respectively, and

these are in good agreement with that of the variational approach, where Eq. (4.20) predicts
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Figure 4.5: (Color online) Elementary excitation spectrum in the PWP for
sgn(g1) = g̃2 = |g1|n̄/ER = 1, g̃12 = 2, and Ω̃R = 0.1. (Ũ1, Ũ2, Ũss, Ũds) = (0, 0, 0, 0) in
(a), and (0.5, 1.5, 0, 0) and (0.5, 1.5, 0.5, 0.5) in (b) for the black solid and red dashed-dotted
curves, respectively.

a phase transition between the PWP and the SP at the critical value Ũ1c ' 0.5 for the

parameters sgn(g1) = g̃2 = δŨ = 1, g̃12 = 2, and Ω̃R = 0.1 (cf. also Fig. 4.4).

If one hypothetically sets Ũss = Ũds = 0 in the PWP, then the critical cavity interaction

Ũ1c obtained from the analysis of the elementary excitations and the variational method

would match exactly with each other for any range of parameters. Nevertheless, they begin

to deviate from one another as Ũss and Ũds become larger and larger, because Eq. (4.20) is

independent of these cavity interaction parameters while both the coupled GP equations and

the Bogoliubov Hamiltonian depend explicitly on them (the latter through ~Ωeff). That said,

we have compared the critical phase transition point Ũ1c obtained from both the variational

approach and the elementary excitation spectrum in the PWP and have found that when

Ũ1 = Ũss = Ũds they agree with one another within a ∼ 8% error for g̃12 in the range of

∼ 0− 8, assuming sgn(g1) = g̃2 = |g1|n̄/ER = δŨ = 1 and Ω̃R = 0.1.

Stripe Phase

The derivation of the Bogoliubov excitation spectrum begins with the corresponding
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time-dependent, effective low energy GP equations in the SP [c.f. Eq. (4.33)]:

i~
∂

∂t
ψ̂1′ =

(
H(1)

e + g′1|ψ̂1′|2 + g′12|ψ̂2′ |2 + U ′1N̂1′ + U ′12N̂2′ − µ
)
ψ̂1′ ,

i~
∂

∂t
ψ̂2′ =

(
H(1)

e + g′2|ψ̂2′|2 + g′12|ψ̂1′ |2 + U ′2N̂2′ + U ′12N̂1′ − µ
)
ψ̂2′ . (4.41)

As in the PWP case, the low energy field operators are replaced with ψ̂τ ′(r, t) = ψτ ′+δψ̂τ ′(r, t)

in these equations. Here ψτ ′ are the time-independent, homogeneous solutions of the effective

low energy GP equations in the SP, Eq. (4.34), and δψ̂τ ′(r, t) are the quantum fluctuations.

Linearizing Eq. (4.41) yields the Bogoliubov Hamiltonian:




M ′
11 − ~ω(q) g′1ψ

2
1′ g′12ψ1′ψ

∗
2′ g′12ψ1′ψ2′

−g′1ψ∗21′ −M ′
22 − ~ω(q) −g′12ψ

∗
1′ψ
∗
2′ −g′12ψ

∗
1′ψ2′

g′12ψ
∗
1′ψ2′ g′12ψ1′ψ2′ M ′

33 − ~ω(q) g′2ψ
2
2′

−g′12ψ
∗
1′ψ
∗
2′ −g′12ψ1′ψ

∗
2′ −g′2ψ∗22′ −M ′

44 − ~ω(q)







u1′,q

v1′,q

u2′,q

v2′,q




= 0, (4.42)

where

M ′
11 = M ′

22 = εe(q) + g′1|ψ1′ |2,

M ′
33 = M ′

44 = εe(q) + g′2|ψ2′ |2. (4.43)

The Bogoliubov Hamiltonian (4.42) can be diagonalized to give the spectrum of the elemen-

tary excitations:

~ωSP
± (q) =

√
ε2e(q) + εe(q)

(
D1 ±

√
D2

1 − 4D2

)
, (4.44)

with

D1 = g′1n1′ + g′2n2′ ,

D2 = (g′1g
′
2 − g′212)n1′n2′ . (4.45)

We have again used the fact that N̂τ ′ = Nτ ′ .

Surprisingly, the Bogoliubov Hamiltonian in the SP does not depend explicitly on the

cavity parameters and the form of the excitation spectrum coincides with the quasiparticle
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spectrum of a Raman-induced SP Bose condensate [78]. That said, the excitation spectrum

implicitly depends on the cavity parameters Ũ ′τ through nτ ′ , as can be seen in Eq. (4.34).

Both ωSP
± (q) are gapless and exhibit linear dispersion at long wavelengths, the character-

istic of superfluidity in this phase; the slope of the dispersion relation at long wavelength

corresponds to the speed of sound in the medium. In the transverse direction, one obtains

v
(±)
⊥ =

dωSP
± (q)

dq⊥

∣∣∣
q→0

=
1√
2m

√
D1 ±

√
D2

1 − 4D2, (4.46)

and the speed of sound in the z (SO-coupling) direction is nearly the same for small Ω̃,

v
(±)
z = v

(±)
⊥

√
1− Ω̃2

R/4.

Figure 4.6 depicts v
(±)
⊥ as a function of Ũ2 for Ũ1 = 1/4 (solid curves) and Ũ1 = 5/2

(dashed curves), with the other parameters fixed to sgn(g1) = g̃2 = 1, g̃12 = 0.7, Ω̃R = 0.4,

and g1n̄/ER = 1. The mass is assumed to be that of 87Rb. As Ũ2 is increased above

zero, the speed of sound in the positive branch v
(+)
⊥ (the blue curves) first decreases quickly

and reaches a minimum around δŨ = Ũ2 − Ũ1 ∼ 0 for both curves, and then gradually

approaches its asymptotic value. The speed of sound in the negative branch v
(−)
⊥ (black

curves) has the opposite behavior, first increasing sharply to a maximum again near δŨ ∼ 0

for both curves, before asymptotically approaching zero. The insets show the behaviour of

v
(±)
⊥ close to the origin. The asymptotic behaviour of the speed of sound can be understood

by noting that for large positive Ũ2 � Ũ1, n1′ approaches n̄ and n2′ approaches zero [c.f.

Eqs. (4.34)]. As a consequence D2 → 0 and v
(−)
⊥ → 0 while v

(+)
⊥ →

√
g′1n̄/m. For the solid

curves (where Ũ1 = 1/4), the speed of sound in the negative branch v
(−)
⊥ becomes zero at

Ũ2 ' 37, consistent with the value at which the dressed magnetization s′z becomes unity for

this choice of parameters. This signifies an instability toward the formation of a different

phase.

The condition that the speed of sound must be non-negative imposes the constraint D2 >

0. This condition marks the onset of a phase transition at the critical point g̃
′(c)
12 =

√
g̃′1g̃
′
2,

which does not depend on any cavity-mediated interaction parameters and is solely deter-
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Figure 4.6: (Color online) The speed of sound in the transverse direction v
(±)
⊥ is shown as

a function of Ũ2 for Ũ1 = 1/4 (solid curves) and Ũ1 = 5/2 (dashed curves). For all curves:
Ω̃R = 0.4, sgn(g1) = g̃2 = 1, g̃12 = 0.7, g1n̄/ER = 1, and m is the mass of 87Rb atom. The
insets show the results closer to the origin.

mined by the two-body interactions and Ω̃R. This critical point is not consistent with the

previous results obtained from the variational approach, the effective low-energy GP equa-

tions in the SP, or the elementary excitations in the PWP which all consistently predict a

critical point for the PWP-SP phase transition that depends on the cavity-mediated inter-

action parameters. To verify that there was not an error in the calculations, the elementary

excitations were computed directly in momentum space by Fourier transforming the effec-

tive low-energy Hamiltonian (4.31), and treating the fluctuations around the condensate

ϕτ ′(q = 0) to second order in ϕ̂τ ′(q) for small momenta q. The results were identical with

the real-space analysis, Eq. (4.44). Interestingly, the critical inter-species interaction g̃
′(c)
12

above defines a phase boundary between the SP and a phase-separated state in Raman-

induced SO-coupled Bose condensates [78]. It is therefore conceivable that there is another

phase between the SP and the PWP induced by the cavity interactions, whose signature is
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the observed inconsistency in the critical point.

4.4 Discussion and Conclusions

In this work we have shown that cavity-mediated long-ranged interactions between atoms

can profoundly alter the nature of the ground state and the elementary excitations of a

cavity-induced SO-coupled two-component Bose-Einstein condensate, for ring-type cavities

in the weak-coupling regime. Specifically, experimentally tunable cavity-mediated interac-

tions compete with the standard two-body interactions to yield both PWP and SP ground

states. Indeed, positive long-range cavity interactions can stabilize fully attractive Bose-

Einstein condensates (condensates where intra-species collisional interactions are negative,

independent of the sign of the inter-species interaction) against collapse in the SP. The

collective excitations of the PWP ground states are found to have a distinctive roton-type

excitation spectrum reminiscent of that of superfluid 4He, which can be used as a signature

of the phase. The stripe phase has a standard linear dispersion relation; the associated

speed of sound is found to go negative at a critical value of the cavity interaction strength,

signalling an instability toward another (likely phase-separated) phase. The results suggest

that cavity QED, even in the weak-coupling regime, can yield interesting new physics for

SO-coupled Bose-Einstein condensates.

The results raise interesting avenues for future investigations. This work assumed a

fictional experimental configuration where the momentum is a good quantum number in the

direction of the applied spin-orbit interactions. In reality the condensate would be confined

in this direction, and even a weak harmonic potential could change the physics. While the

SP would likely remain robust, as it is essentially a weak standing wave superimposed on

the background condensate density profile, the PWP has no analog in a confined geometry.

Another loose end is the nature of the phase hinted at in the limit of a large difference δŨ

between the cavity-mediated interactions between the two kinds of spin components Ũ1 and

Ũ2. For large δŨ , the sound velocity in the SP was found to go negative, a signature of the
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dynamic instability of the phase.

However, a few intriguing issues and questions remain unclear and deserve further in-

vestigations. These include the inconsistency in the critical phase transition point, how the

combined SO coupling effect, the two-body interactions, and the cavity-mediated long-ranged

interactions change the superfluid–Mott-insulator phase transition as well as the nature of

magnetic orders in the Mott-insulating regime when an optical lattice imposed inside the

cavity. Furthermore, whether it is possible to have a superfluid–Mott-insulator-like phase

transition with solely the cavity-mediated long-range interactions, whether there is more

interesting physics in strong-coupling regime, and how the cavity fields are affected by the

atoms. Some of these questions are the subject of our current works with some promising

preliminary results and will be published elsewhere.
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Chapter 5

Discussion and Conclusions

Progress in the precise manipulation of ultracold atomic gases has made Feynman’s revolu-

tionary notion — of simulating an intractable system with another system — a reality, with

ultracold atomic gases being the tractable environments. They can readily be manipulated

to emulate other physical systems on demand, ranging from strongly interacting condensed

matter to relativistic particles, allowing one to carefully study these systems in detail. A

notable example is ultracold atoms trapped in optical lattice potentials, which can be ex-

ploited to simulate condensed-matter-like phenomena such as the superfluid–Mott-insulator

phase transition.

Abelian and non-Abelian gauge potentials and quantum gauge theories play central roles

in our understanding of Nature. Quantum electrodynamics (QED), a relativistic gauge

theory describing the coupling of an electron field into the Abelian electromagnetic gauge

potentials (i.e., the photon field), is among the most successful and most accurate theories of

physics. Abelian and non-Abelian gauge potentials are also of great significance in condensed

matter physics, and are in fact the essential ingredients of topological states of matter.

Nonetheless, gauge theories and topological states of matter cannot be directly simulated

by quantum gases due to their charge neutrality. That said, coupling a multi-component

or spinor quantum gas into laser light in an efficient manner can lead to the emergence of

artificial Abelian and non-Abelian gauge potentials (such as artificial magnetic fields and SO

couplings, respectively) in ultracold neutral atoms.

In this thesis, I have demonstrated how to induce synthetic magnetic fields and SO

couplings in the cavity QED environment. Specifically, I have developed a two-photon Raman

scheme in the strong atom-photon coupling regime, based on two counter-propagating modes
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of a ring cavity, to induce both synthetic magnetic field and SO coupling for a single neutral

atom inside the cavity. Although the SO coupling is only weakly dependent on the occupation

of the cavity modes and its strength is basically limited by the two-photon momentum

transfer, the strength of the magnetic field is proportional to the square of the total number

of photons in the cavity and can be made arbitrary large. Such large magnetic fields are

required for realizing fractional quantum Hall phases and the Hofstadter butterfly. This

scheme might open up the possibility for realizing these phases in cavity QED environments.

By extending this single-atom cavity QED scheme to many bosons in the weak atom-

photon coupling regime, I have showed that in addition to inducing SO coupling for the

individual atoms the cavity fields also mediate infinite-ranged interactions between atoms,

whose strengths and signs can readily be tuned experimentally. The ground state and col-

lective behaviour of the system is governed by the interplay between these cavity-mediated

long-ranged and the two-body contact interactions. In the stripe phase, atoms condense

in both minima of the single-particle energy dispersion, and consequently the translational

symmetry is spontaneously broken and the total density exhibits fringes. This is in contrast

to the plane-wave phase where all atoms Bose condense into a single minimum of the single-

particle energy dispersion. The positive cavity-mediated interactions favor the stripe phase.

Furthermore, appropriately tuned cavity-mediated long-ranged interactions can stabilize an

attractive Bose condensate which otherwise is unstable and collapses. Thus, the ring-cavity

environment provides an experimentally convenient framework for exploring exotic ground

states of SO-coupled Bose condensates. This might have possible applications when the com-

mon Feshbach resonance techniques for tuning the two-body interactions are impractical to

implement due to the drastic atom losses from the trap or not feasible at all.

When an external optical lattice is imposed inside the cavity in this many-body scheme,

the two-body contact and cavity-mediated long-ranged interactions result in on-site and

off-site interactions between atoms, respectively. The SO-coupling modifies the tunnelling
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amplitude matrix according to the the Peierls substitution [188]. The cavity-mediated in-

teractions are long range and are the same for any pair of lattice sites, regardless of their

distance from each other. Like continuum, they might give rise to interesting phenomena

in the presence of the optical lattice. A mean-field theory may be then used to describe

this system accurately, since mean-field theories become more accurate in higher spatial

dimensions or when interactions are long range [189]. I used a mean-field theory to decou-

ple these long-ranged interactions in the weak atom-photon coupling limit. The resultant

Hamiltonian then resembles an SO-coupled extended Bose-Hubbard model, where there is

nearest-neighbour interactions between atoms in adjacent sites, in addition to the on-site

interactions. The (single-component) extended Bose-Hubbard model exhibits rich phases.

In addition to superfluid and Mott-insulator phases, there exist two extra phases associated

with the extended Bose-Hubbard model: density-wave and supersolid states [190]. Although,

the (single-component) extended Bose-Hubbard model has been the subject of intense stud-

ies in the past, to the best of my knowledge, an SO-coupled extended Bose-Hubbard model

has not been studied yet. Motivated by these, I have started to study a one-dimensional

SO-coupled extended Bose-Hubbard model, with some preliminary results presented in the

following.

The one-dimensional SO-coupled extended Bose-Hubbard (eBH) model is described by,

HeBH = Hhop +Hint + hz
∑

j

ŝz,j −
∑

j,τ

µτ N̂j,τ , (5.1)

with

Hhop = −
∑

〈j,j′〉

(
B̂†j J̌j,j′B̂j′ + H.c.

)
, (5.2)

Hint =
1

2

∑

j,τ

Uτ N̂j,τ (N̂j,τ − 1) + U12

∑

j

N̂j,1N̂j,2 + V
∑

〈j,j′〉
N̂jN̂j′ , (5.3)

where H.c. stands for Hermitian conjugate, 〈· · · 〉 for the nearest neighbours, and τ = {1, 2}

represents the pseudospin states. The bosonic annihilation and creation operators satisfy the
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usual bosonic commutation relation [b̂j,τ , b̂
†
j′,τ ′ ] = δj,j′δτ,τ ′ , B̂j = (b̂j,1, b̂j,2)T, N̂j,τ = b̂†j,τ b̂j,τ

is the particle number operator for pseudospin state τ in site j, ŝz,j = N̂j,1 − N̂j,2, and

N̂j =
∑

τ=1,2 N̂j,τ . Here, J̌j,j′ and V are, respectively, the SO-coupled tunnelling-amplitude

matrix and the strength of species-independent interaction between nearest-neighbour sites

j and j′, Uτ (U12) is the on-site intra-species (inter-species) interaction, hz = ~ΩR/2 is the

Raman-Rabi energy, and µτ is the chemical potential. For the equal Rashba-Dresselhaus SO

coupling, the tunnelling amplitude matrix is given by [188],

J̌j,j±1 =




J ∓J ′

±J ′ J


 , (5.4)

where J ≡ J̃ cos γ and J ′ ≡ J̃ sin γ. Here, J̃ is the species-independent tunnelling amplitude

in the absence of the SO coupling and γ is related to the strength of the SO coupling.

In the atomic limit J̃ = 0, the particle number operator N̂j,τ commutes with the Hamil-

tonian HeBH, implying that the number of particles in each pseudospin τ and lattice site

j is conserved. The ground state of the system can then be obtained by minimizing the

energy functional E = 〈Hint +hz
∑

j ŝz,j −
∑

j,τ µτ N̂j,τ 〉 for given parameters, which is either

a Mott-insulator (MI) state or a density-wave (DW) state. In the MI state, there is an

equal, integer number of atoms in each lattice site. In the DW state, the lattice is divided

into two sub-lattices where the number of atoms in each sub-lattice is conceivably different.

The phase diagrams are depicted in Fig. 5.1 for hz/U = 0 and −0.5, where U ≡ U1 = U2

and µ ≡ µ1 = µ2. The inter-species interaction is fixed at U12/U = 0.6 and z = 2 is the

number of nearest neighbours. A Mott-insulator state is specified by the number of atoms

in both pseudospin states in one lattice site, denoted as MI(N1, N2). A density-wave state

is specified by the number of atoms in both pseudospin states in two lattice sites, denoted

as DW(NA,1, NA,2;NB,1, NB,2) where A and B indicate the two sub-lattices.

When the tunnelling amplitude is non-zero J̃ 6= 0, one must then exactly diagonalize

the Hamiltonian HeBH, Eq. (5.1), over the whole lattice. That said, a mean-field theory can
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Figure 5.1: Atomic limit phase diagrams for (a) hz/U = 0 and (b) hz/U = −0.5. The other
parameters are U ≡ U1 = U2, µ ≡ µ1 = µ2, and U12/U = 0.6. Here, z = 2 is the number of
nearest neighbours.

be exploited to decouple the nearest-neighbour hopping terms (5.2) and therefore allow an

analytical approach [191, 192]. To this end, the annihilation operator is replaced by b̂j,τ =

βj,τ+δb̂j,τ in the nearest-neighbour hopping terms, where βj,τ ≡ 〈b̂j,τ 〉 is the expectation value

of the annihilation operator and δb̂j,τ ≡ b̂j,τ−〈b̂j,τ 〉. βj,τ is the superfluid (SF) order parameter

of component τ , since it vanishes identically in the MI and DW phases and takes non-zero

values in the SF state. This stems from the fact that in the MI and DW phases all lattice

sites have definite (integer) particle number; hence the expectation value of the annihilation

operator is identically zero. While in the SF phase, the particle number in a single lattice

site is not fixed and βj,τ can therefore be non-zero. Calculating βj,τ = 〈b̂j,τ 〉 = Tr(b̂j,τ ρ̂)

yields phase boundaries for both MI-SF and DW-SF phase transitions [193]. Here, ρ̂ =

1
Z

exp (−HMF
eBH/kBT ) is the density matrix operator, where HMF

eBH is the mean-field decoupled

Hamiltonian, T is the temperature, and Z = Tr(e−H
MF
eBH/kBT ) is the partition function.

In the atomic limit J̃ = 0, the SO-coupling has basically no effect in the system. That

said, the system even in the atomic limit exhibit very rich quantum phase transitions be-
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tween the MI and DW states. This stems from the interplay between the on-site intra-

and inter-species interactions, the nearest-neighbour interaction, and the Raman-Rabi en-

ergy (which is like an out-of-plane magnetic field for pseudospins). Such interesting and

complicated quantum phase transitions do not exist in the one-component extended Bose-

Hubbard model [190]. When the tunnelling amplitude is non-zero J̃ 6= 0, more intriguing

quantum phase transitions are even expected. In this regime, the SO-coupling affects prop-

erties of the system and is expected to give rise to twisted SF states [194, 195]. Quantum

phase transitions obtained for a non-zero tunnelling amplitude in the SO-coupled extended

Bose-Hubbard model are under examination and will be published elsewhere [196].

The gauge potentials in condensed matter systems are normally static. That is, they are

background gauge potentials where electron fields couple to them without affecting them.

Analogously, most of the proposed and all of the realized artificial gauge potentials for

ultracold neutral atoms are of this type. The static gauge potentials are in sharp contrast

to dynamic gauge potentials, encountered usually in quantum gauge theories such as QED,

quantum chromodynamics, the Standard Model of elementary particles, etc. The dynamic

gauge potentials are not background potentials but rather evolve over time. There exist a

few schemes to induce dynamic gauge potentials in ultracold neutral atoms [197, 198, 199,

200, 201]; they are, however, experimentally very challenging. For instance, the proposal of

Ref. [197] relies on one fermionic and three distinct bosonic species, three interpenetrating

lattices, fine detuning of many parameters, etc., which are difficult to achieve experimentally.

Another alternative, natural route to induce dynamic gauge potentials in ultracold neutral

atoms can be the cavity QED setting.

Let me briefly outline how QED might be simulated in a cavity QED setting. Consider

ultracold fermions tapped in a honeycomb optical lattice located inside a cavity; see Fig. 5.2.

The fermions move around the lattice due to their kinetic energy, resulting in a band structure

which in some points of the quasi-momentum space is linear and mimics the energy dispersion
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Figure 5.2: Ultracold fermions trapped in a honeycomb optical lattice located inside a cavity.

of the relativistic Dirac equations. With a proper fermionic filling factor (a half filling, to

be precise) this provides the first constituent of QED, the relativistic fermionic field. On

the other hand, the cavity-QED field provides naturally the second component of QED, the

dynamic gauge potential. The last element of QED, coupling of the relativistic particle to

the dynamic gauge potential should be synthesized, since the atoms are charge neutral and

do not couple to the gauge potential. This can be achieved by employing Berry’s geometric

phase. One possible implementation of the Berry phase is exploiting the two-photon Raman

scheme in conjunction with an external bias field, which I have developed in Chapter 3 for

the cavity QED environment.

Therefore, cavity QED environments might open a new avenue for simulating dynamic

gauge potentials in ultracold atomic systems. My work along with those of others might serve

as the starting point of this research direction and may facilitate further theoretical studies

for extending these schemes to simulate dynamic gauge field theories, such as QED (which

is outlined above) and quantum chromodynamics, in cavity QED environments. These may

finally allow one to address many open questions regarding elementary particle physics in

the framework of ultracold atoms and cavity QED.
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Appendix A

Adiabatic Theorem and Berry Phase

In this Appendix, I review the the Adiabatic Theorem and the concept of the Berry phase.

Then I apply the concept of adiabatic passage and adiabatic elimination to a two-level atom

interacting with an electromagnetic field.

The Adiabatic Theorem. Let the given system be initially in an eigenstate |n〉0 of the

Hamiltonian H0 at time t0. If the Hamiltonian is changed very slowly and continuously

(referred to as an adiabatic passage) into H1 at later time t1, such that τ = t1 − t0 → ∞,

then the system remains in the instantaneous eigenstate |n〉1 of the Hamiltonian H1 [202].

I now consider this theorem in detail and derive the exact condition under which the

Adiabatic Theorem holds. Consider the Schrödinger equation,

H(X) |n(X)〉 = εn(X) |n(X)〉 , (A.1)

where |n〉 is an eigenstate of the Hamiltonian H with the corresponding eigenenergy εn.

Here, X(t) is a parameter which depends on time, and in turn the Hamiltonian H(X),

eigenenergies {εn(X)}, and eigenstates {|n(X)〉} all depend on X(t). An arbitrary state

vector of the system can be expressed in terms of the complete basis set {|n(X)〉} as,

|ψ(t)〉 =
∑

n

cn(t) |n(X(t))〉 . (A.2)

Substituting Eq. (A.2) into the time-dependent Schrödinger equation,

i~∂t |ψ(t)〉 = H(X) |ψ(t)〉 , (A.3)

and multiplying by 〈n| from left yields

∂tcn = −iεn
~
cn − Ẋ

∑

m

〈n |∂Xm〉 cm, (A.4)
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where Ẋ = ∂tX and ∂X = ∂/∂X . Here I have suppressed all the t and X dependence for

simplicity of the notation.

Note that 〈n |∂Xm〉 = −〈∂Xn |m〉, which can be readily obtained by taking the derivative

of 〈n |m〉 = δn,m with respect to X. This implies that 〈n |∂Xm〉 is anti-Hermitian. Defining

a new Hermitian matrix A with elements

Anm ≡ i 〈n|∂Xm〉 , (A.5)

Eq. (A.4) can be re-expressed as,

∂tcn = −iεn
~
cn + iẊ

∑

m

Anmcm = −i
(εn
~
− ẊAn

)
cn + iẊ

∑

m 6=n
Anmcm, (A.6)

where An ≡ An,n. The last term in Eq. (A.6) represents a perturbation due to the change

in the system, whose strength is proportional to Ẋ, and mixes different eigenstates. It can

be recast in a more useful form by noting that ∂X 〈n|H |m〉 = 0 for any n 6= m,

〈∂Xn|H |m〉+ 〈n| ∂XH |m〉+ 〈n|H |∂Xm〉 = 0. (A.7)

A simple re-arrangement yields

Anm = i 〈n|∂Xm〉 = −i〈n| ∂XH |m〉
εn − εm

. (A.8)

By substituting Anm (A.8) in Eq. (A.6), one obtains

∂tcn = −i
(εn
~
− ẊAn

)
cn + Ẋ

∑

m6=n

(〈n| ∂XH |m〉
εn − εm

)
cm. (A.9)

Assuming that the system was initially in state |n(X0)〉, the Adiabatic Theorem states

that if the change in the system, proportional to Ẋ, is sufficiently slow, then the system

remains in its instantaneous eigenstate |n(X)〉, that is, |cn(t)|2 ' const. This implies that

the perturbation in Eq. (A.9) must be negligible compared to energy difference between the

levels. Since the largest contribution to the perturbation comes from the transition into a
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level, denoted by n′, with closest energy to that of n, the adiabatic condition can then be

expressed as,

Ẋ � (εn − εn′)2

~ 〈n| ∂XH |n′〉
. (A.10)

Omitting the perturbation term, Eq. (A.9) can be integrated to yield

cn(t) = cn(0)e−
i
~
∫ t
0 εn(t′)dt′eiγn , (A.11)

where the accumulated phase has an extra geometric contribution

γn =

∫ t

0

Ẋ(t′)An(t′)dt′ =

∫ X(t)

X0

An(X ′)dX ′, (A.12)

in addition to the dynamical phase. If the system changes in a cyclic manner, that is,

X0 = X1, then the geometric phase,

γn =

∮
An(X)dX = i

∮
〈n(X)|∂Xn(X)〉 dX, (A.13)

is independent of the time and solely depends on the path taken by the system [62]. This is

the Berry phase, with An(X) referred to as the Berry connection [61].

A.1 Adiabatic Elimination: An Example

In order to illustrate the notion of the adiabatic elimination, consider a two-level atom

with atomic transition frequency ω0 coupled to a monochromatic electromagnetic field with

frequency ω, E(r, t) = [E+(r)e−iωt + E−(r)eiωt]e, where e is the polarization vector. The

atom-field Hamiltonian density in the d · E picture and the rotating-wave approximation

reads [149]

H =
P2

2M
+ ~ω0σee +

~
2

[
Ω(r)e−iωtσeg + H.c.

]
, (A.14)

where Ω = Ω(r) = E+(r) 〈g|d · e |e〉 /~ is the Rabi frequency of the corresponding transition

g ↔ e. Here, P is the center-of-mass momentum of the atom, M the mass of the atom, and
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σττ ′ = |τ〉 〈τ ′|. The time-dependence of the Hamiltonian can be removed by transferring to

the rotating frame of the laser. This is accomplished by applying the unitary transformation

U = eiωtσee ,

H̃ = U HU † + i~(∂tU )U † =
P2

2M
− ~∆σee +

~
2

[
Ω(r)σeg + H.c.

]
, (A.15)

where ∆ = ω − ω0.

Let me consider condition(s) under which the atom adiabatically follows its ground state

|g〉 and remains in it, and as a consequence the atomic excited state |e〉 can be eliminated.

The first approach is to diagonalize H̃. Omitting the kinetic energy term, the Hamiltonian

(A.15) can be readily diagonalized to yield the dressed states

|+〉 = sin θ |g〉+ cos θ |e〉 ,

|−〉 = cos θ |g〉 − sin θ |e〉 , (A.16)

and dressed energies

ε± = −~∆

2
± ~Ω̃

2
, (A.17)

where tan 2θ = −Ω/∆ and Ω̃ = Ω̃(r) =
√
|Ω|2 + ∆2 is the generalized Rabi frequency. Note

that there is an avoided crossing in the dressed-energy spectrum due to the coupling to the

field through Ω. Consider a case where |∆| � |Ω|, then |−〉 ' |g〉 and |+〉 ' |e〉 with

the large energy gap ∆ε = −~∆ between the two dressed states. This implies that if the

atom is in |−〉 ' |g〉, then it will always remain in this state with the corresponding energy

ε− ' ~|Ω|2/4∆, provided that |∆| � |Ω|. This is exactly the adiabatic condition.

There is yet another way to obtain the adiabatic condition and that is to look at equations

of motion. An arbitrary state vector |ψ〉 can be decomposed as the product of the internal

and external states as [149],

|ψ(t)〉 = |ψg(t)〉 |g〉+ |ψe(t)〉 |e〉 , (A.18)
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where |ψτ (t)〉 are the corresponding center-of-mass states. Defining the wavefunctions ψτ (r, t) =

〈r|ψτ (t)〉, the time-dependent Schrödinger equation i~∂tψ = H̃ψ yields

i~ (∂tψg |g〉+ ∂tψe |e〉) =
P2

2M
(ψg |g〉+ ψe |e〉)− ~∆ψe |e〉+

~
2

[
Ω(r)ψg |e〉+ Ω∗(r)ψe |g〉

]
.

(A.19)

Separating the coefficients of |g〉 and |e〉, one obtains a set of coupled equations

i~∂tψg =
P2

2M
ψg +

1

2
~Ω∗(r)ψe,

i~∂tψe =
P2

2M
ψe +

1

2
~Ω(r)ψg − ~∆ψe, (A.20)

for ψg and ψe.

There are different time scales associated with this system, as can be seen from Eq. (A.20).

The time scale associated with the free time evolution of the atomic excited state is Tfree ∼

1/∆ (note the atomic ground state carries no free time evolution), while the time scale asso-

ciated with its decay is in order of Tdec ∼ 1/Γ, where Γ is the decay rate of the excited state.

Atom-field coupling induces motion in a time scale corresponding to the Rabi frequency

TR ∼ 1/Ω, which together with the free time evolution induce internal atomic oscillation in

a time scale of the generalized Rabi frequency Tint ∼ 1/Ω̃. Finally, the centre-of-motion is

associated with motion in a time scale of order Tc.m. ∼ 2π/ωc.m., where ωc.m. = 〈P 〉2 /2~M .

In a typical experimental situation, ωc.m. ∼ kHz, Γ ∼ MHz for alkali atoms, Ω ∼ 0 − 100

MHz, and ∆ ∼ 1 − 100 GHz, implying that Ω̃ ∼ ∆. The corresponding time scales then

are Tc.m. � Tdec � Tint. When one is interested in a time scale on the order of Tc.m., it

is a good approximation to assume that the excited state has damped out and reached its

steady-state when ~∆ is the dominant energy scale in the system. One can then set ∂tψe = 0

in the time-evolution equations (A.20) and obtain

ψe '
Ω

2∆
ψg, (A.21)

where use has been made of the fact that the kinetic energy P 2/2M is negligible in comparison
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to ~∆. Substituting Eq. (A.21) into the first equation of (A.20) yields

i~∂tψg =
P2

2M
ψg +

~|Ω(r)|2
4∆

ψg, (A.22)

where one can ready obtain the corresponding effective Hamiltonian for the ground state,

Heff =
P2

2M
+

~|Ω(r)|2
4∆

. (A.23)
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Appendix B

Adiabatic Elimination of the Atomic Excited State:

Strong-Coupling Regime

The procedure to adiabatically eliminate the atomic excited state in the three-level Hamil-

tonian, Eq. (3.1), is given in Ref. [164] and the derivation below follows this with some

generalizations. The Heisenberg equations of motion for the atomic transition operators are

given by

i~σ̇ae = εeaσae + ~Gae(z)Â1σ
ae
z + ~Gbe(z)Â2σab;

i~σ̇be = εebσbe + ~Gbe(z)Â2σ
be
z + ~Gae(z)Â1σba; (B.1)

where σττ
′

z ≡ σττ −στ ′τ ′ = |τ〉 〈τ | − |τ ′〉 〈τ ′|. Note that σ†ττ ′ = στ ′τ so equations of motion for

these operators follow directly from those above. Defining new variables σae(t) ≡ σ̃ae(t)e
−iω1t,

σbe(t) ≡ σ̃be(t)e
−iω2t, Â1(t) ≡ ˆ̃A1(t)e−iω1t, Â2(t) ≡ ˆ̃A2(t)e−iω2t, and σab(t) = σae(t)σeb(t) ≡

σ̃ab(t)e
i(ω2−ω1)t, with σ̃ab = σ̃aeσ̃eb, the Heisenberg equation of motions (B.1) take the form

i ˙̃σae = −∆1σ̃ae + Gbe(z) ˆ̃A2σ̃ab + Gae(z) ˆ̃A1σ
ae
z ;

i ˙̃σbe = −∆2σ̃be + Gae(z) ˆ̃A1σ̃ba + Gbe(z) ˆ̃A2σ
be
z ; (B.2)

where ∆1 = ω1 − εea/~ and ∆2 = ω2 − εeb/~. The adiabatic condition ~∆j � εba implies

that the time-dependence of all atomic transition operators involving the excited state is

vanishingly small; that is, ˙̃σae = ˙̃σea = ˙̃σbe = ˙̃σeb ≈ 0. This yields

σ̃ae ≈
1

∆1

[
Gbe(z) ˆ̃A2σ̃ab + Gae(z) ˆ̃A1σ̃

ae
z

]
;

σ̃be ≈
1

∆2

[
Gae(z) ˆ̃A1σ̃ba + Gbe(z) ˆ̃A2σ̃

be
z

]
. (B.3)

Because σ̃ee = σ̃eaσ̃ae = σ̃ebσ̃be ∝ |g|2/∆2 � 1 by assumption, all terms involving only the

excited state can be neglected; thus σ̃aez ≈ σ̃aa and σ̃bez ≈ σ̃bb. The excited state of the atom
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is therefore decoupled from the other degrees of freedom in the Hamiltonian. Substituting

Eq. (B.3) into Eq. (3.1) gives

Heff ≈
~2q2

z

2m
I2×2 +

[
εa +

~|Gae|2
∆1

(
ˆ̃A1

ˆ̃A†1 + ˆ̃A†1
ˆ̃A1

)]
σ̃aa +

[
εb +

~|Gbe|2
∆2

(
ˆ̃A2

ˆ̃A†2 + ˆ̃A†2
ˆ̃A2

)]
σ̃bb

+ ~
(
ω1

ˆ̃A†1
ˆ̃A1 + ω2

ˆ̃A†2
ˆ̃A2

)
+

[
~G ∗ae(z)Gbe(z)

(
1

∆1

+
1

∆2

)
ˆ̃A†1

ˆ̃A2σ̃ab + H.c.

]
, (B.4)

where the Hamiltonian for the excited state is completely ignored. Defining the ac Stark-

shifted energies

ε̃a ≡ εa +
2~ |Gae|2

∆1

(
ˆ̃A†1

ˆ̃A1 +
1

2

)
;

ε̃b ≡ εb +
2~ |Gbe|2

∆2

(
ˆ̃A†2

ˆ̃A2 +
1

2

)
, (B.5)

and the two-photon Rabi frequency

ΩR ≡ GaeGbe
∆1 + ∆2

∆1∆2

, (B.6)

where {Gae,Gbe} ∈ R, the adiabatically-eliminated Hamiltonian is

Heff =
~2q2

z

2m
I2×2 + ε̃aσ̃aa + ε̃bσ̃bb + ~

(
ω1

ˆ̃A†1
ˆ̃A1 + ω2

ˆ̃A†2
ˆ̃A2

)
+ ~ΩR

[
ei(k1+k2)z ˆ̃A†2

ˆ̃A1σ̃ba + H.c.
]
.

(B.7)

Defining ~ω̃0 ≡ ε̃b − ε̃a and ~ω ≡ (ε̃a + ε̃b)/2, then the Hamiltonian becomes

Heff =
~2q2

z

2m
I2×2 +

1

2
~ω̃0σ̃

ba
z + ~

(
ω1

ˆ̃A†1
ˆ̃A1 + ω2

ˆ̃A†2
ˆ̃A2

)
+ ~ΩR

[
ei(k1+k2)z ˆ̃A†2

ˆ̃A1σ̃ba + H.c.
]
,

(B.8)

where the constant term ~ω (σ̃aa + σ̃bb) = ~ωI2×2 has no effect on the dynamics and is

therefore neglected. Because the frequency-dependent exponential factors all cancel, one

can replace σ̃ → σ and ˆ̃A → Â without loss of generality, and this yields the effective

Hamiltonian (3.2).
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Appendix C

Adiabatic Elimination of the Atomic Excited State:

Weak-Coupling Regime

We first express the single-particle Hamiltonian density H(1), Eq. (4.1), in the rotating frame

of pump lasers [178] by applying the unitary transformation

U1 = exp
{
i
[(
Â†1Â1 − σaa

)
ωp1 +

(
Â†2Â2 − σbb

)
ωp2

]
t
}
, (C.1)

to obtain

H′(1) =

[
p2

2m
+ Vext(r)

]
I3×3 +

~δ′

2
(σaa − σbb)−

~
2

(∆a1 + ∆a2)σee − ~
(
∆c1Â

†
1Â1 + ∆c2Â

†
2Â2

)

+ i~
[(
η1Â

†
1 + η2Â

†
2

)
− H.c.

]
+ ~

[(
Gaee

ikRzÂ1σea + Gbee
−ikRzÂ2σeb

)
+ H.c.

]
, (C.2)

where we have defined the atomic and the two-photon (or relative-atomic) detunings

∆a1 = ωp1 −
1

~
(εe − εa), ∆a2 = ωp2 −

1

~
(εe − εb),

δ′ = (ωp1 − ωp2)− 1

~
(εb − εa) = ∆a1 −∆a2, (C.3a)

and cavity detunings

∆cj = ωpj − ωj, j = 1, 2, (C.3b)

with respect to the pump lasers. Let us now assume that the detunings ∆1 = ω1 − εea/~ =

−∆c1 + ∆a1 and ∆2 = ω2 − εeb/~ = −∆c2 + ∆a2 are large compared to εba/~ = (εb − εa)/~

so that we can adiabatically eliminate the dynamic of the atomic excited state |e〉 from the

Hamiltonian (C.2) and obtain an effective Hamiltonian for the ground pseudospins {1, 2} ≡

{b, a}. Following the standard adiabatic elimination procedure [164, 116] outlined in the

preceding appendix, we first find the Heisenberg equations of motion i~σ̇eτ = [σeτ ,H′(1)]
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for σ̇ea and σ̇eb, and then (after transferring to slowly rotating variables) set them equal

to zero to find the steady-state solutions σ
(ss)
ea and σ

(ss)
eb . After substituting these steady-

state solutions back in H′(1) (C.2) and dropping terms diagonal in σee, we arrive at the

single-particle Hamiltonian density for pseudospins

H′(1)
SO =

[
p2

2m
+ Vext(r)

]
I +

∑

τ=1,2

ε̂τσττ +H ′cav + ~Ω′R

(
e2ikRzÂ†2Â1σ12 + e−2ikRzÂ†1Â2σ21

)
,

(C.4)

where

H ′cav = −~
(
∆c1Â

†
1Â1 + ∆c2Â

†
2Â2

)
+ i~

[(
η1Â

†
1 + η2Â

†
2

)
− H.c.

]
, (C.5)

and

ε̂1 = −~δ′

2
+

2~G 2
be

∆2

(Â†2Â2 +
1

2
); ε̂2 =

~δ′

2
+

2~G 2
ae

∆1

(Â†1Â1 +
1

2
). (C.6)

Here, Ω′R = ∆1+∆2

∆1∆2
GaeGbe is the two-photon Rabi frequency and I ≡ I2×2 is the identity

matrix in the pseudospin space. Note the hat on ε̂τ , implying that it depends on the cavity

field operators. After transferring to the co-moving frame of the cavity modes by applying

the unitary transformation U2 = e−ikR(σ11−σ22)z to the Hamiltonian density (C.4), we obtain

the SO-coupled single-particle Hamiltonian density

H′′(1)
SO =

1

2m

{
p2
⊥I +

[
pzI− ~kR(σ22 − σ11)

]2}
+ Vext(r)I +

∑

τ=1,2

ε̂τσττ +H ′cav

+ ~Ω′R

(
Â†2Â1σ12 + Â†1Â2σ21

)
. (C.7)

One can identify ~kR(σ22 − σ11) with q∗Ǎz as in the minimal coupling Hamiltonian, that

is, q∗Ǎz ≡ ~kR(σ22 − σ11) = −~kRσ̌z, where σ̌z = σ11 − σ22 is the third Pauli matrix.

Nonetheless, we emphasis that here Ǎz is a matrix acting in the internal pseudospin states,

in contrast to the ordinary vector potential whose components are scaler fields. Then the
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single-particle Hamiltonian reads

H
′′(1)
SO =

1

2m

∫
Ψ̂†
[
p2
⊥I + (pzI + ~kRσ̌z)2 + Vext(r)I

]
Ψ̂d3r +

∑

τ=1,2

ε̂τ N̂τ +H ′cav

+ ~Ω′R

(
Â†2Â1Ŝ+ + Â†1Â2Ŝ−

)
, (C.8)

where Ψ̂(r) = (ψ̂1(r), ψ̂2(r))T are the bosonic field operators, N̂τ =
∫
ψ̂†τ (r)ψ̂τ (r)d3r is the

total atomic number operator for pseudospin τ , N̂ = N̂1 + N̂2 is the total atomic number

operator, and Ŝ+ = Ŝ†− =
∫
ψ̂†1(r)ψ̂2(r)d3r are the collective pseudospin raising and lowering

operators.
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Appendix D

Adiabatic Elimination of the Cavity Fields:

Weak-Coupling Regime

By noting that the cavity field operator commutes with the atomic interaction Hamiltonian

[Âj, Hint] = 0, then the Heisenberg equations of motion of the cavity field operators are

determined by the single-particle Hamiltonian H
′′(1)
SO , Eq. (C.8): ∂tÂj = −i[Âj, H ′′(1)

SO ]/~ −

κÂj, where the cavity-mode decay −κÂj is included phenomenologically. They can be recast

in the matrix form,

d

dt



Â1

Â2


 = i



α̂11 −α̂12

−α̂21 α̂22






Â1

Â2


+



η1

η2


 , (D.1)

where the elements of the “operator” matrix α̂ are given by

α̂11 = (∆c1 + iκ)− 2G 2
ae

∆1

N̂2, α̂22 = (∆c2 + iκ)− 2G 2
be

∆2

N̂1, α̂12 = α̂†21 = Ω′RŜ−.

(D.2)

The 2G 2
aeN̂2/∆1 and 2G 2

beN̂1/∆2 terms are the light shifts induced by the backaction of the

atoms, and they lower the bare cavity frequencies ∆cj, while the terms Ω′RŜ+ and Ω′RŜ−

couple the two cavity modes.

If the cavity decay rate κ is large, then the cavity fields reach steady states very quickly.

By setting ∂tÂ1 = ∂tÂ2 = 0 in Eq. (D.1), one can simultaneously solve the two equations of

motion to obtain formal expressions for the steady-state field amplitudes Âssj. However, one

should take special care in solving these equations since the cavity fields and atomic fields

commute with one another and this can give rise to ambiguities in solving these equations.

In order to avoid such ambiguities, we symmetrize the equations of motion and exercise

symmetrization procedure in all results following from the equations of motion. Thus, after
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setting ∂tÂ1 = ∂tÂ2 = 0 in Eq. (D.1), we re-express equations of motion as

i

2

(
α̂11Âss1 + Âss1α̂11

)
− i

2

(
α̂12Âss2 + Âss2α̂12

)
+ η1 = 0,

i

2

(
α̂22Âss2 + Âss2α̂22

)
− i

2

(
α̂21Âss1 + Âss1α̂21

)
+ η2 = 0. (D.3)

Equation (D.3) can then be rearranged

Âss1 =
1

4

[(
α̂−1

11 α̂12 + α̂12α̂
−1
11

)
Âss2 + Âss2

(
α̂−1

11 α̂12 + α̂12α̂
−1
11

)]
+ iα̂−1

11 η1, (D.4a)

Âss2 =
1

4

[(
α̂−1

22 α̂21 + α̂21α̂
−1
22

)
Âss1 + Âss1

(
α̂−1

22 α̂21 + α̂21α̂
−1
22

)]
+ iα̂−1

22 η2, (D.4b)

where α̂−1
11 and α̂−1

22 are the inverse operators of α̂11 and α̂22, respectively, such that α̂11α̂
−1
11 =

α̂−1
11 α̂11 = 1̂ and α̂22α̂

−1
22 = α̂−1

22 α̂22 = 1̂. In order to make the subsequent analyses somewhat

easier and trackable, we assume that all dual variables (except ηj at this moment) are equal,

namely, ∆1 = ∆2 ≡ ∆, ∆c1 = ∆c2 ≡ ∆c, and Gae = Gbe ≡ G0. We also introduce ∆̃c ≡ ∆c+iκ

for a shorthand. We expand the inverse operators to the second order in a small unitless

parameter ξ ≡ 2G 2
0 /∆∆̃c � 1 (and with 〈N̂τ 〉 ∼ 105 one still has ξ〈N̂τ 〉 ∼ 10−2 � 1, see

Sec. 4.2 for more details),

α̂−1
11 =

(
∆̃c −

2G 2
0

∆
N̂2

)−1

' ∆̃−1
c

(
1 +

2G 2
0

∆∆̃c

N̂2 +
4G 4

0

∆2∆̃2
c

N̂2
2

)
,

α̂−1
22 =

(
∆̃c −

2G 2
0

∆
N̂1

)−1

' ∆̃−1
c

(
1 +

2G 2
0

∆∆̃c

N̂1 +
4G 4

0

∆2∆̃2
c

N̂2
1

)
, (D.5)

such that α̂11α̂
−1
11 = α̂−1

11 α̂11 = α̂22α̂
−1
22 = α̂−1

22 α̂22 = 1̂ + O(ξ3). Note that the error in

symmetrizing Eq. (D.4) is also of order O(ξ3). This can be easily checked by substituting,

say, Eq. (D.4a) in the first equation of (D.3). Equations (D.4a) and (D.4b) can now be

simultaneously solved, yielding

Âss1 = iΓ̂−1
[
η1α̂

−1
11 +

η2

4

(
α̂−1

11 α̂12α̂
−1
22 + α̂12α̂

−1
11 α̂

−1
22 + α̂−1

22 α̂
−1
11 α̂12 + α̂−1

22 α̂12α̂
−1
11

)]
,

Âss2 = iΓ̂−1
[
η2α̂

−1
22 +

η1

4

(
α̂−1

22 α̂21α̂
−1
11 + α̂21α̂

−1
22 α̂

−1
11 + α̂−1

11 α̂
−1
22 α̂21 + α̂−1

11 α̂21α̂
−1
22

)]
, (D.6)

where Γ̂ =
[
1− 1

2∆̃2
c

(α̂12α̂21 + α̂21α̂12)
]

up to ξ2, by noting α̂12 = α̂†21 ∝ Ω′R = 2G2
0/∆ and
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(D.5). We then have

Γ̂−1 ' 1 +
1

2∆̃2
c

(α̂12α̂21 + α̂21α̂12) = 1 +
2G 4

0

∆2∆̃2
c

(
Ŝ+Ŝ− + Ŝ−Ŝ+

)
, (D.7)

up to O(ξ3). Using Eqs. (D.2), (D.5)-(D.7), and retaining terms up to ξ2, we obtain

Âss1 =
i

∆̃c

{
η1 +

2G 2
0

∆∆̃c

(
η1N̂2 + η2Ŝ−

)
+

4G 4
0

∆2∆̃2
c

[
η1N̂

2
2 +

η1

2

(
Ŝ+Ŝ− + Ŝ−Ŝ+

)
+ η2N̂ Ŝ−

]}
,

Âss2 =
i

∆̃c

{
η2 +

2G 2
0

∆∆̃c

(
η2N̂1 + η1Ŝ+

)
+

4G 4
0

∆2∆̃2
c

[
η2N̂

2
1 +

η2

2

(
Ŝ+Ŝ− + Ŝ−Ŝ+

)
+ η1N̂ Ŝ+

]}
.

(D.8)

By substituting steady-state solutions (D.8) and their Hermitian conjugates in the Hamil-

tonian H
′′(1)
SO , Eq. (C.8), exercising symmetrization procedure again and retaining terms up to

ξ2, we can find an effective Hamiltonian which depends solely on the atomic operators. After

some tedious though straightforward algebra, we obtain the cavity-field-eliminated effective

many-body Hamiltonian

Heff =

∫
d3r

(
Ψ̂†H(1)

SOΨ̂ +
1

2
g1n̂

2
1 +

1

2
g2n̂

2
2 + g12n̂1n̂2

)

+
∑

τ=1,2

Uτ N̂
2
τ +

(
U±Ŝ+Ŝ− + U∓Ŝ−Ŝ+

)
+ 2UdsN̂ Ŝx, (D.9)

where the cavity-field-eliminated, effective single-particle Hamiltonian density takes the fa-

miliar form

H(1)
SO = − ~2

2m
[∇2
⊥− (−i∂z + kRσ̌z)

2] + Vext(r) +
1

2
~δσ̌z + ~ΩRσ̌x, (D.10)

with effective two-photon detuning and Raman coupling given by

δ ≡ 2G 2
0 (∆2

c − κ2)

∆(∆2
c + κ2)2

(η2
2 − η2

1),

ΩR =
2G 2

0

∆(∆2
c + κ2)2

(
∆2

c − κ2 − 2G 2
0 ∆c

∆

)
η1η2 =

Ω′R
(∆2

c + κ2)2

(
∆2

c − κ2 − 2G 2
0 ∆c

∆

)
η1η2.

(D.11)
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(Note that δ′ = 0, since we have assumed ∆a1 = ∆a2 ≡ ∆a; cf. Eqs. (C.3) and (C.6).) The

coefficients of the cavity-mediated long-range interactions are found to be

U1 =
4~G 4

0 ∆c(∆
2
c − 3κ2)

∆2(∆2
c + κ2)3

η2
2, U2 =

4~G 4
0 ∆c(∆

2
c − 3κ2)

∆2(∆2
c + κ2)3

η2
1, Uds =

4~G 4
0 ∆c (∆2

c − 3κ2)

∆2(∆2
c + κ2)3

η1η2,

U± =
4~G 4

0 ∆c

∆2(∆2
c + κ2)3

[
∆2

cη
2
1 − (η2

1 + 2η2
2)κ2

]
, U∓ =

4~G 4
0 ∆c

∆2(∆2
c + κ2)3

[
∆2

cη
2
2 − (η2

2 + 2η2
1)κ2

]
.

(D.12)

The terms with coefficients U1/2, U±/∓, and Uds in the effective Hamiltonian (D.9) are the

cavity-mediated long-range interactions. Note that in the special case of η1 = η2 ≡ η, one

has δ = 0 and U1 = U2 = U± = U∓ = Uds ≡ U .
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